Metabolic and Physiological Responses by New Zealand Blackcurrant during Cycling: A Dose-Response Study
Matthew D Cook, Victoria C Edwards, Stephen D Myers, Mandy L Gault, Mark ET Willems
University of Chichester, Department of Sport & Exercise Sciences, Institute of Sport, Chichester, West Sussex, UK

ABSTRACT
New Zealand blackcurrant (NZBC) is high in anthocyanin content. Seven days of 300 mg·day-1 NZBC extract decreased the respiratory exchange ratio during 10 min cycling bouts. Dose effects of NZBC on metabolic and physiological responses during prolonged endurance exercise on cycle ergometer (378±55 W) were examined. NZBC was assigned in a double-blind, randomised, crossover design to four experimental visits (0, 300, 600, 900 mg·day-1). Supplements (CurraNZ, Health Currancy Ltd, UK; each capsule contains 35% spray-dried anthocyanin concentrate) were provided for 7 days with 14-day washout periods. Dietary intake was controlled with food diaries for the 48 hours before each visit. Indirect calorimetry techniques were used to monitor and analyse the respiratory exchange ratio (~65% VO2max). Analyses were conducted using a one-way repeated measures ANOVA with significance accepted at p<0.05 (indicated by *).

RESULTS
<table>
<thead>
<tr>
<th>Dose (mg·day-1)</th>
<th>Carbohydrate (g)</th>
<th>Fats (g)</th>
<th>Protein (g)</th>
<th>Total energy intake (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>494±91</td>
<td>228±66</td>
<td>216±59</td>
<td>20654±2950</td>
</tr>
<tr>
<td>300</td>
<td>495±90</td>
<td>228±68</td>
<td>221±58</td>
<td>20804±3080</td>
</tr>
<tr>
<td>600</td>
<td>479±85</td>
<td>230±65</td>
<td>217±56</td>
<td>20724±2805</td>
</tr>
<tr>
<td>900</td>
<td>490±101</td>
<td>235±73</td>
<td>220±60</td>
<td>20709±2835</td>
</tr>
</tbody>
</table>

INTRODUCTION
New Zealand blackcurrant is high in anthocyanin content. Seven days of 300 mg·day-1 NZBC blackcurrant extract (containing 105 mg of anthocyanin) decreased the respiratory exchange ratio (i.e. RER) during cycling bouts of 10 minutes in trained cyclists (Cook et al., 2015).

AIM
To examine dose-response effects of 7 days of New Zealand blackcurrant extract on metabolic and physiological responses during 120 minutes cycling at a constant power of ~65% VO2max.

METHODS
Fifteen male cyclists (>3rs experience; mean±SD; age: 38±12 years; height: 178±5 cm; body mass: 76±10 kg, VO2max: 56±8 mL/(kg·min), maximum minute power: 378±55 W) completed four 120-minute cycling bouts on an electronically braked ergometer (SRM ergometer SRM International, Germany). A Latin square design assigned the order of experimental visits. Participants were trained cyclists (>3rs experience; mean±SD; age: 38±12 years, height: 178±5 cm; body mass: 76±10 kg; VO2max: 56±8 mL/(kg·min), maximum minute power: 378±55 W). One-way repeated measures ANOVA with Bonferroni post-hoc tests were used for analysis with significance accepted at P<0.05 (indicated by *).

RESULTS
During 2 hours cycling at a constant power of ~65%VO2max, New Zealand blackcurrant extract decreased RER in a dose-dependent manner by 2.49% and 2.48% for 600 and 900 mg·day-1.

CONCLUSION
The decrease in respiratory exchange ratio during cycling at ~65% VO2max in trained cyclists by intake of New Zealand blackcurrant extract for 7 days was dose-dependent with the change indicating enhanced fat oxidation.

APPLICATION
Increased fat oxidation from New Zealand blackcurrant extract intake may enhance endurance performance. Our findings may have implications for nutritional strategies by endurance athletes.

ACKNOWLEDGEMENTS
Supplement for this study was provided by Health Currancy Ltd, UK. Support for conference attendance was provided by Blackcurrants New Zealand Inc (NZ).

REFERENCE