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Candida albicans is the most important fungal pathogen of humans.  Transcript profiling 

studies show that upon phagocytosis by macrophages, C. albicans undergoes a massive 

metabolic reorganization activating genes involved in alternative carbon metabolism, including 

the glyoxylate cycle, β-oxidation and gluconeogenesis.  Mutations in key enzymes such as ICL1 

(glyoxylate cycle) and FOX2 (fatty acid β-oxidation) revealed that alternative carbon metabolic 

pathways are required for full virulence in C. albicans. These studies indicate C. albicans uses 

non-preferred carbon sources allowing its adaptation to microenvironments were nutrients are 

scarce.  It has become apparent that the regulatory networks required for regulation of 

alternative carbon metabolism in C. albicans are considerably different from the Saccharomyces 

cerevisiae paradigm and appear more analogous to the Aspergillus nidulans systems. Well-

characterized transcription factors in S. cerevisiae have no apparent phenotype or are missing 

in C. albicans.   

CTF1 was found to be a single functional homolog of the A. nidulans FarA/FarB proteins, 

which are transcription factors required for fatty acid utilization. Both FOX2 and ICL1 were found 

to be part of a large CTF1 regulon.  To increase our understanding of how CTF1 regulates its 

target genes, including whether regulation is direct or indirect, the FOX2 and ICL1 promoter 

regions were analyzed using a combination of bioinformatics and promoter deletion analysis. To 

begin characterizing the FOX2 and ICL1 promoters, 5’ rapid amplification of cDNA ends 

(5’RACE) was used to identify two transcriptional initiation sites in FOX2 and one in ICL1.  GFP 
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reporter assays show FOX2 and ICL1 are rapidly expressed in the presence of alternative 

carbon sources.  Both FOX2 and ICL1 harbor the CCTCGG sequence known to be bound by 

the Far proteins, hence rendering the motif as a putative CTF1 DNA binding element.  In this 

study, the CCTCGG sequence was found to be essential for FOX2 regulation. However, this 

motif does not appear to be equally important for the regulation of ICL1. This study supports the 

notion that although C. albicans has diverged from the paradigms of model fungi, C. albicans 

has made specific adaptations to its transcription-based regulatory network that may contribute 

to its metabolic flexibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

Approval Sheet...............................................................................................................................i 

Title Page.......................................................................................................................................ii 

Acknowledgments ........................................................................................................................iii 

Abstract.........................................................................................................................................iv 

Table of Contents..........................................................................................................................vi 

List of Figures .............................................................................................................................viii 

List of Tables.................................................................................................................................ix 

Chapter 1: Introduction..............................................................................................................1 

  Background...........................................................................................................2 

Infection and pathogenesis of C. albicans.................................................2 

Virulence factors of C. albicans.................................................................7 

Interaction of C. albicans with the host’s immune response......................8 

Alternative carbon metabolism in C. albicans….…..................................14 

Regulation of alternative carbon metabolism in yeast, filamentous fungi 

and C. albicans........................................................................................18 

Significance of the study………...............................................................21 

Chapter 2: Materials and Methods...........................................................................................23 

  Strains, growth, and transformation….................................................................24 

Construction of C. albicans strains…..................................................................24 

Overlap extension PCR …..................................................................................25 

RNA extraction and Northern blot analysis….....................................................25 

GFP reporter assays and fluorescence microscopy...........................................26 

5’- RNA Ligase Mediated Rapid Amplification of cDNA Ends (5’-RLM-RACE) Analysis of FOX2 

and ICL1 …………..............................................................…....................................................27 



vii 
 

Chapter 3: Identification of cis-acting elements in the promoters of CTF1 co-regulated 

genes, FOX2 and ICL1 …………...............................................................................................36 

Introduction…………............................................................................................37 

Results…………...................................................................................................39 

Chapter 4: Conclusion and Perspectives................................................................................71 

The regulation of alternative carbon metabolism in C.  albicans appears to be a 

combination of the regulatory systems in S. cerevisiae and A. nidulans.............73 

CTF1 regulates fatty acid metabolism and glyoxylate cycle genes.....................74 

