

STM32F103C8T6 Microcontroller Datenblatt

Contents:

- 1. Features
- 2. Description
- 3. Pinouts and pin description
- 4. Memory mapping
- 5. Electrical characteristics
- 6. Thermal characteristics

1. Features

ARM® 32-bit Cortex®-M3 CPU Core

- 72 MHz maximum frequency, 1.25 DMIPS/MHz (Dhrystone 2.1) performance at 0 wait state memory access

- Single-cycle multiplication and hardware division
- Memories
- 64 or 128 Kbytes of Flash memory
- 20 Kbytes of SRAM
- Clock, reset and supply management
- 2.0 to 3.6 V application supply and I/Os
- POR, PDR, and programmable voltage detector (PVD)
- 4-to-16 MHz crystal oscillator
- Internal 8 MHz factory-trimmed RC
- Internal 40 kHz RC
- PLL for CPU clock
- 32 kHz oscillator for RTC with calibration
- Low-power
- Sleep, Stop and Standby modes
- VBAT supply for RTC and backup registers
- 2 x 12-bit, 1 µs A/D converters (up to 16 channels)
- Conversion range: 0 to 3.6 V
- Dual-sample and hold capability
- Temperature sensor
- DMA
- 7-channel DMA controller
- Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs
- Up to 80 fast I/O ports
- 26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all
- 5 V-tolerant

2. Description

2.1 Device overview

	Peripheral	STM32	F103Tx	STM32	F103Cx	STM32	F103Rx	STM32F103Vx	
Flash	ı - Kbytes	64	128	64	128	64	128	64	128
SRAI	M - Kbytes	2	0	2	0	2	20	2	20
ers	General-purpose	3	3	3	3	:	3	3	
Ę	Advanced-control	1	I	1	I		1		1
c	SPI	1	1	2	2	:	2	:	2
atio	l ² C	1	I	2	2	:	2	:	2
Junic	USART	2	2	3	3	:	3	3	
omn	USB	1	I	1	I		1		1
U U	CAN	1	I	1	I		1		1
GPIO	S	2	6	3	7	5	51	8	30
12-bi	t synchronized ADC	2	2	2	2	:	2	2	
Num	ber of channels	10 cha	annels	10 cha	annels	16 cha	nnels ⁽¹⁾	16 ch	annels
CPU	frequency				72	MHz			
Oper	ating voltage				2.0 to	3.6 V			
Oper	ating temperatures	Ambient Junction	tempera tempera	atures: -40 ature: -40) to +85 ° to + 125	°C / -40 to °C (see	o +105 °C Table 8)	(see Tal	ole 8)
Pack	ages	VFQF	PN36	LQF UFQF	P48, PN48	LQF TFB(P64, GA64	LQFI LFBG UFBC	P100, 6A100, 6A100

Table 1. STM32F103xx medium-density device features and peripheral counts

1. On the TFBGA64 package only 15 channels are available (one analog input pin has been replaced by 'Vref+').

- 1. TA = -40 °C to +105 °C (junction temperature up to 125 °C).
- 2. AF = alternate function on I/O port pin.

Figure 2. Clock tree

1. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.

2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.

3. To have an ADC conversion time of 1 μs , APB2 must be at 14 MHz, 28 MHz or 56 MHz.

2.2 Full compatibility throughout the family

The STM32F103xx is a complete family whose members are fully pin-to-pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low-density devices, the STM32F103x8 and STM32F103xB are referred to as medium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high-density devices.

Low- and high-density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High-density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I2S and DAC, while remaining fully compatible with the other members of the STM32F103xx family.

The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop-in replacement for STM32F103x8/B medium-density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.

Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.

	Low-dens	ity devices	Medium-den	sity devices	High-density devices					
Pinout	16 KB Flash	32 KB Flash	64 KB Flash	128 KB Flash	256 KB Flash	384 KB Flash	512 KB Flash			
	6 KB RAM	10 KB RAM	20 KB RAM	20 KB RAM	48 KB RAM	64 KB RAM	64 KB RAM			
144	-	-	-	-	5 × USARTs 4 × 16-bit timers, 2 × basic timers 3 × SPIs, 2 × I ² Ss, 2 × I2Cs					
100	-	-								
64	2 × USARTs 2 × 16-bit til 1 × SPL 1 ×	s mers 1 ² C_USB	3 × USARTs 3 × 16-bit tim 2 × SPIs, 2 ×	ers I ² Cs, USB, (M timor	USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIC FSMC (100 and 144 pins)					
48	CAN, 1 × P	WM timer	2 × ADCs							
36	2 × ADCs									

Table 3. STM32F103xx family

2.3 Overview

2.3.1 ARM® Cortex®-M3 core with embedded Flash and SRAM

The ARM® Cortex®-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM® Cortex®-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The STM32F103xx performance line family having an embedded ARM core, is therefore compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the device family.

2.3.2 Embedded Flash memory

64 or 128 Kbytes of embedded Flash is available for storing programs and data.

2.3.3 CRC (cyclic redundancy check) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

2.3.4 Embedded SRAM

Twenty Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states.

2.3.5 Nested vectored interrupt controller (NVIC)

The STM32F103xx performance line embeds a nested vectored interrupt controller able to handle up to 43 maskable interrupt channels

(not including the 16 interrupt lines of Cortex®-M3) and 16 priority levels.

- Closely coupled NVIC gives low-latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.6 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 19 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 80 GPIOs can be connected to the 16 external interrupt lines.

2.3.7 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-16 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the high-speed APB domains is 72 MHz. The maximum allowed frequency of the low-speed APB domain is 36 MHz. See Figure 2 for details on the clock tree.

2.3.8 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from User Flash
- Boot from System Memory
- Boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606.

2.3.9 Power supply schemes

 \bullet V_{DD} = 2.0 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins.

• V_{SSA}, V_{DDA} = 2.0 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

• V_{BAT} = 1.8 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to Figure 14: Power supply scheme.

2.3.10 Power supply supervisor

The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. Refer to Table 11: Embedded reset and power control block characteristics for the values of VPOR/PDR and VPVD.

2.3.11 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in the nominal regulation mode (Run)
- LPR is used in the Stop mode

• Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost)

This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output.

2.3.12 Low-power modes

The STM32F103xx performance line supports three low-power modes to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

The Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm or the USB wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off.

The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note:The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

2.3.13 DMA

The flexible 7-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose and advanced-control timers TIMx and ADC.

2.3.14 RTC (real-time clock) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long-term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.3.15 Timers and watchdogs

The medium-density STM32F103xx performance line devices include an advanced-control timer, three general-purpose timers, two watchdog timers and a SysTick timer. Table 3 compares the features of the advanced-control and general-purpose timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs	
TIM1	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes	
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No	

Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead-times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for

- Input capture
- Output compare
- PWM generation (edge- or center-aligned modes)
- One-pulse mode output

If configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). In debug mode, the advanced-control timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TIM timers which have the same architecture. The advanced-control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining.

General-purpose timers (TIMx)

There are up to three synchronizable general-purpose timers embedded in the STM32F103xx performance line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit prescaler and feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The general-purpose timers can work together with the advanced-control timer via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. They all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Independent watchdog

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

Window watchdog

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

SysTick timer

This timer is dedicated for OS, but could also be used as a standard downcounter. It features:

- A 24-bit downcounter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches O
- Programmable clock source

2.3.16 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

2.3.17 Universal synchronous/asynchronous receiver transmitter (USART) One of the USART interfaces is able to communicate at speeds of up to 4.5 Mbit/s. The other available interfaces communicate at up to 2.25 Mbit/s. They provide hardware management of the CTS and RTS signals, IrDA SIR ENDEC support, are ISO 7816 compliant and have LIN Master/Slave capability.

All USART interfaces can be served by the DMA controller.

2.3.18 Serial peripheral interface (SPI)

Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. Both SPIs can be served by the DMA controller.

2.3.19 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

2.3.20 Universal serial bus (USB)

The STM32F103xx performance line embeds a USB device peripheral compatible with the USB full-speed 12 Mbs. The USB interface implements a full-speed (12 Mbit/s) function interface. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL (the clock source must use a HSE crystal oscillator).

2.3.21 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-capable.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

I/Os on APB2 with up to 18 MHz toggling speed.

