
ARMABOT
Encoder Technology Tutorial

Table of Contents:

1. Wiring the CAN bus and encoders
a) Wiring the CAN bus and Talon SRXs

b) Wiring the motors and encoders

2. Instantiating and Configuring CANTalons in software
a) An example Java class using CANTalons

b) Creating CANTalon objects in Java

c) Configuring Talon SRX Device IDs

3. Reading and Writing Values with CANTalons

4. Creating and Tuning PID loops
a) Introduction to PID controllers

b) Instantiating a PIDController in Java

c) Running a PID loop

d) PID loop tuning

1 ARMABOT

Special thanks to FRC team 5818 for putting together this tutorial

To Talon SRX

To RoboRIO

To Talon SRX

To Power
Distribution
Panel (PDP)

Jumper in “ON” position Wiring the CAN bus

1a ARMABOT

Solder power (5V),
signal, ground

Attach ribbon cable

To PDP

To motor

Connecting the Motors, Encoders, and Talon SRXs

1b ARMABOT

A simple Java class using a CANTalon and a PID controller. We’ll
explore the different sections of this class. 2a ARMABOT

Instantiating a CANTalon:
• The CANTalon constructor takes an integer CAN ID
• Note that the CAN ID of your device is NOT its port on the PDP
• Finding and Configuring CAN IDs:

• Enter roborio-XXXX-frc.local into a web browser, where XXXX is
your team number

• Use a browser with Silverlight installed (not Chrome)
• You should see screen a that looks like this:

2b ARMABOT

Configuring Talons:
• Click on a device on the left-hand side to configure it
• To identify which physical Talon you are configuring, check “Light device

LED” and press “Update Firmware”
• Once you have selected the right Talon, you can change its ID in the

“Device ID” field. This is the number passed to the CANTalon Constructor
• From this page, you can also choose whether the Talon is in “Brake

Mode”, which means it will resist movement while stationary.

2c ARMABOT

Writing and Reading Values with a CANTalon:
• CANTalons have two simple methods for reading and writing values
• The set method takes a power value between -1 and 1 and writes it to the motor
• The getPosition method returns the position of the encoder in encoder ticks. Be

sure to add a scale and offset to convert it usable units.

3 ARMABOT

e(t) =

destination- position
Output = P + I + D

Proportional

 Integral ki e(t)
0

t

ò

kpe(t)

 Derivative
de(t)

dt
PID Controllers:
• A PID controller allows a machine to reach a desired state without overshooting,

undershooting, or oscillating
• In a PID controller the “error function” is the distance to the target state
• The Proportional (P) term is directly proportional to the current error
• The Integral (I) term is proportional to the total accumulated error
• The Derivative (D) term is proportional to the current change in error
 4a ARMABOT

Instantiating a PID Controller:
• The constructor for the PIDController class takes 5 arguments:

• The KP, KI, and KD Constants
• A PIDSource from which to get sensor information
• A PIDOutput that can move the system closer to the target

• A CANTalon in both a PIDSource and a PIDOutput, so it can be passed into either
argument of the constructor

• If you want your PID loop to use multiple motors or sensors, create your own
PIDSource or PIDOutput by implementing the PIDSource or PIDOutput interface.

4b ARMABOT

Running a PID loop:
• Whenever you want to change a parameter of the PIDController or set a power

value, it is wise to stop the current PID loop using the disable method
• To set a target position for your PIDController, use the setSetpoint method. This

position must be in the same units as those given by your PIDSource.
• To start the PID loop running, us the enable method. After calling this method, the

PID loop will keep running in the background until it is told to stop.

4c ARMABOT

Tuning the PID constants:
• For good performance, it is important to choose good values for your Kp, Ki, and Kd

constants
• The following is a simple method for loop tuning:

• Set all the values to 0.
• Gradually raise Kp until the system moves in the right direction and slightly

undershoots
• Then raise Ki until the system begins to oscillate slightly around the target
• Finally, raise KD until the oscillation dampens

• For more information on PID tuning, see :
https://en.wikipedia.org/wiki/PID_controller#Loop_tuning

 4d ARMABOT

https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller

