Color Math

Workbook Samples

Workbook ISBN 97815926932446

McRuffy Fourth Grade Color Math Curriculum ISBN 9781592692484
© 2011 McRuffy Press.
All rights reserved. Any reproduction of this material without written consent of the publisher is strictly prohibited unless otherwise noted.

Copy master section is reproducible.

Written and illustrated
by Brian Davis M.A. Ed.

McRuffy Press, LLC P.O. Box 212

Raymore, MO 64083
Email: sales@mcruffy.com
Phone: 816-331-7831

Solve the problems.
65,482
$+13,209$
24,053
$+27,343$
32,859
$+46,501$
71,41।
$\begin{array}{r}78,667 \\ \hline\end{array}$

Make the designs on geoboards. Write the area and perimeter of each design.

units perimeter
units ${ }^{2}$ area

perimeter
area

perimeter
area

perimeter
area

Fractions: fourths

To write the fraction $\frac{1}{4}$ as a decimal, write 0.25

4 quarters $=1$ dollar. A quarter is $\frac{1}{4}$ of a dollar.
A quarter can be written as a decimal $\$ 0.25$ dollar.

Write a fraction and decimal for the colored part of each bar.

Rounding to the nearest 1000: Look at the digit in the hundreds place. If it is less than 5 round down. If it is 5 or greater, round up.
$\downarrow<5 \geq \uparrow$

4237 rounds to 4000 4500 rounds to 5000 4896 rounds to 5000

Round these numbers to the nearest 1000.

Lesson 18

Solve the problems.
31,586

16,273
$+\quad 81,407$

55,634
63,548
$+42,899$
$+81,407$
$\begin{array}{r}+\quad 24,924 \\ \hline\end{array}$

$+10,998$

Plot the data in the table on the line graph.

Average High Temperatures

Average High Temperatures

Jan	38	Jul	90
Feb	44	Aug	89
Mar	56	Sep	80
Apr	67	Oct	69
May	76	Nov	53
Jun	86	Dec	42

Fractions: eighths
To write the fraction $\frac{1}{8}$
as a decimal, write 0.125

Write a decimal for each of the eighths.

Write a fraction and decimal for the color and white parts of each bar.

color fraction color decimal white fraction white decimal

Solve the problems.

26,947			
$+21,388$	40,595	63,423	79,888

Fractions: halves
To write the fraction $\frac{1}{2}$ as a decimal, write 0.5

Write decimals for the color and white parts of the circles.

color

Look at the first design in each row. Which designs show flips of the first design? Fill in the circles to mark your answers. There may be more than one answer. Mark all the flips. Use tangrams to find and test your answers. Find another flip for each design using tangrams.

Round these numbers to the nearest 1000.

Solve the problems.

99	13	84	42	12
34	62	89	50	21
+76	+55	+83	+27	+33

Angles

Angles are measured in degrees. A full circle has 360 degrees. Think of the hands on a clock. In an hour, the minute hand travels 360 degrees.

Round these numbers to the nearest ten thousand.

Use fraction pieces to find fractions equal to the twelfths.

$$
\frac{3}{12}=\frac{}{4} \quad \frac{8}{12}=\frac{}{3} \quad \frac{6}{12}=\frac{6}{8} \quad \frac{6}{12}=\frac{}{6}
$$

What is the perimeter and area of the fences represented by the rectangles?

Area and perimeter of rectangles:
$A=1 \times w$
$P=2 \times(l+w)$
Can rectangles have equal perimeters but different areas? O yes

O no
$A=$

1

$$
A=
$$

$$
\mathrm{P}=
$$

\qquad

Lesson 60

Solve the problems.

$$
\begin{array}{r}
76 \\
\times \quad 37 \\
\hline
\end{array}
$$

15

Solve the problems.

19	22	57	39	88
35	74	80	49	52
+67	+46	+93	+79	+60

Fill in $>,<$, or $=$ to make the statements true. Use the fraction overlay sheet and board.
$\frac{2}{3} \bigcirc \frac{8}{12}$
$\frac{3}{4} \bigcirc \frac{3}{5}$
$\frac{6}{7} \bigcirc \frac{6}{9}$
$\frac{10}{16} \bigcirc \frac{10}{10}$
$\frac{4}{6} \bigcirc \frac{6}{9}$
$\frac{8}{16} \bigcirc \frac{5}{10}$
$\frac{15}{16} \bigcirc \frac{7}{8}$
$\frac{3}{10} \bigcirc \frac{1}{3}$
$\frac{2}{5} \bigcirc \frac{2}{4}$
$\frac{6}{7} \bigcirc \frac{5}{6}$

Match the terms to the pictures.
\qquad __ Obtuse Angle

Acute angle \qquad Right Angle

Radius

Division with remainders: solve the problems.
$6 \longdiv { 8 4 2 }$
$2 \longdiv { 4 2 9 }$
$8 \longdiv { 8 9 5 }$
$3 \longdiv { 5 6 5 }$
$4 \longdiv { 9 9 4 }$

Calculate the sums of the times.