2.3.22 ADC (analog-to-digital converter)

Two 12-bit analog-to-digital converters are embedded into STM32F103xx performance line devices and each ADC shares up to 16 external channels, performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hold
- Single shunt

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) and the advanced-control timer (TIM1) can be internally connected to the ADC start trigger, injection trigger, and DMA trigger respectively, to allow the application to synchronize A/D conversion and timers.

2.3.23 Temperature sensor

The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between $2 V < V_{DDA} < 3.6 V$. The temperature sensor is internally connected to the ADC12_IN16 input channel which is used to convert the sensor output voltage into a digital value.

2.3.24 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3. Pinouts and pin description

	1	2	3	4	5	6	7	8	9	10
A	PC14- OSC32_IN	PC13- TAMPER- RTC	PE2	PB9	PB7	PB4	PB3	PA15	PA14	PA13
в	PC15- bsc32_out	V _{BAT}	PE3	PB8	P86	PD5	PD2	PC11	PC10	PA12
с	OSC_IN	V _{SS_5}	PE4	PE1	PB5	PD6	PD3	PC12	PA9	PA11
D	OSC_OUT	V _{DD_5}	PE5	PEO	воото	PD7	PD4	PD0	PA8	PA10
ε	NRST	PC2	PE6	V _{SS_4}	v _{SS_3}	V _{SS_2}	v _{ss_1}	PD1	PC9	PC7
F	PC0	PC1	PC3	V _{DD_4}	V _{DD_3}	V _{DD_2}	V _{DD_1}	NC	PC8	PC6
G	V _{SSA}	PA0-WKUP	PA4	PCA	PB2	PE10	PE14	PB15	PD11	PD15
н	V _{REF-}	PA1	PA5	PC5	PE7	PE11	PE15	PB14	PD10	PD14
j.	V _{REF+}	PA2	PA6	PB0	PE8	PE12	PB10	PB13	PD9	PD13
к	V _{DDA}	PA3	PA7	PB1	PE9	PE13	PB11	PB12	PD8	PD12
l										

Figure 3. STM32F103xx performance line LFBGA100 ballout

Figure 4. STM32F103xx performance line LQFP100 pinout

Figure 5. STM32F103xx performance line UFBGA100 pinout

Figure 6. STM32F103xx performance line LQFP64 pinout

	1	2	3	4	5	6	7	8
A		PC13- TAMPER-RTC	PB9	PB4	РВЗ	PA15	PA14	PA13
в	. РС15- OSC32_ОUТ	V _{BAT}	PB8	BOOTO	PD2	PC11	PC10	PA12
с	OSC_IN	V _{SS_4}	PB7	PB5	PC12	PA10	PA9	PA11
D	osc_out	V _{DD_4}	PB6	V _{SS_3}	V _{SS_2}	V _{SS_1}	PA8	PC9
E	NRST	PC1	PCO	V _{DD_3}	V _{DD_2}	V _{DD_1}	PC7	PC8
F	V _{SSA}	PC2	PA2	PA5	PBO	PC6	PB15	PB14
G	V _{REF+}	PAO-WKUP	PA3	PA6	PB1	PB2	PB10	PB13
н	V _{DDA}	PA1	PA4	PA7	PC4	PC5	PB11	PB12
I								

Figure 7. STM32F103xx performance line TFBGA64 ballout

Figure 8. STM32F103xx performance line LQFP48 pinout

Figure 9. STM32F103xx performance line UFQFPN48 pinout

Figure 10. STM32F103xx performance line VFQFPN36 pinout

Table 4. Medium-density STM32F103xx pin definitions

			Pins								Alternate functions ⁽⁴⁾		
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap	
A3	B2	-	-	-	1	-	PE2	1/0	FT	PE2	TRACECK	-	
B3	A1	-	-	-	2	-	PE3	1/0	FT	PE3	TRACED0	-	
C3	B1	-	-	-	3	-	PE4	I/O	FT	PE4	TRACED1	-	
D3	C2	-	-	-	4	-	PE5	I/O	FT	PE5	TRACED2	-	
E3	D2	-	-	-	5	-	PE6	I/O	FT	PE6	TRACED3	-	
B2	E2	1	B2	1	6	-	V _{BAT}	s	-	V _{BAT}	-	-	
A2	C1	2	A2	2	7	-	PC13-TAMPER- RTC ⁽⁵⁾	1/0	-	PC13 ⁽⁶⁾	TAMPER-RTC	-	
A1	D1	3	A1	3	8	-	PC14-OSC32_IN ⁽⁵⁾	1/0	-	PC14 ⁽⁶⁾	OSC32_IN	-	
B1	E1	4	B1	4	9	-	PC15- OSC32_OUT ⁽⁵⁾	1/0	-	PC15 ⁽⁶⁾	OSC32_OUT	-	
C2	F2	-	-	-	10	-	V _{SS_5}	s	-	V _{SS_5}	-	-	
D2	G2	-	-	-	11	-	V _{DD_5}	s	-	V _{DD_5}	-		
C1	F1	5	C1	5	12	2	OSC_IN	1	-	OSC_IN	-	PD0 ⁽⁷⁾	
D1	G1	6	D1	6	13	3	OSC_OUT	0	-	OSC_OUT		PD1 ⁽⁷⁾	
E1	H2	7	E1	7	14	4	NRST	I/O	-	NRST	-	-	
F1	H1	-	E3	8	15	-	PC0	I/O	-	PC0	ADC12_IN10	-	
F2	J2	-	E2	9	16	-	PC1	1/0	-	PC1	ADC12_IN11	-	
E2	J3	-	F2	10	17	-	PC2	1/0	-	PC2	ADC12_IN12	-	
F3	K2	-	_(8)	11	18	-	PC3	1/0	-	PC3	ADC12_IN13	-	
G1	J1	8	F1	12	19	5	V _{SSA}	S	-	V _{SSA}	-	-	
H1	K1	-	-	-	20	-	V _{REF-}	S	-	V _{REF-}	-	-	
J1	L1	-	G1 ⁽⁸⁾	-	21	-	V _{REF+}	S	-	V _{REF+}	-	-	
K1	M1	9	H1	13	22	6	V _{DDA}	s	-	V _{DDA}	-	-	

			Pins								Alternate fu	nctions ⁽⁴⁾
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
G2	L2	10	G2	14	23	7	PA0-WKUP	I/O	-	PA0	WKUP/ USART2_CTS ⁽⁹⁾ / ADC12_IN0/ TIM2_CH1_ ETR ⁽⁹⁾	-
H2	M2	11	H2	15	24	8	PA1	1/0	-	PA1	USART2_RTS ⁽⁹⁾ / ADC12_IN1/ TIM2_CH2 ⁽⁹⁾	-
J2	КЗ	12	F3	16	25	9	PA2	1/0	-	PA2	USART2_TX ⁽⁹⁾ / ADC12_IN2/ TIM2_CH3 ⁽⁹⁾	-
К2	L3	13	G3	17	26	10	PA3	I/O	-	PA3	USART2_RX ⁽⁹⁾ / ADC12_IN3/ TIM2_CH4 ⁽⁹⁾	-
E4	E3	-	C2	18	27	-	V _{SS_4}	s	-	V _{SS_4}	-	-
F4	H3	-	D2	19	28	-	V _{DD_4}	s	-	V _{DD_4}	-	-
G3	МЗ	14	НЗ	20	29	11	PA4	I/O	-	PA4	SPI1_NSS ⁽⁹⁾ / USART2_CK ⁽⁹⁾ / ADC12_IN4	-
НЗ	K4	15	F4	21	30	12	PA5	1/0	-	PA5	SPI1_SCK ⁽⁹⁾ / ADC12_IN5	-
J3	L4	16	G4	22	31	13	PA6	I/O	-	PA6	SPI1_MISO ⁽⁹⁾ / ADC12_IN6/ TIM3_CH1 ⁽⁹⁾	TIM1_BKIN
КЗ	M4	17	H4	23	32	14	PA7	I/O	-	PA7	SPI1_MOSI ⁽⁹⁾ / ADC12_IN7/ TIM3_CH2 ⁽⁹⁾	TIM1_CH1N
G4	K5	-	H5	24	33		PC4	I/O	-	PC4	ADC12_IN14	-
H4	L5	-	H6	25	34		PC5	I/O	-	PC5	ADC12_IN15	-
J4	M5	18	F5	26	35	15	PB0	I/O	-	PB0	ADC12_IN8/ TIM3_CH3 ⁽⁹⁾	TIM1_CH2N
K4	M6	19	G5	27	36	16	PB1	1/0	-	PB1	ADC12_IN9/ TIM3_CH4 ⁽⁹⁾	TIM1_CH3N

			Pins								Alternate fu	nctions ⁽⁴⁾
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
G5	L6	20	G6	28	37	17	PB2	I/O	FT	PB2/BOOT1	-	-
H5	M7	-	-	-	38	-	PE7	I/O	FT	PE7	-	TIM1_ETR
J5	L7	-	-	-	39	-	PE8	I/O	FT	PE8	-	TIM1_CH1N
K5	M8	-	-	-	40	-	PE9	I/O	FT	PE9	-	TIM1_CH1
G6	L8	-	-	-	41	-	PE10	I/O	FT	PE10	-	TIM1_CH2N
H6	M9	-	-	-	42	-	PE11	I/O	FT	PE11	-	TIM1_CH2
J6	L9	-	-	-	43	-	PE12	I/O	FT	PE12	-	TIM1_CH3N
K6	M10	-	-	-	44	-	PE13	I/O	FT	PE13	-	TIM1_CH3
G7	M11	-	-	-	45	-	PE14	I/O	FT	PE14	-	TIM1_CH4
H7	M12	-	-	-	46	-	PE15	I/O	FT	PE15	-	TIM1_BKIN
J7	L10	21	G7	29	47	-	PB10	1/0	FT	PB10	I2C2_SCL/ USART3_TX ⁽⁹⁾	ТІМ2_СНЗ
К7	L11	22	H7	30	48	-	PB11	1/0	FT	PB11	I2C2_SDA/ USART3_RX ⁽⁹⁾	TIM2_CH4
E7	F12	23	D6	31	49	18	V _{SS_1}	s	-	V _{SS_1}	-	-
F7	G12	24	E6	32	50	19	V _{DD_1}	s	-	V _{DD_1}	-	-
К8	L12	25	H8	33	51	-	PB12	I/O	FT	PB12	SPI2_NSS/ I2C2_SMBAI/ USART3_CK ⁽⁹⁾ / TIM1_BKIN ⁽⁹⁾	-
J8	K12	26	G8	34	52	-	PB13	I/O	FT	PB13	SPI2_SCK/ USART3_CTS ⁽⁹⁾ / TIM1_CH1N ⁽⁹⁾	-
H8	K11	27	F8	35	53	-	PB14	I/O	FT	PB14	SPI2_MISO/ USART3_RTS ⁽⁹⁾ TIM1_CH2N ⁽⁹⁾	-
G8	K10	28	F7	36	54	-	PB15	I/O	FT	PB15	SPI2_MOSI/ TIM1_CH3N ⁽⁹⁾	-
K9	K9	-	-	-	55	-	PD8	I/O	FT	PD8	-	USART3_TX
J9	K8	-	-	-	56	-	PD9	I/O	FT	PD9	-	USART3_RX

			Pins								Alternate fu	nctions ⁽⁴⁾
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I/ O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
Н9	J12	-	-	-	57	-	PD10	I/O	FT	PD10	-	USART3_CK
G9	J11	-	-	-	58	-	PD11	I/O	FT	PD11	-	USART3_CTS
K10	J10	-	-	-	59	-	PD12	I/O	FT	PD12	-	TIM4_CH1 / USART3_RTS
J10	H12	-	-	-	60	-	PD13	I/O	FT	PD13	-	TIM4_CH2
H10	H11	-	-	-	61	-	PD14	I/O	FT	PD14	-	TIM4_CH3
G10	H10	-	-	-	62	-	PD15	I/O	FT	PD15	-	TIM4_CH4
F10	E12	-	F6	37	63	-	PC6	I/O	FT	PC6	-	TIM3_CH1
E10	E11		E7	38	64	-	PC7	I/O	FT	PC7	-	TIM3_CH2
F9	E10		E8	39	65	-	PC8	I/O	FT	PC8	-	TIM3_CH3
E9	D12	-	D8	40	66	-	PC9	I/O	FT	PC9	-	TIM3_CH4
D9	D11	29	D7	41	67	20	PA8	I/O	FT	PA8	USART1_CK/ TIM1_CH1 ⁽⁹⁾ / MCO	-
С9	D10	30	C7	42	68	21	PA9	I/O	FT	PA9	USART1_TX ⁽⁹⁾ / TIM1_CH2 ⁽⁹⁾	-
D10	C12	31	C6	43	69	22	PA10	I/O	FT	PA10	USART1_RX ⁽⁹⁾ / TIM1_CH3 ⁽⁹⁾	-
C10	B12	32	C8	44	70	23	PA11	I/O	FT	PA11	USART1_CTS/ CANRX ⁽⁹⁾ / USBDM/ TIM1_CH4 ⁽⁹⁾	-
B10	A12	33	В8	45	71	24	PA12	I/O	FT	PA12	USART1_RTS/ CANTX ⁽⁹⁾ /USBDP TIM1_ETR ⁽⁹⁾	-
A10	A11	34	A8	46	72	25	PA13	I/O	FT	JTMS/SWDIO	-	PA13
F8	C11	-	-	-	73	-		١	Not o	connected		-
E6	F11	35	D5	47	74	26	V _{SS_2}	s	-	V _{SS_2}	-	-
F6	G11	36	E5	48	75	27	V _{DD_2}	S	-	V _{DD_2}	-	-

			Pins								Alternate fu	nctions ⁽⁴⁾
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
A9	A10	37	A7	49	76	28	PA14	I/O	FT	JTCK/SWCLK	-	PA14
A8	A9	38	A6	50	77	29	PA15	I/O	FT	JTDI	-	TIM2_CH1_ ETR/ PA15 /SPI1_NSS
B9	B11	-	B7	51	78		PC10	I/O	FT	PC10	-	USART3_TX
B8	C10	-	B6	52	79		PC11	I/O	FT	PC11	-	USART3_RX
C8	B10	-	C5	53	80		PC12	I/O	FT	PC12	-	USART3_CK
-	C9	-	C1	-	81	2	PD0	I/O	FT	PD0	-	CANRX
-	B9	-	D1	-	82	3	PD1	I/O	FT	PD1	-	CANTX
B7	C8		B5	54	83	-	PD2	I/O	FT	PD2	TIM3_ETR	-
C7	B8	-	-	-	84	-	PD3	I/O	FT	PD3	-	USART2_CTS
D7	B7	-	-	-	85	-	PD4	I/O	FT	PD4	-	USART2_RTS
B6	A6	-	-	-	86	-	PD5	I/O	FT	PD5	-	USART2_TX
C6	B6	-	-	-	87	-	PD6	I/O	FT	PD6	-	USART2_RX
D6	A5	-	-	-	88	-	PD7	I/O	FT	PD7	-	USART2_CK
A7	A8	39	A5	55	89	30	PB3	1/0	FT	JTDO	-	TIM2_CH2 / PB3 TRACESWO SPI1_SCK
A6	A7	40	A4	56	90	31	PB4	1/0	FT	JNTRST	-	TIM3_CH1/ PB4/ SPI1_MISO
C5	C5	41	C4	57	91	32	PB5	I/O		PB5	I2C1_SMBAI	TIM3_CH2 / SPI1_MOSI
B5	B5	42	D3	58	92	33	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁹⁾ / TIM4_CH1 ⁽⁹⁾	USART1_TX
A5	B4	43	C3	59	93	34	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁹⁾ / TIM4_CH2 ⁽⁹⁾	USART1_RX
D5	A4	44	B4	60	94	35	BOOT0	Ι		BOOT0	-	-

			Pins								Alternate fui	nctions ⁽⁴⁾
LFBGA100	UFBG100	LQFP48/UFQFPN48	TFBGA64	LQFP64	LQFP100	VFQFPN36	Pin name	Type ⁽¹⁾	I / O Level ⁽²⁾	Main function ⁽³⁾ (after reset)	Default	Remap
B4	A3	45	B3	61	95	-	PB8	I/O	FT	PB8	TIM4_CH3 ⁽⁹⁾	I2C1_SCL / CANRX
A4	В3	46	A3	62	96	-	PB9	I/O	FT	PB9	TIM4_CH4 ⁽⁹⁾	I2C1_SDA/ CANTX
D4	C3	-	-	-	97	-	PE0	I/O	FT	PE0	TIM4_ETR	-
C4	A2	-	-	-	98	-	PE1	I/O	FT	PE1	-	-
E5	D3	47	D4	63	99	36	V _{SS_3}	S	-	V _{SS_3}	-	-
F5	C4	48	E4	64	100	1	V _{DD_3}	s	-	V _{DD_3}	-	-

1. I = input, O = output, S = supply.

2. FT = 5 V tolerant.

3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1 and USART1 & USART2, respectively. Refer to Table 1.

4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).

5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED).

6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset).

7. The pins number 2 and 3 in the VFQFPN36 package, 5 and 6 in the LQFP48, UFQFP48 and LQFP64 packages, and Cl and C2 in the TFBGA64 package are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual.

The use of PDO and PDI in output mode is limited as they can only be used at 50 MHz in output mode.

8. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package.

The VREF+ functionality is provided instead.

9. This alternate function can be remapped by software to some other port pins (if available on the used package).

4. Memory mapping

The memory map is shown in Figure 11.

Figure 11. Memory map

5. Electrical characteristics

5.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to Vss.

5.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and T_A = T_Amax (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

5.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.3 V (for the 2 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

5.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

5.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 12.

5.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 13.

Figure 12. Pin loading conditions

Figure 13. Pin input voltage

5.1.6 Power supply scheme

Figure 14. Power supply scheme

Caution: In Figure 14, the 4.7 μ F capacitor must be connected to VDD3.

Figure 15. Current consumption measurement scheme

5.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 5: Voltage characteristics, Table 6: Current characteristics, and Table 7: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit	
V _{DD} -V _{SS}	External main supply voltage (including V_{DDA} and $V_{DD})^{(1)}$	-0.3	4.0		
V(2)	Input voltage on five volt tolerant pin	V _{SS} –0.3	V _{DD} +4.0	V	
VIN'-'	Input voltage on any other pin	V _{SS} -0.3	4.0		
ΔV _{DDx}	Variations between different V _{DD} power pins	-	50		
V _{SSX} -V _{SS}	Variations between all the different ground pins	-	50	mV	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 5. maximum rati sensi	3.11: Absolute ngs (electrical itivity)		

Table 5. Voltage characteristics

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. VIN maximum must always be respected. Refer to Table 6: Current characteristics for the maximum allowed injected current values.

Table 6. Current characteristics

Symbol	Ratings	Max.	Unit		
I _{VDD}	Total current into V _{DD} /V _{DDA} power lines (source) ⁽¹⁾	150			
I _{VSS}	I _{VSS} Total current out of V _{SS} ground lines (sink) ⁽¹⁾				
I _{IO}	Output current sunk by any I/O and control pin	25			
	Output current source by any I/Os and control pin	-25	mA		
(2)	Injected current on five volt tolerant pins ⁽³⁾	-5/+0			
INJ(PIN)	Injected current on any other pin ⁽⁴⁾	± 5			
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25			

1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range.

2. Negative injection disturbs the analog performance of the device.

3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<Vss. IINJ(PIN) must never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage values.

4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<Vss. IINJ(PIN) must never be exceeded. Refer to Table 5: Voltage characteristics for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum Σ IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table	7.	Thermo	l charae	cteristics
IUDIC		merme	i chui u	

5.3 Operating conditions 5.3.1 General operating conditions

Symbol	Parameter	Conditions		Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-		0	72	
f _{PCLK1}	Internal APB1 clock frequency	-		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency	-		0	72	
V _{DD}	Standard operating voltage		-	2	3.6	
V(1)	Analog operating voltage (ADC not used)	Must be the same potential		2	3.6	
V DDA` ´	Analog operating voltage (ADC used)	as V _{DD} ⁽²⁾)	2.4	3.6	V
V _{BAT}	Backup operating voltage		-	1.8	3.6	
		Standard	Ю	-0.3	V _{DD} + 0.3	
V _{IN}	I/O input voltage		$2 V < V_{DD} \le 3.6 V$	-0.3	5.5	v
			V _{DD} = 2 V	-0.3	5.2	
		BOOT0		0	5.5	
		LFBGA100		-	454	
	Power dissipation at $T_A =$ 85 °C for suffix 6 or $T_A =$ 105 °C for suffix 7 ⁽⁴⁾	LQFP100		-	434	
		UFBGA100		-	339	mW
P		TFBGA64		-	308	
гD		LQFP64		-	444	
		LQFP48 UFQFPN48		-	363	
				-	624	
		VFQFPN	36	-	1000	
	Ambient temperature for 6	Maximun	n power dissipation	-40	85	
Тл	suffix version	Low-power dissipation ⁽⁵⁾		-40	105	
IA	Ambient temperature for 7	Maximum power dissipation		-40	105	°C
	suffix version	Low-power dissipation ⁽⁵⁾		-40	125	
т	lunction temperature range	6 suffix version		-40	105	
ľJ	ounction temperature range	7 suffix version		-40	125	

Table 8. General operating conditions

1. When the ADC is used, refer to Table 45: ADC characteristics.

2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation.

3. To sustain a voltage higher than $V_{DD}+0.3 V$, the internal pull-up/pull-down resistors must be disabled.

4. If TA is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 5.9: Thermal characteristics).

5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Table 5.9: Thermal characteristics).

5.3.2 Operating conditions at power-up / power-down

Subject to general operating conditions for TA.

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{VDD}	V _{DD} rise time rate		0	8	uc//
	V _{DD} fall time rate	-	20	8	μ5/ν

Table 9. Operating conditions at power-up / power-down

5.3.3 Embedded reset and power control block characteristics

The parameters given in Table 10 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.1	2.18	2.26	
		PLS[2:0]=000 (falling edge)	2	2.08	2.16	
		PLS[2:0]=001 (rising edge)	2.19	2.28	2.37	
		PLS[2:0]=001 (falling edge)	2.09	2.18	2.27	
		PLS[2:0]=010 (rising edge)	2.28	2.38	2.48	
		PLS[2:0]=010 (falling edge)	2.18	2.28	2.38	
		PLS[2:0]=011 (rising edge)	2.38	2.48	2.58	
V	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.28	2.38	2.48	V
V PVD		PLS[2:0]=100 (rising edge)	2.47	2.58	2.69	
		PLS[2:0]=100 (falling edge) 2.37 PLS[2:0]=101 (rising edge) 2.57	2.37	2.48	2.59	
			2.57	2.68	2.79	
		PLS[2:0]=101 (falling edge)	2.47	2.58	2.69	
		PLS[2:0]=110 (rising edge)	2.66	2.78	2.9	
		PLS[2:0]=110 (falling edge)	2.56	2.68	2.8	
		PLS[2:0]=111 (rising edge)	2.76	2.88	3	
		PLS[2:0]=111 (falling edge)	2.66	2.78	2.9	
V _{PVDhyst} ⁽²⁾	PVD hysteresis	-	-	100	-	mV
N	Power on/power down	Falling edge	1.8 ⁽¹⁾	1.88	1.96	V
* POR/PDR	reset threshold	Rising edge	1.84	1.92	2.0	v
V _{PDRhyst} ⁽²⁾	PDR hysteresis	-	-	40	-	mV
T _{RSTTEMPO} ⁽²⁾	Reset temporization	-	1	2.5	4.5	ms

Table 10. Embedded reset and power control block characteristics

1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.

2. Guaranteed by design.

5.3.4 Embedded reference voltage

The parameters given in Table 11 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Internel reference veltage	–40 °C < T _A < +105 °C	1.16	1.20	1.26	V
* REFINT		–40 °C < T _A < +85 °C	1.16	1.20	1.24	v
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1 ⁽²⁾	μs
V _{RERINT} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	-	100	ppm/°C

Table 11. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

5.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in Figure 15: Current consumption measurement scheme.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code.

Maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load)
- All peripherals are disabled except when explicitly mentioned

• The Flash memory access time is adjusted to the fHCLK frequency (O wait state from O to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above)

- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK

The parameters given in Table 12, Table 13 and Table 14 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 8.
Table 12. Maximum current consumption in Run mode, code with data processing running from Flash

Symbol	Baramatar	Conditions		Ma	ax ⁽¹⁾	Unit
Symbol	Farameter	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C	Onit
		External clock ⁽²⁾ , all peripherals enabled	72 MHz	50	50.3	
	Supply current in		48 MHz	36.1	36.2]
			36 MHz	28.6	28.7	
			24 MHz	19.9	20.1	mA
			16 MHz	14.7	14.9	
			8 MHz	8.6	8.9	
'DD	Run mode		72 MHz	32.8	32.9	
			48 MHz	24.4	24.5	-
		External clock ⁽²⁾ , all	36 MHz	19.8	19.9	
		peripherals disabled	24 MHz	13.9	14.2	
			16 MHz	10.7	11	
			8 MHz	6.8	7.1	

1. Guaranteed based on test during characterization.

2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Table 14. Maximum current consumption in Run mode, code with data processing running from RAM

Symbol	Baramatar	Conditions		Ma	Unit	
Бутьог	Parameter	Conditions	THCLK	T _A = 85 °C	T _A = 105 °C	
			72 MHz	48	50	
			48 MHz	31.5	32	1
		External clock ⁽²⁾ , all	36 MHz	24	25.5	1
		peripherals enabled	24 MHz	17.5	18	1
			16 MHz	12.5	13	
	Supply		8 MHz	7.5	8	1
DD	Run mode		72 MHz	29	29.5	
			48 MHz	20.5	21	1
		External clock ⁽²⁾ , all	36 MHz	16	16.5	1
		peripherals disabled	24 MHz	11.5	12	1
			16 MHz	8.5	9	1
			8 MHz	5.5	6	1

1. Based on characterization, tested in production at VDD max, FHCLK max.

2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Figure 16. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals enabled

Figure 17. Typical current consumption in Run mode versus frequency (at 3.6 V) - code with data processing running from RAM, peripherals disabled

Table 14. Maximum current consumption in Sleep mode, code running from Flash or RAM

Symbol	Baramator	Conditions	Conditions	Max	(1)	Unit	
Symbol	Falainetei	Conditions	HCLK	T _A = 85 °C	T _A = 105 °C		
			72 MHz	30	32		
			48 MHz	20	20.5		
		External clock ⁽²⁾ , all peripherals enabled	36 MHz	15.5	16		
			24 MHz	11.5	12		
	Supply current in		16 MHz	8.5	9		
			8 MHz	5.5	6	m۸	
DD	Sleep mode		72 MHz	7.5	8	ШA	
			48 MHz	6	6.5		
		External clock ⁽²⁾ , all	36 MHz	5	5.5		
		peripherals disabled	24 MHz	4.5	5		
			16 MHz	4	4.5		
			8 MHz	3	4		

1. Based on characterization, tested in production at VDD max, fHCLK max with peripherals enabled.

2. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

Table 15. Typical and maximum current consumptions in Stop and Standby modes

				Typ ⁽¹⁾		Max		
Symbol Parameter		Conditions	V _{DD} /V _{BAT} = 2.0 V	V _{DD} /V _{BAT} = 2.4 V	V _{DD} /V _{BAT} = 3.3 V	T _A = 85 °C	lax T _A = 105 °C 370 340 - 5	Unit
	Supply current	Regulator in Run mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	23.5	24	200	370	
	in Stop mode	Regulator in Low-power mode, low- speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	-	13.5	14	180 34	340	
		Low-speed internal RC oscillator and independent watchdog ON	-	2.6	3.4	-	-	μA
	Supply current in Standby	Low-speed internal RC oscillator ON, independent watchdog OFF	-	2.4	3.2	-	-	
	mode	Low-speed internal RC oscillator and independent watchdog OFF, low- speed oscillator and RTC OFF	-	1.7	2	4	4 5	
I _{DD_VBAT}	Backup domain supply current	Low-speed oscillator and RTC ON	0.9	1.1	1.4	1.9 ⁽²⁾	2.2	

1. Typical values are measured at $T_A = 25$ °C.

2. Guaranteed based on test during characterization.

Figure 18. Typical current consumption on VBAT with RTC on versus temperature at different VBAT values

Figure 20. Typical current consumption in Stop mode with regulator in Low-power mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Figure 21. Typical current consumption in Standby mode versus temperature at V_{DD} = 3.3 V and 3.6 V

Typical current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at VDD or VSS (no load).
- All peripherals are disabled except if it is explicitly mentioned.
- The Flash access time is adjusted to f_{HCLK} frequency (O wait state from O to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).
- Ambient temperature and VDD supply voltage conditions summarized in Table 8.
- Prefetch is ON (Reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled fpclk1 = fhclk/4, fpclk² = fhclk/2, fadcclk = fpclk2/4

Table 16. Typical current consumption in Run mode, code with data processing running from Flash

				Туј	o ⁽¹⁾		
Symbol	Parameter	Conditions	fHCLK	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit	
			72 MHz	36	27		
			48 MHz	24.2	18.6		
			36 MHz	19	14.8		
			24 MHz	12.9	10.1		
			16 MHz	9.3	7.4		
		External clock ⁽³⁾	8 MHz	5.5	4.6	mA	
			4 MHz	3.3	2.8		
				2 MHz	2.2	1.9	
			1 MHz	1.6	1.45		
			500 kHz	1.3	1.25		
	Supply		125 kHz	1.08	1.06		
DD	Run mode		64 MHz	31.4	23.9		
			48 MHz	23.5	17.9		
			36 MHz	18.3	14.1		
		Running on high	24 MHz	12.2	9.5		
		speed internal RC	16 MHz	8.5	6.8		
		(HSI), AHB	8 MHz	4.9	4	mA	
		reduce the	4 MHz	2.7	2.2		
		frequency	2 MHz	1.6	1.4		
			1 MHz	1.02	0.9		
			500 kHz	0.73	0.67		
			125 kHz	0.5	0.48		

1. Typical values are measures at $T_A = 25 \degree C$, $V_{DD} = 3.3 V$.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

				Тур	o ⁽¹⁾		
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled ⁽²⁾	All peripherals disabled	Unit	
			72 MHz	14.4	5.5		
			48 MHz	9.9	3.9		
			36 MHz	7.6	3.1		
		External clock ⁽³⁾	24 MHz	5.3	2.3		
			16 MHz	3.8	1.8		
			8 MHz	2.1	1.2		
			4 MHz	1.6	1.1		
				2 MHz	1.3	1	
			1 MHz	1.11	0.98		
			500 kHz	1.04	0.96		
	Supply		125 kHz	0.98	0.95	mA	
DD	Sleep mode		64 MHz	12.3	4.4	mA	
			48 MHz	9.3	3.3		
			36 MHz	7	2.5		
			24 MHz	4.8	1.8		
		Running on high	16 MHz	3.2	1.2		
		(HSI), AHB prescaler	8 MHz	1.6	0.6		
		used to reduce the frequency	4 MHz	1	0.5		
			2 MHz	0.72	0.47		
			1 MHz	0.56	0.44		
			500 kHz	0.49	0.42		
			125 kHz	0.43	0.41		

Table 17. Typical current consumption in Sleep mode, code running from Flash or RAM

1. Typical values are measures at $T_A = 25 \degree$ C, $V_{DD} = 3.3 V$.

2. Add an additional power consumption of 0.8 mA per ADC for the analog part.

In applications, this consumption occurs only while the ADC is on

(ADON bit is set in the ADC_CR2 register).

3. External clock is 8 MHz and PLL is on when fHCLK > 8 MHz.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in Table 18. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at VDD or Vss (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
- with all peripherals clocked off
- with only one peripheral clocked on

 \bullet ambient operating temperature and V_{DD} supply voltage conditions summarized in Table 5

Peripherals		μA/MHz
ALID (up to 70 MULT)	DMA1	16.53
AHB (up to 72 MHZ)	BusMatrix ⁽¹⁾	8.33
	APB1-Bridge	10.28
	TIM2	32.50
	TIM3	31.39
	TIM4	31.94
	SPI2	4.17
	USART2	12.22
	USART3	12.22
APB1 (up to 36 MHz)	I2C1	10.00
	I2C2	10.00
	USB	17.78
	CAN1	18.06
	WWDG	2.50
	PWR	1.67
	ВКР	2.50
	IWDG	11.67
	APB2-Bridge	3.75
	GPIOA	6.67
	GPIOB	6.53
	GPIOC	6.53
	GPIOD	6.53
APB2 (up to 72 MHz)	GPIOE	6.39
	SPI1	4.72
	USART1	11.94
	TIM1	23.33
	ADC1 ⁽²⁾	17.50
	ADC2 ⁽²⁾	16.07

Table 18. Peripheral current consumption

1. The BusMatrix is automatically active when at least one master peripheral is ON (CPU or DMA).

2. Specific conditions for measuring ADC current consumption:

fhclk = 56 MHz, fapbi = fhclk/2, fapb2 = fhclk, fadcclk = fapb2/4,

When ADON bit in the ADCx_CR2 register is set to 1, a current consumption of analog part equal to 0.65 mA must be added for each $\overline{A}DC$.

5.3.6 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in Table 19 result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency ⁽¹⁾		1	8	25	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

Table 19. High-speed external user clock characteristics

1. Guaranteed by design.

Low-speed external user clock generated from an external source The characteristics given in Table 20 result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{LSE_ext}	User External clock source frequency ⁽¹⁾			32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}		
V _{LSEL}	OSC32_IN input pin low level voltage	12	V _{SS}	-	0.3V _{DD}	V	
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time ⁽¹⁾		450	ā	-		
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	ns	
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	≂:	1.51	5	(1 11 1)	pF	
DuCy _(LSE)	Duty cycle	-	30	-	70	%	
۱ _L	OSC32_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA	

Table 20. Low-speed external user clock characteristics

1. Guaranteed by design.

Figure 22. High-speed external clock source AC timing diagram

Figure 23. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 21. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time.

Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol Parameter		Conditions	Min	Тур	Max	Unit
fosc_IN	Oscillator frequency		4	8	16	MHz
R _F	Feedback resistor	-	2	200	-	kΩ
с	Recommended load capacitance versus equivalent serial resistance of the crystal $(R_S)^{(3)}$	R _S = 30 Ω	2	30	5	pF
i ₂	HSE driving current	V_{DD} = 3.3 V, V_{IN} = V_{SS} with 30 pF load	-	-	1	mA
g _m	Oscillator transconductance	Startup	25	-	-	mA/V
t _{SU(HSE} (4)	startup time	V _{DD} is stabilized	R	2	2	ms

Table 21. HSE 4-16 MHz oscillator characteristics^{(1) (2)}

- 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
- 2. Guaranteed based on test during characterization.

3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions.

4. tsu(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2.

1. REXT value depends on the crystal characteristics.

Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	-	Min	Тур	Max	Unit
R _F	Feedback resistor	-	-	-	5	-	MΩ
С	Recommended load capacitance versus equivalent serial resistance of the crystal (R _S)	R _S = 30 KΩ	-	-	-	15	pF
l ₂	LSE driving current	V_{DD} = 3.3 V V_{IN} = V_{SS}	-	-	-	1.4	μA
g _m	Oscillator transconductance	-	-	5	-	-	µA/V
			T _A = 50 °C	-	1.5	-	
			T _A = 25 °C	-	2.5	-	
			T _A = 10 °C	-	4	-	
t	Startun time	V _{DD} is	T _A = 0 °C	-	6	-	6
'SU(LSE)		stabilized	T _A = -10 °C	-	10	-	5
			T _A = -20 °C	-	17	-	
	T _A = -30 °C -	32	-				
			T _A = -40 °C	-	60	-	

Table 22. LSE oscillator characteristics ($f_{LSE} = 32.768 \text{ kHz}$)⁽¹⁾⁽²⁾

1. Guaranteed based on test during characterization.

2. Refer to the note and caution paragraphs below the table.

3. tsu(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2.

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance $C_L \leq 7$ pF. Never use a resonator with a load capacitance of 12.5 pF.

Example: if you choose a resonator with a load capacitance of $C_L = 6 \text{ pF}$, and $C_{\text{stray}} = 2 \text{ pF}$, then $C_{L1} = C_{L2} = 8 \text{ pF}$.

Figure 25. Typical application with a 32.768 kHz crystal

5.3.7 Internal clock source characteristics

The parameters given in Table 23 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 8.

High-speed internal (HSI) RC oscillator

Symbol	Parameter		Min	Тур	Max	Unit	
f _{HSI}	Frequency	()			8	-	MHz
DuCy _(HSI)	Duty cycle	-		45	-	55	
		User-trimmed with the RCC_CR register ⁽²⁾		-	-	1 ⁽³⁾	
	Accuracy of the HSI oscillator	Factory- calibrated (4)(5)	T _A = -40 to 105 °C	-2	-	2.5	.5 % .2 2
ACC _{HSI}			T _A = −10 to 85 °C	-1.5	2	2.2	
			T _A = 0 to 70 °C	-1.3		2	
			T _A = 25 °C	-1.1		1.8	
t _{su(HSI)} ⁽⁴⁾	HSI oscillator startup time	-		1	-	2	μs
I _{DD(HSI)} ⁽⁴⁾	HSI oscillator power consumption		-	-	80	100	μA

Table 23. HSI oscillator characteristics⁽¹⁾

1. $V_{DD} = 3.3 V$, $T_A = -40$ to $105 \degree C$ unless otherwise specified.

2. Refer to application note AN2868 "STM32F10xxx internal RC oscillator (HSI)

calibration" available from the ST website www.st.com.

- 3. Guaranteed by design.
- 4. Guaranteed based on test during characterization.

5. The actual frequency of HSI oscillator may be impacted by a reflow, but does not drift out of the specified range.

Wakeup time from low-power mode

The wakeup times given in Table 25 is measured on a wakeup phase with a 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

• Stop or Standby mode: the clock source is the RC oscillator

• Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Parameter	Тур	Unit
t _{WUSLEEP} ⁽¹⁾	Wakeup from Sleep mode	1.8	
t _{WUSTOP} ⁽¹⁾	Wakeup from Stop mode (regulator in run mode)	3.6	
	Wakeup from Stop mode (regulator in low-power mode)	5.4	μs
t _{WUSTDBY} ⁽¹⁾	Wakeup from Standby mode	50	

Table 25. Low-power mode wakeup timings

1. The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

5.3.8 PLL characteristics

The parameters given in Table 26 are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in Table 8.

Symbol	Dovomotor		Unit		
	Farameter	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Onit
£	PLL input clock ⁽²⁾	1	8.0	25	MHz
'PLL_IN	PLL input clock duty cycle	40	-	60	%
f _{PLL_OUT}	PLL multiplier output clock	16	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

Table 26. PLL characteristics

1. Guaranteed based on test during characterization.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT.

5.3.9 Memory characteristics Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	16-bit programming time	T _A = -40 to +105 °C	40	52.5	70	μs	
t _{ERASE}	Page (1 KB) erase time	$T_A = -40$ to +105 °C	20	-	40	me	
t _{ME}	Mass erase time	T _A = -40 to +105 °C	20 - 40		40	ms	
I _{DD}		Read mode f _{HCLK} = 72 MHz with 2 wait states, V _{DD} = 3.3 V	-	-	20	mA	
	Supply current	Write / Erase modes f _{HCLK} = 72 MHz, V _{DD} = 3.3 V	-	-	5		
		Power-down mode / Halt, V_{DD} = 3.0 to 3.6 V	-	-	50	μA	
V _{prog}	Programming voltage	-	2	-	3.6	V	

Table 27. Flash memory characteristics

1. Guaranteed by design.

Symbol	Parameter	Conditions	Value			Unit
	Farameter	Conditions	Min ⁽¹⁾	Тур	Max	Onic
N _{END}	Endurance	$T_A = -40$ to +85 °C (6 suffix versions) $T_A = -40$ to +105 °C (7 suffix versions)	10	-	-	kcycles
		1 kcycle ⁽²⁾ at T _A = 85 °C	30	-	-	
t _{RET} Da	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	-	-	Years
		10 kcycles ⁽²⁾ at T _A = 55 °C	20	-	-	

1. Guaranteed based on test during characterization.

2. Cycling performed over the whole temperature range.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs.

The failure is indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and Vss through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 29.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3 \text{ V}, T_A = +25 \text{ °C},$ f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table 29. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f	Unit	
	i uluilleter	Conditions	frequency band	8/48 MHz	8/72 MHz	onic
S _{EMI}	Peak level	$V_{DD} = 3.3 \text{ V}, T_A = 25 ^{\circ}\text{C},$ LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	12	12	
			30 to 130 MHz	22	19	dBµV
			130 MHz to 1GHz	23	29	
			SAE EMI Level	4	4	-

Table 30. EMI characteristics

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 32. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C}$ conforming to JESD78A	II level A

5.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below Vss or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibilty to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation).

