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Connecting the Motors, Encoders, and Talon SRXs 
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A simple Java  class using a CANTalon and a PID controller. We’ll 
explore the different sections of this class. 2a ARMABOT 



Instantiating a CANTalon: 
• The CANTalon constructor takes an integer CAN ID 
• Note that the CAN ID of your device is NOT its port on the PDP 
• Finding and Configuring CAN IDs: 

• Enter roborio-XXXX-frc.local  into a web browser, where XXXX is 
your team number 

• Use a browser with Silverlight installed (not Chrome) 
• You should see screen a that looks like this: 
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Configuring Talons: 
• Click on a device on the left-hand side to configure it 
• To identify which physical Talon you are configuring, check “Light device 

LED” and press “Update Firmware” 
• Once you have selected the right Talon, you can change its ID in the 

“Device ID” field. This is the number passed to the CANTalon Constructor 
• From this page, you can also choose whether the Talon is in “Brake 

Mode”, which means it will resist movement while stationary. 
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Writing and Reading Values with a CANTalon: 
• CANTalons have two simple methods for reading and writing values 
• The set method takes a power value between -1 and 1 and writes it to the motor 
• The getPosition method returns the position of the encoder in encoder ticks. Be 

sure to add a scale and offset to convert it usable units. 
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PID Controllers: 
• A PID controller allows a machine to reach a desired state without overshooting, 

undershooting, or oscillating 
• In a PID controller the “error function” is the distance to the target state 
• The Proportional (P) term is directly proportional to the current error 
• The Integral (I) term is proportional to the total accumulated error 
• The Derivative (D) term is proportional to the current change in error 
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Instantiating a PID Controller: 
• The constructor for the PIDController class takes 5 arguments: 

• The KP, KI, and  KD Constants 
• A PIDSource from which to get sensor information 
• A PIDOutput that can move the system closer to the target 

• A CANTalon in both a PIDSource and a PIDOutput, so it can be passed into either 
argument of the constructor 

• If you want your PID loop to use multiple motors or sensors, create your own 
PIDSource or PIDOutput by implementing the PIDSource or PIDOutput interface. 
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Running a PID loop: 
• Whenever you want to change a parameter of the PIDController or set a power 

value, it is wise to stop the current PID loop using the disable method 
• To set a target position for your PIDController, use the setSetpoint method. This 

position must be in the same units as those given by your PIDSource. 
• To start the PID loop running, us the enable method. After calling this method, the 

PID loop will keep running in the background until it is told to stop.  
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Tuning the PID constants: 
• For good performance, it is important to choose good values for your Kp, Ki, and Kd 

constants 
• The following is a simple method for loop tuning: 

• Set all the values to 0. 
• Gradually raise Kp until the system moves in the right direction and slightly 

undershoots 
• Then raise Ki until the system begins to oscillate slightly around the target 
• Finally, raise KD until the oscillation dampens 

• For more information on PID tuning, see : 
https://en.wikipedia.org/wiki/PID_controller#Loop_tuning 
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