$12 d \quad 21 \mathrm{~h} 18 \mathrm{~m} 29 \mathrm{~s}$
+1 d 15 h 35 m 56 s

Probability tree: The probability tree shows the possible outcomes of a coin flip and drawing four counters. Answer the questions below. Write fractions to show the probability.

What is the probability for drawing a blue or green counter? \qquad
What is the fraction for all the tails outcomes? \qquad

What is the probability of having both heads and yellow? \qquad

What is the probability of not drawing red? \qquad

Read the stories. Write the math problem and answers in the space below. You may need to work the problem on another piece of paper.

Nine people picked 892 strawberries. If they had all picked the same amount, how many should
 each person have picked?

One person picked a few more. How many more did that person pick?

If they packed the same number of strawberries into five baskets, how many strawberries were in each basket?

How many were left over?

Turn the fraction into a division problem to find its decimal equivalent. Solve for up to 3 decimal places.

$$
\frac { 3 } { 7 } 7 \longdiv { 3 . 0 0 } \quad \frac { 1 1 } { 1 4 } \quad \sqrt { 1 6 } \quad \sqrt { 1 0 } \quad \frac { 1 0 } { 1 1 } \quad \sqrt { }
$$

Use the distributive property to help do mental math. Write only the last addition step and solve the problems. Example: $4 \times 78=280+32=312$

$$
\begin{aligned}
& 6 \times 67= \\
& 9 \times 29=
\end{aligned}
$$

$$
3 \times 112=
$$

\qquad

$$
5 \times 46=
$$

\qquad

Fill in the circles in front of the numbers that are divisible by 7.
$\bigcirc 576$
○ 1,036
○ 6,538
○ 5,481
○ 17,779

What numbers are divisible by $2,3,4,5,6,8,9,10$? Fill in all the ovals to mark your answers. Draw a line through the number if it is not divisible by any of the numbers.

2,160	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{8}	O_{9}	O_{10}
1,305	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{8}	O_{9}	O_{10}
9,392	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{8}	O_{9}	O_{10}
4,329	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{8}	O_{9}	O_{10}
5,340	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{8}	O_{9}	O_{10}

Read the schedule to answer the questions.

1. Joe arrived at $9: 15$. What subject did he miss? \qquad
2. How much time was spent in recess? \qquad
3. Was more time spent in reading or language? \qquad
4. Was more time spent in music or science? \qquad
5. How long was lunch? \qquad
6. How much time was allowed for computer lab? \qquad
7. At what time does recess end? \qquad
8. How much time was allowed for math? \qquad
9. What time does school end? \qquad
10. What is the class studying at $12: 50$? \qquad

School Schedule:

8:25 Arrive - seat work
8:40 Spelling
9:10 Reading
10:10 Language
10:45 Recess
11:05 Math
12:05 Lunch
12:35 Social Studies
1:00 Music
1:35 Computer Lab
2:15 Science
3:00 Clean-up/ Pack-up
3:15 Dismiss

Division: Find the quotients and remainders.
$8 4 \longdiv { 5 3 4 0 }$
$3 3 \longdiv { 8 2 0 5 }$
$5 7 \longdiv { 5 8 6 3 }$
$1 9 \longdiv { 9 1 9 4 }$

Find the area of the shapes. Write the answers on the lines.

$$
A=
$$

$A=$ \qquad
$A=$ \qquad

A group of children were tossing beanbags on targets that looked like the ones below. Categorize the probabilities for the outcomes for each time bags landed on a target. Abbreviate Im, Un, Eq, Li, Ce.

E

The probability of a toss landing on:

1. the blue section of target D \qquad 2. the red section of target D \qquad
2. the purple section of target A \qquad 4. the blue section of target B \qquad
3. the green section of target E \qquad 6. the orange section of target A \qquad