The test results are given in Table 33

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13	-0	+0		
	Injected current on all FT pins	-5	+0	mA	
	Injected current on any other pin	-5	+5		

Table 33. I/O current injection susceptibility

5.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in Table 34 are derived from tests performed under the conditions summarized in Table 8. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Standard IO input low level voltage	-	-	0.28*(V _{DD} -2 V)+0.8 V ⁽¹⁾	
V_{IL}	Low level input voltage	IO FT ⁽³⁾ input low level voltage	-	-	0.32*(V _{DD} -2V)+0.75 V ⁽¹⁾	
		All I/Os except BOOT0	-	-	0.35V _{DD} ⁽²⁾	
		Standard IO input high level voltage	0.41*(V _{DD} -2 V)+1.3 V ⁽¹⁾	-	-	V
V _{IH}	High level input voltage	IO FT ⁽³⁾ input high level voltage	0.42*(V _{DD} -2 V)+1 V ⁽¹⁾	-	-	
		All I/Os except BOOT0	0.65V _{DD} ⁽²⁾	-	-	
V _{hys}	Standard IO Schmitt trigger voltage hysteresis ⁽⁴⁾	-	200	-	-	mV
·	IO FT Schmitt trigger voltage hysteresis ⁽⁴⁾	-	5% V _{DD} ⁽⁵⁾	-	-	
	Input leakage current	$\begin{array}{l} V_{SS} \leq V_{IN} \leq V_{DD} \\ \text{Standard I/Os} \end{array}$	-	-	±1	
likg	(6)	V _{IN} = 5 V I/O FT	-	-	3	μΑ
R _{PU}	Weak pull-up equivalent resistor ⁽⁷⁾	V _{IN} = V _{SS}	30	40	50	kO
R _{PD}	Weak pull-down equivalent resistor ⁽⁷⁾	$V_{IN} = V_{DD}$	30	40	50	K22
CIO	I/O pin capacitance		-	5	-	pF

Table 34. I/	/O static	characteristics
--------------	-----------	-----------------

1. Data based on design simulation.

2. Tested in production.

3. FT = Five-volt tolerant. In order to sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled.

4. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization.

5. With a minimum of 100 mV.

6. Leakage could be higher than max. if negative current is injected on adjacent pins.

7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 26 and Figure 27 for standard I/Os, and in Figure 28 and Figure 29 for 5 V tolerant I/Os.

Figure 26. Standard I/O input characteristics - CMOS port

Figure 27. Standard I/O input characteristics - TTL port

Figure 28.5 V tolerant I/O input characteristics - CMOS port

Figure 29.5 V tolerant I/O input characteristics - TTL port

Output driving current

The GPIOs (general-purpose inputs/outputs) can sink or source up to ±8 mA, and sink or source up to ±20 mA (with a relaxed VoL/VoH) except PC13, PC14 and PC15 which can sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2:

• The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 6).

• The sum of the currents sunk by all the I/Os on Vss plus the maximum Run consumption of the MCU sunk on Vss cannot exceed the absolute maximum rating Ivss (see Table 6).

Output voltage levels

Unless otherwise specified, the parameters given in Table 35 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 8. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS port ⁽²⁾ ,	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	– I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL port ⁽²⁾	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	V
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	

Table 35. Output voltage characteristics

1. The lio current sunk by the device must always respect the absolute maximum rating specified in Table 6 and the sum of lio (I/O ports and control pins) must not exceed lvss.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The IIO current sourced by the device must always respect the absolute maximum rating

specified in Table 6 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.

4. Guaranteed based on test during characterization.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in Figure 30 and Table 36, respectively.

Unless otherwise specified, the parameters given in Table 36 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8.

MODEx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz
10	t _{f(IO)out}	Output high to low level fall time	$C_{1} = 50 \text{ pc} V_{-1} = 2 V_{1} \text{ to } 3.6 V_{-1}$	-	125 ⁽³⁾	ne
	t _{r(IO)out}	Output low to high level rise time	CL - 30 μr, VDD - 2 V 10 3.0 V	-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2 \text{ V to } 3.6 \text{ V}$	-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C = 50 pc V = 2 V to 2 G V	-	25 ⁽³⁾	20
	t _{r(IO)out}	Output low to high level rise time	C _L = 30 μr, v _{DD} = 2 v to 3.6 v	-	25 ⁽³⁾	115
			$C_L = 30 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$	-	50	
	F _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	MHz
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	20	
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	ne
			C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	115
	t _{r(IO)out}	Output low to high level rise time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_L = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 36. I/O AC characteristics ⁽¹⁾

- 1. The I/O speed is configured using the MODEx[1:0] bits.
- 2. The maximum frequency is defined in Figure 30.
- 3. Guaranteed by design.

Figure 30. I/O AC characteristics definition

5.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 34).

Unless otherwise specified, the parameters given in Table 38 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 8.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-0.5	-	0.8	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	2	-	V _{DD} +0.5	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	30	40	50	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	300	-	-	ns

Table 37. NRST pin characteristics

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution

to the series resistance must be minimum (~10% order).

Figure 31. Recommended NRST pin protection

1. The reset network protects the device against parasitic resets.

2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 37. Otherwise the reset will not be taken into account by the device.

5.3.15 TIM timer characteristics

The parameters given in Table 38 are guaranteed by design.

Refer to Section 5.3.12: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Max	Unit
t ann	Timer resolution time	-	1	-	t _{TIMxCLK}
'res(TIM)		f _{TIMxCLK} = 72 MHz	13.9	-	ns
feve	Timer external clock	-	0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4	f _{TIMxCLK} = 72 MHz	0	36	MHz
Res _{TIM}	Timer resolution	-	-	16	bit
+	16-bit counter clock period	-	1	65536	t _{TIMxCLK}
COUNTER	selected	f _{TIMxCLK} = 72 MHz	0.0139	910	μs
tury court	Maximum possible count	-	-	65536 × 65536	t _{TIMxCLK}
MAX_COUNT		f _{TIMxCLK} = 72 MHz	-	59.6	S

Table 38. TIMx⁽¹⁾ characteristics

1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3 and TIM4 timers.

5.3.16 Communications interfaces

I2C interface characteristics

The STM32F103xx performance line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 39. Refer also to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standar I ² C ⁽	rd mode 1)(2)	Fast mode	e I ² C ⁽¹⁾⁽²⁾	Unit
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6		μο
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
$t_{r(SDA)} \ t_{r(SCL)}$	SDA and SCL rise time	-	1000	-	300	ns
$t_{f(SDA)} \ t_{f(SCL)}$	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

Table 39. I2C characteristics

1. Guaranteed by design.

2. fpcLk1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above tsp(max).

Figure 32. I2C bus AC waveforms and measurement circuit

1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

2. Rs = Series protection resistors, Rp = Pull-up resistors, VDD_I2C = I2C bus supply.

6 (Idla)	I2C_CCR value
T _{SCL} (KHZ)	R_P = 4.7 k Ω
400	0x801E
300	0x8028
200	0x803C
100	0x00B4
50	0x0168
20	0x0384

Table 41. SCL frequency (fpcLK1 = 36 MHz., VDD_12C = 3.3 V)⁽¹⁾⁽²⁾

1. RP = External pull-up resistance, fscL = I2C speed,

2. For speeds around 200 kHz, the tolerance on the achieved speed is of $\pm 5\%$. For other speed ranges, the tolerance on the achieved speed $\pm 2\%$. These variations depend on the accuracy of the external components used to design the application.

SPI interface characteristics

Unless otherwise specified, the parameters given in Table 41 are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 8.

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{scк}	CDI alaak fraguanay	Master mode	-	18	
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}	-]
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	50	60	
t _{su(MI)} ⁽¹⁾	Data input actur time	Master mode	5	-	1
t _{su(SI)} ⁽¹⁾		Slave mode	5	-	1
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-]
t _{h(SI)} ⁽¹⁾		Slave mode	4	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	2	10	
t _{v(SO)} (1)	Data output valid time	Slave mode (after enable edge)	-	25	1
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	1
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽¹⁾		Master mode (after enable edge)	2	-	

Table 41. SPI characteristics

1. Guaranteed based on test during characterization.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Figure 33. SPI timing diagram - slave mode and CPHA = 0

Figure 34. SPI timing diagram – slave mode and CPHA = $1^{(1)}$

1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

Figure 35. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.

USB characteristics

The USB interface is USB-IF certified (Full Speed).

Table	42.	USB	startup	o time
-------	-----	-----	---------	--------

Symbol	Parameter	Max	Unit
	USB transceiver startup time	1	μs

1. Guaranteed by design.

Symbol	Parameter	Conditions	Min. ⁽¹⁾	Max. ⁽¹⁾	Unit
Input leve	els				
V _{DD}	USB operating voltage ⁽²⁾		3.0 ⁽³⁾	3.6	V
V _{DI} ⁽⁴⁾	Differential input sensitivity	I(USBDP, USBDM)	0.2	-	
V _{CM} ⁽⁴⁾	Differential common mode range	Includes V _{DI} range	0.8	2.5	v
V _{SE} ⁽⁴⁾	Single ended receiver threshold		1.3	2.0	
Output le	vels				
V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 V $^{(5)}$	-	0.3	
V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to V _{SS} ⁽⁵⁾	2.8	3.6] `

Table 43. USB DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. To be compliant with the USB 2.0 full-speed electrical specification, the USBDP (D+) pin should be pulled up with a 1.5 k Ω resistor to a 3.0-to-3.6 V voltage range.

3. The STM32F103xx USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7-to-3.0 V V DD voltage range.

- 4. Guaranteed by design.
- 5. $\ensuremath{\mathsf{R}}\xspace$ is the load connected on the USB drivers

Figure 36. USB timings: definition of data signal rise and fall time

Symbol	Parameter	Conditions	Min	Max	Unit
Driver cha	racteristics				
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	20	ns
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	20	ns
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

Table 44. USB: Full-speed electrical characteristics⁽¹⁾

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Section 7 (version 2.0).

5.3.17 CAN (controller area network) interface

Refer to Section 5.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

5.3.18 12-bit ADC characteristics

Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the ambient temperature, fPCLK2 frequency and V_{DDA} supply voltage conditions summarized in Table 8.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	2.4	-	3.6	V
V _{REF+}	Positive reference voltage	-	2.4	-	V _{DDA}	V
I _{VREF}	Current on the V _{REF} input pin	-	-	160 ⁽¹⁾	220 ⁽¹⁾	μA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	-	0.05	-	1	MHz
f (2)	External trigger frequency	f _{ADC} = 14 MHz	-	-	823	kHz
^I TRIG [*]	External ingger frequency		-	-	17	1/f _{ADC}
V _{AIN} ⁽³⁾	Conversion voltage range		0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table</i> 46 for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
+ (2)	Calibration time	f _{ADC} = 14 MHz	5	.9		μs
'CAL`´´		-	8	33		1/f _{ADC}
+ (2)	Injection trigger conversion	f _{ADC} = 14 MHz	-	-	0.214	μs
⁴ at` ´	latency	-	-	-	3 ⁽⁴⁾	1/f _{ADC}
+ (2)	Regular trigger conversion	f _{ADC} = 14 MHz	-	-	0.143	μs
l latr`	latency	-	-	-	2 ⁽⁴⁾	1/f _{ADC}
+ (2)	Sampling time	f _{ADC} = 14 MHz	0.107	-	17.1	μs
LS,		-	1.5	-	239.5	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	0	0	1	μs
	Total conversion time	f _{ADC} = 14 MHz	1	-	18	μs
t _{CONV} ⁽²⁾	(including sampling time)	-	14 to 252 (t _S for sa successive approx	mpling + imation)	12.5 for	1/f _{ADC}

|--|

1. Guaranteed based on test during characterization.

2. Guaranteed by design.

3. In devices delivered in VFQFPN and LQFP packages, VREF+ is internally connected to VDDA and VREF- is internally

connected to Vssa. Devices that come in the TFBGA64 package have a VREF+ pin but no

VREF- pin (VREF- is internally connected to VSSA), see Table 4 and Figure 7.

4. For external triggers, a delay of 1/_{FPCLK2} must be added to the latency specified in Table 45.

Equation 1: RAIN max formula:

 $R_{AIN} < \frac{T_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$

The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 46. RAIN max for $fadc = 14 MHz^{(1)}$

1. Guaranteed based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$ $f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$ $V_{DDA} = 3 \text{ V to } 3.6 \text{ V}$ $T_A = 25 ^{\circ}\text{C}$ Measurements made after ADC calibration	±1.3	±2	
EO	Offset error		±1	±1.5	
EG	Gain error		±0.5	±1.5	LSB
ED	Differential linearity error		±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	

1. ADC DC accuracy values are measured after internal calibration.

2. ADC Accuracy vs. Negative Injection Current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input.

It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for INJ(PIN) and Σ INJ(PIN) in Section 5.3.12 does not affect the ADC accuracy.

3. Guaranteed based on test during characterization.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	$f_{PCLK2} = 56 \text{ MHz},$ $f_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$ $V_{DDA} = 2.4 \text{ V to } 3.6 \text{ V}$ Measurements made after ADC calibration	±2	±5	-
EO	Offset error		±1.5	±2.5	
EG	Gain error		±1.5	±3	LSB
ED	Differential linearity error		±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 48. ADC accuracy (1) (2) (3)

1. ADC DC accuracy values are measured after internal calibration.

2. Better performance could be achieved in restricted VDD, frequency and temperature ranges.

3. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non- robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for INJ(PIN) and Σ INJ(PIN) in Section 5.3.12 does not affect the ADC accuracy.

4. Guaranteed based on test during characterization.

Figure 37. ADC accuracy characteristics

Figure 38. Typical connection diagram using the ADC

1. Refer to Table 45 for the values of RAIN, RADC and CADC.

2. C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, fADC should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 39 or Figure 40, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 39. Power supply and reference decoupling (VREF+ not connected to VDDA)

1. VREF+ and VREF- inputs are available only on 100-pin packages.

1. VREF+ and VREF- inputs are available only on 100-pin packages.

5.3.19 Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅ ⁽¹⁾	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽²⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽³⁾⁽²⁾	ADC sampling time when reading the temperature	-	-	17.1	μs

Table 49. TS characteristics

1. Guaranteed based on test during characterization.

2. Guaranteed by design.

3. Shortest sampling time can be determined in the application by multiple iterations.

6. Thermal characteristics

The maximum chip junction temperature (TJmax) must never exceed the values given in Table 8: General operating conditions.

The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max \times \Theta_{JA})$$

Where:

- TA max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
- PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power.

 $\mathbf{P}_{l\!/\!0}\,\mathbf{max}\,\mathbf{represents}\,\mathbf{the}\,\mathbf{maximum}\,\mathbf{power}\,\mathbf{dissipation}\,\mathbf{on}\,\mathbf{output}\,\mathbf{pins}\,\mathbf{where}$:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘJA	Thermal resistance junction-ambient LFBGA100 - 10 × 10 mm / 0.8 mm pitch	44	• °C/W
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient UFBGA100 - 7 × 7 mm /0.5 mm pitch	59	
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient TFBGA64 - 5 × 5 mm / 0.5 mm pitch	65	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	55	
	Thermal resistance junction-ambient UFQFPN 48 - 7 × 7 mm / 0.5 mm pitch	32	
	Thermal resistance junction-ambient VFQFPN 36 - 6 × 6 mm / 0.5 mm pitch	18	

Table 50. Package thermal characteristics

6.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

6.2 Selecting the product temperature range

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F103xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions: Maximum ambient temperature $T_{Amax} = 82 \degree C$ (measured according to JESD51-2), IbDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IoL = 8 mA, VoL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IoL = 20 mA, VoL= 1.3 V PINTMAX = 50 mA * 3.5 V=175 mW PIOMAX = 20 * 8 mA * 0.4 V + 8 * 20 mA * 1.3 V = 272 mW This gives: PINTMAX = 175 mW and PIOMAX = 272 mW: PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 50 TJmax is calculated as follows: - For LQFP100, 46 °C/W TJmax = 82 °C + (46 °C/W × 447 mW) = 82 °C + 20.6 °C = 102.6 °C This is within the range of the suffix 6 version parts (-40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6.

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature $T_{Amax} = 115$ °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IoL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V=70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW

This gives: PINTmax = 70 mW and PIOmax = 64 mW:

P_{Dmax} = 70 + 64 = 134 mW

Thus: PDmax = 134 mW

Using the values obtained in Table 50 TJmax is calculated as follows:

- For LQFP100, 46 °C/W

 $T_{Jmax} = 115 \text{°C} + (46 \text{°C/W} \times 134 \text{ mW}) = 115 \text{°C} + 6.2 \text{°C} = 121.2 \text{°C}$

This is within the range of the suffix 7 version parts (-40 < TJ < 125 $^{\circ}$ C).

In this case, parts must be ordered at least with the temperature range suffix 7.

Figure 41. LQFP100 PD max vs. TA