Drive-Type Fittings

Drive-type fittings are designed for fast production line installation in untapped holes to save thread tapping costs.Circumferential serrations on shank provide a hydraulic tight seal when fitting is installed properly. Cannot be used where high lubricant back pressures can be developed.
Hole sizes and shank dimensions are for reference use only. To determine optimum hole size, test applications should be conducted using the type of material into which the fitting is to be installed-steel, cast iron, brass, aluminum, etc. Production tolerances of hole size must be taken into consideration when test is conducted.

No. 5033 For $3 / 16 " / 4.8 \mathrm{~mm}$ Dia. Hole

No. 5036 For $3 / 8 " / 9.5 \mathrm{~mm}$ Dia. Hole

No. 5031 For $5 / 16^{16} / 7.9 \mathrm{~mm}$ Dia. Hole

No. 5385 For $3 / 16^{6 /} / 4.8 \mathrm{~mm}$ Dia. Hole

Drive-Type Fittings

Part No.	A in./mm	B in./mm	C in./mm	D in./mm	E	F in./mm	G in./mm
5033	$33 / 64 / 13.1$	$15 / 64 / 6.0$	$5 / 16 / 7.9$	$.196 / 5.0$	-	-	-
5031	$35 / 64 / 13.9$	$1 / 4 / 6.4$	$3 / 8 / 9.5$	$.322 / 8.2$	-	-	-
5036	$5 / 8 / 15.9$	$1 / 4 / 6.4$	$7 / 16 / 11.1$	$.383 / 9.7$	-	-	-
5385	$23 / 32 / 18.3$	$7 / 32 / 5.6$	$3 / 8 / 9.5$	$.196 / 5.0$	65°	$11 / 16 / 17.5$	$1 / 2 / 12.7$
5318	$49 / 64 / 19.4$	$9 / 32 / 7.1$	$3 / 8 / 9.5$	$.259 / 6.6$	65°	$11 / 16 / 17.5$	$1 / 2 / 12.7$
700504	$1 / 2 / 12.7$	$3 / 16 / 4.8$	$5 / 16 / 7.9$	$.196 / 5.0$	-	-	-

Flush Type Fittings

For use where installation of protruding fitting cannot be used. Can be used on shafts, pulleys, or other type of rotating bearing or parts.

Part No.	A in./mm	B in./mm	C in./mm	D in. $/ \mathbf{m m}$
700502	$9 / 32 / 7.1$	$15 / 64 / 6.0$	$5 / 16 / 7.9$ Dia.	$.256 / 6.5$