The CCTCGG motif is a cis-regulatory element important for control of the fatty 

acid β-oxidation, FOX2 gene………………………………………………...............76  

What are the additional cis-acting sites involved in the regulation of FOX2 and 

ICL1?...................................................................................................................77 

Is CTF1 regulation direct or indirect?...................................................................78 

Promising strategies for the development of antifungal drugs.............................80  

 

REFERENCES............................................................................................................................82 

VITA............................................................................................................................................96 

 

 

 

 

 

 

 

 

 



viii 
 

List of Figures 

Figure 1-1. C. albicans interaction with macrophages………………………………………………12 

Figure 1-2. Induction of alternative carbon metabolism in C. albicans……………………………16 

Figure 3-1. Diagram for growth of strain in glucose or non-fermentable carbon sources……….41 

Figure 3-2. FOX2 and ICL1 expression is rapidly induced by alternative carbon sources……...43 

Figure 3-3. Schematic representation of reporter strains used for promoter deletion analysis…45  

Figure 3-4. CTF1 regulates the FOX2 and ICL1 promoters in non-fermentable carbon 

sources........................................................................................................................................48   

Figure 3-5. Quantification of GFP fluorescence intensity………………………………………….52 

Figure 3-6. Several transcription initiation sites are located within the FOX2 and ICL1 

promoters……………………..………………………………………………………………………...55

Figure 3-7. Putative DNA binding sites within the FOX2 and ICL1 promoters………………......59 

Figure 3-8. FOX2 promoter contains at least one cis-acting element under fatty acid 

regulation………………..………………………………………………………………………...........64 

Figure 3-9. The CCTCGG motif is required for FOX2 regulation…………………………………66 

Figure 3-10. ICL1 cis-acting elements are found upstream of -900 position and CCTCGG motif 

does not appear to be relevant for ICL1 regulation..……………………………………………….69 

 

 

 

 

 

 

 

 

 



ix 
 

List of Tables 

Table 2-1: Lists of C. albicans strains used for this study…………………..………………………28 

Table 2-2: Lists of plasmids used for this study…………………..………………………………….33 

Table 2-3: List of oligonucleotides used for this study…………………..…………………………..34 

Table 3-1. GO-enriched terms for genes with CCGAGG/CCTCGG within 1,000 bp of 5' of 

translational start codon.…………………………………………………………………………….....61 

 

 

 

 

.

 

 



1 
 

 

 

 

 

 

 

 

 

Chapter 1. Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 
 

BACKGROUND 

Infection and pathogenesis of C. albicans   

Clinical manifestations of C. albicans  

C. albicans is considered the major fungal pathogen of humans [1]. Clinical 

manifestations of C. albicans infections can be divided into two broad categories:  relatively 

benign superficial infections and severe, often life-threatening invasive infections. Susceptibility 

to a particular type of Candida infection is frequently dictated by the immunologic status of the 

host, with invasive infections almost always affecting immunocompromised patients. However, 

invasive candidiasis is becoming an increasing concern in critically ill, non-immunosuppressed 

patients [2,3]. 

Superficial candidiasis 

According to Pfaller and Diekema, 2010 [4], C. albicans  is the etiological agent of more 

than 90% of cases of superficial infections of cutaneous and mucosal membranes.  Cutaneous 

candidiasis is frequently seen at the intertrigos (i.e. bending creases between toes or fingers, 

under the breast or armpit) and is triggered by maceration of the skin, heat, humidity and 

obesity [5]. In healthy neonates and young infants, diaper dermatitis is the main clinical 

manifestation caused by Candida.   Clinical manifestations in mucosal surfaces primarily include 

oropharyngeal candidiasis (oral thrush) and vulvovaginal candidiasis (VVC) in women. Oral 

infection with Candida is associated with several risk factors.  Among these are the two 

extremes of age (neonates and people older than 65 years), the use of broad-spectrum 

antibiotics and prosthetic dentures [6]. Systemic conditions including diabetes mellitus, 

immunosuppressive therapy and radiation therapy for head and neck cancer are known to be 

predisposing factors for oropharyngeal candidiasis [7-9].   In addition, patients who have 

