

YellowScan Mapper+

Advanced performance fitted into a compact survey solution

The YellowScan Mapper+ integrates Livox AVIA laser scanner together with high performance GNSS-aided inertial navigation system into a lightweight, standalone and easy-to-use lidar system.

Proven capabilities and stable results over a wide range of applications.

Package includes.

Hardware:

- YellowScan Mapper +
- Quick release adapter (DJI skyport or Gremsy)
- Charger and 2 batteries
- GNSS antenna and cable
- 2 USB flash drives
- Rugged backpack

Services:

- 1-year unlimited technical support
- 1-year warranty
- In-person or online training
- Camera & boresight calibration

Software:

- Applanix POSPac UAV, to process GNSS and inertial data for highest accuracy
- YellowScan CloudStation to generate, visualize, adjust strips, classify, colorize and export your georeferenced point cloud

Optional camera module.

Product presentation:

- The camera is a Sony APS-C size Exmor[™]CMOS image sensor with a BIONZ X[™] processor to produce high-precision 20 MP images.
- The camera module is compatible with the SONY E-Mount and comes with a lens allowing an FOV of 83°.

Built-in camera module:

- Collect LiDAR and RGB data in a single flight
- Data are georeferenced automatically
- No need of pre-flight calibration
- The operation will be as simple as our LiDAR operation: «Just press the Yellow button»

Mapper+ LiDAR system

Scanner	Livox AVIA
Wavelength	905 nm
Precision ⁽¹⁾	2.5 cm
Accuracy ⁽²⁾	3.0 cm
Shots per second	240 k
Echoes per shot	Up to 3
Scanner field of view	70.4°

(1) Precision, also called reproducibility or repeatability, accounts for the variation in successive measurements taken on the same target. Here precision value is obtained by averaging the precision from 3 flight levels @60, 90 and 120mAGL. At each flight level, the precision is considered as the mean value of absolute elevation differences between 2 flight lines recorded in opposite directions over a nadir–located 40m² hard surface area.

	A
GNSS-Inertial	Applanix
solution	APX-15 UAV
Size	L 15 xW 10.4 xH 12.8 cm
Autonomy	1 hour typ.
Power consumption	35 W
	1.1 kg battery excl.
Weight	1.3 kg battery incl.
Operating	–20 to
temperature	+40°C

(2) Accuracy is the degree of conformity of a measured position to its actual (true) value. Here accuracy value is obtained by averaging the accuracy from 3 flight levels @ 60, 90 and 120mAGL. At each flight level, the accuracy is considered as the RMSE value of the elevation differences between targets and the point cloud extracted from 2 flight lines recorded in opposite directions. Validation targets are located within a 40m wide corridor centered along the flight line axis.

Camera Module

Sensor	APS-C Type Exmor CMOS
Resolution	19.8 Mpx
Lens	Sony E 16mm F2.8
Width	78 mm
Height	73 mm

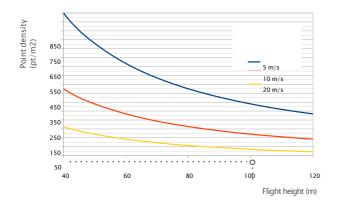
Depth	82 mm
Weight	305 gr (with camera lens)
Power	Powered by Mapper
Power consumption	2.2 W

Add-ons.

+ Optional software:

- YellowScan LiveStation
- Colorization module: export colorized point clouds from LiDAR + camera acquisition
- Strip Adjustment module: a point cloud enhancing toolbox for the CloudStation software
- Terrain module: export classified point clouds from the CloudStation software

+ Optional hardware:


- Stand-alone mounting bracket for DJI M600/300
- Stand-alone mounting bracket for DJI M210
- DJI skyport or Gremsy quick release adapters

+ Optional services:

Warranty and technical support extensions

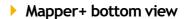
Typical mission parameters.

Mapper+ LiDAR system

FLIGHT SPEED	ALTITUDE	point density
5m/s	100m	340pts/sqm
flight speed	ALTITUDE	point density
10m/s	100m	170pts/sqm
FLIGHT SPEED 20m/s	ALTITUDE 100m	point density 90pts/sqm

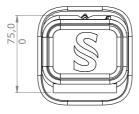
Dimensional drawings.

(i) All dimensions are in millimeters


Mapper+ side view

Camera module side view

Mapper+ front view



Camera module front view

Camera module top view

Distributed by:

TeleEye (South Africa) / GoUAV Unit 4, 4 Homestead Ave, Bryanston, Johannesburg, South Africa Tel: (+27) 11 557 9200 e-mail: <u>Sales@GoUAV.co.za</u> www.GoUAV.co.za

yellowscan-lidar.com | FR: +33 411 931 400 | US: +1 (801) 876-1007