suppressed T-cell function are at high risk for oropharyngeal candidiasis.  This is indicated by 

the fact that oropharyngeal candidiasis is observed in 7%–48% of people with human 

immunodeficiency virus-positive (HIV+) infection and in over 90% of AIDS patients [10,11] [12].  
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Infection of vaginal mucosa with Candida is associated with pregnancy and the use of 

contraceptives [13], as well as non-hormonal factors such as antibiotic use and diabetes 

mellitus [14] . Studies indicate up to 75% of women suffer from vulvovaginitis [15].  Only those 

that experience recurrent vulvovaginal candidiasis (RVVC) are thought to have an underlying 

innate immune deficiency [16].  Chronic mucocutaneous candidiasis is one of the most serious 

superficial infections involving colonization of both mucosal and skin surfaces by Candida spp. 

(especially C. albicans) and it develops in patients with impaired T-cell function where 

inadequate production of cytokines leads to inefficient cell mediated immunity  [17].   

Invasive candidiasis 

Invasive candidiasis refers to Candida infections that occur once epithelial tissues are 

breached. Blood-stream infections known as candidemia can lead to disseminated or systemic 

candidiasis, which is characterized by the hematogeneous spread to one or more vital organs 

such as the kidney and liver [18]. In fact, disseminated candidiasis is the most severe clinical 

manifestation of Candida species [4,19].  Candida species are recognized as the fourth leading 

cause of nosocomial bloodstream infections in the U.S. and are surpassed only by Staphylocci 

[19]. Mortality rates attributed to candidemia or invasive candidiasis range from 10% to 49% [4]. 

In the United States, C. albicans causes most candidemias (50-60%), followed by Candida 

glabrata, Candida parapsilosis, Candida tropicalis and Candida krusei [20].  Risk factors for 

invasive candidiasis are diverse [21] and include candidal colonization [22], prolonged intensive 

care unit (ICU) stay [19], broad-spectrum antibiotics, chemotherapy-induced neutropenia 

[23,24], extensive surgery, organ transplantation, and prolonged use of intravascular catheters, 

which are substrates for biofilm formation [4,25].   

Diagnostic methods to detect candidiasis 

Early diagnosis of invasive candidiasis is difficult due to the non-specific symptoms 

presented by fungal infections, which are often mistaken to be of bacterial origin.  Slow 

diagnosis is mainly attributed to the lack of sensitive and specific diagnostic methods [2,21,26]. 
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Traditional microbiological methods including microscopic detection of Candida and its isolation 

from a normally sterile site such as blood have been used. However, early diagnosis using 

these methods has been hampered by the inability to differentiate between different Candida 

species and false-negative blood culture results that only become positive late in the course of 

infection. Although a histopathological approach is a reliable method to diagnose systemic 

infection, it does not differentiate between species and the requirement of tissue biopsy is not 

feasible in some critically ill patients.  

In an attempt to circumvent these problems, researchers have also developed non 

culture-based methods that target fungal metabolites, antigens, antibodies and nucleic acid. 

Serological tests have been reported to be successful at detecting several antigens including 

mannan (the major cell wall protein of C. albicans) and the fungal specific β-1,3-glucan (required 

for cell wall synthesis). However, it may be difficult to interpret serological results since the 

levels of circulating antigens can vary based on the host’s immunologic status, and in some 

cases antigens are detected in healthy individuals due to Candida colonization.  Detection of 

fungal antibodies as a criterion for disease has been less useful also due to Candida 

colonization in healthy individuals, as well as to the absence of detectable antibody in 

immunocompromised patients with candidemia or invasive candidiasis. Although, the fungal 

metabolite D-arabinitol produced by most medically important Candida species can be 

successfully identified in serum or urine of some patients, metabolites similarly to antibodies are 

rapidly cleared from circulation and may not be readily detected. Molecular biological methods 

such as PCR-based assays that identify fungal nucleic acid have proved to be useful for early 

and accurate disease diagnosis. However, most molecular biological methods have not been 

standardized and are not yet available in all clinical settings.  Although, some diagnostic 

methods have been proven better than others at detecting candidemia or invasive candidiasis, 

all pose limitations. Therefore a combination of microbiological, serological, histopathological, 

and molecular biological tests may be required to have an early and accurate diagnosis [26].    
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Current Antifungal agents 

In addition to the limitations posed by the current diagnostic tools, Candida bloodstream 

infections remain problematic in clinical settings due to a lack of treatment options, a delayed 

administration of therapy, inadequate dose or duration of treatment, as well as drug-related 

toxicity and the use of a drug to which the Candida species is resistant [4]. The administration of 

proper antifungal treatment early in the course of infection is essential to decrease the mortality 

associated with invasive candidiasis in clinical settings. For example, a study done by Garey et 

al., 2006, showed the mortality rate in patients with candidemia was less than 15% in patients 

treated within 24 hours of a positive blood culture, whereas a mortality rate of 41% was 

observed for patients that received treatment on day 3 or later [27].  In the ICU, Candida 

species are the third most common cause of nosocomial bloodstream infections [19]. This is in 

part due to the lack of effective antifungal agents currently available.  Antifungal drugs can be 

grouped into four main categories: polyenes, ergosterol biosynthesis inhibitors, echinocandins, 

and nucleic acid synthesis inhibitors [28].  Polyenes are designed to target ergosterol, a sterol 

that is absent in humans, but is essential for fungal cell membranes and growth. The modus 

operandi of polyenes is to bind ergosterol and create pores in the plasma membrane which 

allow cell contents to leak, thereby resulting in cell death. The azoles, which are the most 

important class of ergosterol biosynthesis inhibitors, function by inhibiting the Erg11 enzyme 

which leads to the depletion of ergosterol in the cell membrane. Echinocandins have been 

recently developed and belong to a category of antifungal drugs that work by inhibiting the β-

1,3-glucan synthase, an enzyme that is required for cell wall biosynthesis. Finally, the last class 

of antifungal drugs which inhibits nucleic acid synthesis is represented by 5-flucytosine.  

Cytosine deaminase (absent in mammalian cells) converts 5-flucytosine to 5-fluorouracil, which 

specifically interferes with fungal nucleic acid synthesis [28].   
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Therapeutic options  

Treatment options for fungal infections vary substantially.  Current treatments have to 

take into consideration the site and type of infection, the patient’s immune status, underlying 

disease, and risk factors for infection, as well as the specific species of Candida responsible 

and whether it exhibits antifungal drug resistance.  Superficial infections are usually self-limited 

in non-immunocompromised patients and are readily treated with basic hygiene measures [2] 

and topical antifungal treatment (i.e. clotrimazole, miconazole, or nystatin), whereas persistent 

and refractory infections are treated with systemic treatment (i.e. ketoconazole, fluconazole, or 

voriconazole) [5,29-31]. Current treatment options for candidemia include the azoles 

(fluconazole and triazoles), echinocandins and the polyenes [32,33]. Treatment with 

amphotericin B has been the gold standard for years, yet some studies have shown large doses 

of amphotericin B are associated with nephrotoxicity [34].  When required, the more expensive 

amphotericin B lipid formulations are used. Caspofungin, micafungin and anidulafungin are the 

only echinocandin agents approved for clinical use [33] and are currently recommended for the 

treatment of candidemia or invasive candidiasis. However, echinocandins have also been 

associated with hepatic toxicity [35].    Fluconazole is considered the first-line agent in non-

neutropenic patients with candidemia or invasive candidiasis as it is conveniently administered 

and has few side effects [32].  

Antifungal resistance 

 As mentioned previously, the use of antifungal agents can also be limited by antifungal 

resistance. Antifungal resistance is a complex phenomenon that involves several mechanisms.  

For example, resistance to azole drugs such as fluconazole has been well documented and can 

be caused by alterations in sterol biosynthesis, mutations in the drug target enzyme, sterol 14α-

demethylase (14DM), increased expression of the ERG11 gene which encodes 14DM, or 

overexpression of genes that code for membrane transport proteins of the ABC transporter 

(CDR1/CDR2) as well as the major facilitator (MDR1) superfamilies [28,36]. Resistance to 5-
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flucytosine is known to occur as a result of specific mutations in cytosine deaminase, whereas 

resistance to Amphotericin B is less clear [28]. Administration of ineffective antifungal therapy 

can greatly impact the outcome of Candida infections leading to an increase in hospital 

mortality. As mentioned above, the efficacy of antifungal treatments has been complicated by 

multiple factors including inadequate treatment, drug-related toxicity and increasing antifungal 

resistance. Therefore, the development of novel effective antifungal agents is needed.  

Commensal colonization  

C. albicans is an opportunistic pathogen with no known environmental reservoir, and 

instead is found as a harmless commensal of the mammalian microflora [1]. Skin and mucosal 

surfaces including the gastrointestinal tract and oropharynx, as well as the vaginal canal and 

vulva of healthy women, are commonly colonized with Candida. C. albicans has been reported 

as the predominant Candida species,  and as an opportunistic pathogen it has the potential to 

cause infection at any anatomical site [1]. Different studies have revealed oral asymptomatic 

Candida carriage rates vary among different age groups, and range between 45-65% in healthy 

children [1], 68% in healthy adults [37] and up to 88% in the elderly [38]. Asymptomatic Candida 

carriage rates have been estimated to be over 50% in the gastrointestinal tract and up to 25% 

for vaginal areas [1]. 

Virulence factors of C. albicans  

The ability of C. albicans to transition from a harmless commensal of the microflora to a 

pathogen depends on C. albicans classical and non-classical virulence factors, as well as a 

competent host immune system [39]. The initial colonization of mucosal and cutaneous 

membranes requires classical virulence factors, including adhesins and extracellular hydrolytic 

enzymes [40,41].  Adhesins such as the agglutinin-like proteins (Als family of proteins) [42] and 

Hwp1 (hyphal wall protein 1) [43] are not only involved in adhesion and colonization of host 

tissues, but are also important for biofilm formation [44,45]. The best characterized extracellular 

hydrolytic enzymes are the secreted aspartyl proteinases (SAPs), which are known to be 
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differentially expressed based on the host niche encountered and the stage of infection [46,47]. 

For example, SAP1, SAP3, and SAP6-SAP8 expression is correlated with adhesion to the 

vaginal epithelium during vaginitis, whereas SAP1, SAP3, SAP4, SAP7,  and SAP8 expression 

were found to be relevant in the oral cavity during oropharyngeal candidiasis [46]. Phenotypic 

switching is a phenomenon that is also believed to contribute to C. albicans pathogenesis. 

According to Soll, 2002 [48], phenotypic switching is a process that affects different cellular 

properties including morphology [49], adhesion [50] and antigenicity [51] among others. The 

white–opaque system in strain WO-1 in which smooth, white colonies switch to flat, opaque 

colonies [52] is the most studied type of phenotypic switching and has been observed in strains 

isolated from patients with Candida infections including invasive candidiasis [53].  Host factors 

that confer protective immunity against pathogens are essential to maintain C. albicans as a 

harmless commensal and although phagocytes are usually effective at clearing fungal 

infections, several studies have revealed C. albicans has the ability to overcome host defenses 

by immune evasion or modulation strategies that allow intracellular survival of the fungus [54].  

For example, a study using mutant strains that are lacking O-linked and N-linked mannans 

demonstrated the importance of cell surface glycosylation to avoid phagocytosis of C. albicans 

[55]. If phagocytosis cannot be avoided, C. albicans resorts to other strategies including the 

manipulation of phagosome maturation and the ability to survive and replicate intracellularly 

[56]. One of the key virulence factors of C. albicans is its ability to switch from yeast to filaments 

in the form of pseudohyphae or hyphae, which allow macrophage destruction and the 

subsequent escape of the fungus [57,58]. The importance of this morphological transition to 

establish infection has been further highlighted by mice studies, which show that non-

filamentous C. albicans mutants are avirulent [58]. 

Interaction of C. albicans with the host’s immune response 

Host innate and adaptive immune responses are responsible for conferring protective 

immunity against C. albicans infections [25]. Adaptive immune responses counteract infections 
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at specific sites and consist of humoral and cell-mediated immunity. For example, humoral 

immune mechanisms are activated in response to cutaneous infections, whereas cellular 

immune responses are required against mucosal infections such as oropharyngeal candidiasis 

[10]. In contrast, the predominant protective mechanism against invasive candidiasis is the 

innate branch of the immune system. Innate immunity consists of physical barriers such as the 

skin and mucous membranes, as well as professional phagocyte populations including 

neutrophils, monocytes/macrophages and dendritic cells whose primary function is to eliminate 

pathogens [59].  The fungicidal effects of these cells not only depend on the site of infection, but 

also on the type of cell encountered [59,60]. Phagocytes engulf pathogens forming an 

intracellular vesicle or phagosome that progressively fuses with early and late endosomes, and 

the lysosome to form the phagolysosome.  Inside the phagolysosome, pathogens are exposed 

to an acidic environment, microbicidal molecules and limited nutrients [54]. Once within the 

phagolysosome, the pathogen is killed via oxidative (e.g. reactive oxygen species generated by 

NADPH-oxidase and myeloperoxidase) [61] and non-oxidative mechanisms.   

Types of phagocytes 

Neutrophils are the first immune cells to be recruited from the bloodstream to sites of 

infection, and their main function is to kill invading pathogens via intracellular and extracellular 

mechanisms [62]. Studies have shown that neutrophils prevent the transition of yeast to hyphae 

[63] and are the only cell type in the bloodstream that inhibits C. albicans germ tube formation 

[64]. Furthermore, activated neutrophils kill C. albicans yeast and hyphal forms using neutrophil 

extracellular traps (NETs),  which are fibers that consist of granule proteins and chromatin [65]. 

Based on the importance of neutrophils in clearing infections, it is not surprising that patients 

with reduced levels of neutrophils (i.e. neutropenia) are more susceptible to disseminated 

candidiasis [23,24,66]. Unlike neutrophils, monocytes are recruited to infected tissues where 

they differentiate into macrophages and dendritic cells. Although it appears the microbicidal 

potential of macrophages is less elaborated than that seen in neutrophils [67], macrophages 
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also have the ability to act as antigen presenting cells and act in concert with neutrophils to 

clear infections [68]. Recently, dendritic cells have been shown to be important for phagocytosis 

of both yeast and hyphal cells of C. albicans leading to the activation of the adaptive immune 

response depending on the morphotype encountered [69]. In response to hyphal forms, murine 

dendritic cells lead to the activation of the TH2 responses, whereas TH1 responses were 

activated as a result of yeast cells [69].  Therefore, dendritic cells are important for linking innate 

immunity to adaptive immune responses. 

Transcriptional responses to phagocytes 

A plethora of studies have focused on virulence factors such as adhesins and hydrolytic 

enzymes, as they are important for the establishment of C. albicans infections.  However, less 

emphasis has been given to the acquisition of essential nutrients required for growth and 

survival within diverse host niches.  Colonization of  the gastrointestinal tract has been 

considered as a pre-requisite for Candida infection and it is believed that infection arises as a 

result of changes in the host’s microflora and immune system [24].  Although C. albicans 

encounters an abundant source of nutrients within the human microflora, nutrient acquisition is 

limited by competing microorganisms. In order for C. albicans to grow and maintain systemic 

infections, it must be able to undergo metabolic adaptations to different changing micro-

environments within the host. According to Koh et al., 2008 [24], alterations in the microflora as 

a result of antibiotic treatment and chemotherapy-induced neutropenia allows epithelial invasion 

and dissemination of C. albicans cells.  The ability of C. albicans to disseminate via the blood-

stream is in part due to the acquisition of nutrients available in the blood. Glucose is the 

preferred carbon source for yeast including C. albicans. Blood glucose levels within the host 

range between 6 and 8 mM [70] offering the nutrition required for C. albicans to grow and 

maintain systemic infection. However, nutrient availability is scarce once C. albicans cells are 

internalized by phagocytic cells.  Several genomic transcript profiling studies have revealed C. 

albicans uses complex transcriptional programs that are significantly different in response to 
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blood [64,71], tissue [72] and upon phagocytosis by neutrophils [73] or macrophages [57]. 

These studies indicate that glucose, which is the preferred carbon source for C. albicans, is the 

major carbon source in plasma and tissue, but is limiting inside the phagosome.  In order to 

survive intracellularly, C. albicans must be able to assimilate non-preferred carbon sources. 

Differential display technology was used by Prigneau et al., 2003 to identify C. albicans genes 

that are differentially expressed in response to phagocytosis [74] and found most of the genes 

induced were involved in carbon metabolism.  A transcript profiling approach was used by 

Lorenz et al., 2004 to study the interaction of C. albicans with mammalian macrophages [57]. 

The transcription profile observed is similar to nutrient starvation, where induction of alternative 

carbon metabolism with a concomitant downregulation of translation and glycolysis takes place 

suggesting C. albicans is able to use multiple non-preferred carbon sources during macrophage 

infection [57].  This study revealed that upon phagocytosis, C. albicans displays a complex 

transcriptional response characterized by an early and a late phase (Figure 1-1).  During the 

early phase (within 1 hr), C. albicans undergoes a remarkable reprogramming of transcription 

(>500 genes regulated) [57].  In addition to the carbon metabolic response, activation of C. 

albicans-specific genes, oxidative stress responses, DNA damage repair, peptide utilization, 

and arginine biosynthesis was seen during the early phase.  The metabolic shift early in the C. 

albicans-macrophage interaction allows the morphogenetic switch from yeast to hyphae, which 

promotes escape into the bloodstream. In the late phase, C. albicans successfully resumes 

rapid glycolytic growth [57].  
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Figure 1-1.  C. albicans interaction with macrophages.  

Upon phagocytosis, C. albicans survives inside macrophages, transitions from yeast to hyphae, 

and pierces the macrophage allowing its escape.  Genetic reprogramming of transcription 

analogous to changes seen during carbon starvation is part of the early response against host 

innate immunity. Images courtesy of M.C.  Lorenz. 
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Figure 1-1.  C. albicans interaction with macrophages.  
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Alternative carbon metabolism in C. albicans  

Several studies have indicated that the metabolic flexibility displayed by C. albicans is 

important for its ability to adapt to diverse host niches.  Therefore, it is important to increase our 

understanding of the regulatory networks governing carbon metabolism in C. albicans.  Survival 

within the phagosome requires the production of energy and catabolites necessary for the 

synthesis of complex macromolecules. In the absence of glucose, C. albicans represses 

glycolysis and activates alternative carbon metabolic pathways. A description of alternative 

carbon metabolic pathways which include the glyoxylate cycle, gluconeogenesis, and β-

oxidation is shown in Figure 1- 2 [75].    Fatty acids such as oleate (an unsaturated 18-carbon 

fatty acid) are degraded by a series of β-oxidation steps that result in the production of the key 

intermediate acetyl-CoA [76-78]. The glyoxylate cycle, which bypasses the tricarboxylic acid 

(TCA) cycle, is required for the net conversion of acetyl-CoA to oxaloacetate allowing the 

generation of glucose via gluconeogenesis [79]. Two carbon compounds such as acetate, 

ethanol, lactate, and some amino acids are converted to acetyl-CoA and incorporated via the 

glyoxalate cycle.  Compounds such as malate, citrate, and succinate can replenish TCA cycle 

intermediates.  Furthermore, additional substrates such as glycerol and other amino acids are 

assimilated through gluconeogenesis. According to Hynes et al., 2007, filamentous fungi use a 

vast array of gluconeogenic substrates in comparison to S. cerevisiae [11].  

Several lines of evidence indicate glucose availability is limited within the phagosome, 

and the utilization of multiple non-fermentable carbon sources is critical for C. albicans growth 

and survival.  This observation is supported by microarray data generated by our laboratory 

[57].  The transcript profiles of phagocytosed cells show induction of genes encoding key 

enzymes involved in alternative carbon metabolic pathways. For example, ICL1 (glyoxylate 

pathway isocitrate lyase) and FOX2 (multifunctional protein of β-oxidation) are induced 33.6- 

and 44-fold, respectively (Figure 1-2).  [57]. Mutations affecting key enzymes of alternative 

carbon metabolic pathways have varying degrees of influence on C. albicans virulence.  In 
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2001, using whole-genome microarray analysis, Lorenz and Fink showed that C. albicans 

glyoxylate cycle genes (isocitrate lyase, ICL1 and malate synthase, MLS1) are induced during 

phagocytosis, and that disruption of ICL1 decreased C. albicans virulence in a mouse model of 

disseminated candidiasis [80]. Other independent studies have agreed with this finding [81,82]. 

In addition, Ramirez and Lorenz, 2007 demonstrated that strains deficient in FOX2 show a 

moderate, but significant decrease in C. albicans virulence [75]. It is clear that upon 

phagocytosis, C. albicans encounters multiple non-preferred carbon sources such as acetate 

and fatty acids. However, the exact range of substrates available during infection is unknown. In 

2003, Barelle et al. used green fluorescent protein (GFP) fusions to examine the activity of key 

genes involved in glycolysis, gluconeogenesis and the glyoxylate cycle [81].  In vitro and ex vivo  

experiments revealed genes required for gluconeogenesis (PCK1) and glyoxylate cycle (ICL1) 

had a prominent role during macrophage and neutrophil infection, whereas the subsequent 

progression of systemic disease was dependent upon the activation of glycolytic genes [81]. In 

addition, by using an in vivo infection model, they were able to show that within infected tissues, 

different subpopulations of cells encounter distinct micro-environments that vary on nutrient 

availability.   Altogether these studies showed that C. albicans regulates central carbon 

metabolism based on the host niche encountered and on the stage of infection. Overall, it was 

concluded that the metabolic flexibility displayed by C. albicans is critical for survival and 

disease progression. 

 

 

 

 

 

 

 



16 
 

 

 

 

 

 

 

 

Figure 1-2.  Induction of alternative carbon metabolism in C. albicans 

Upon phagocytosis of C. albicans by macrophages there is an upregulation of key genes 

involved in alternative carbon metabolism.  These metabolic pathways converge on the key 

intermediate, acetyl-CoA to provide sufficient energy and catabolite products allowing the 

survival and escape from phagocytic cells (Ramirez and Lorenz, 2007).  
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Figure 1-2.  Induction of alternative carbon metabolism in C. albicans 
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Regulation of alternative carbon metabolism in yeast, filamentous fungi and C. albicans 

A search for carbon regulators in C. albicans was done in our laboratory through 

sequence and homology studies based on two model fungi: Saccharomyces cerevisiae and the 

filamentous fungi, Aspergillus nidulans [75,83].  It has become apparent that the transcriptional 

regulatory networks governing alternative carbon metabolic pathways in C. albicans are 

considerably different from S. cerevisiae, and appear more analogous to A. nidulans.  The major 

regulators of carbon metabolism have been characterized in S. cerevisiae (reviewed in 

reference [84]). Many of them belong to the Gal4 family and are zinc binuclear cluster proteins 

[85] characterized by the presence of a fungal-specific zinc cluster motif, Zn(II)2Cys6 (Cys-

X2Cys-X6Cys-X5−12Cys-X2Cys-X6−8Cys) that is found within the DNA-binding domain [86]. 

Regulation of carbon metabolism involves glucose repression and induction by specific carbon 

sources. In the presence of glucose, Mig1, a C2H2 zinc finger protein [87], targets the global 

repressor complex Tup1p/Ssn6p to the promoters of genes involved in alternative carbon 

metabolism. In conditions were glucose has been depleted, Mig1 targets are derepressed 

allowing expression at basal levels. This derepression is mediated by the Snf1 kinase, which 

phosphorylates Mig1 promoting its export from the nucleus to the cytoplasm [88], thus allowing 

positive regulators such as Cat8, Sip4, Adr1, Oaf1 and Pip2 to induce expression of alternative 

carbon metabolic genes. Cat8 is a transcription factor regulated by gluconeogenic substrates 

such as acetate, glycerol, and fatty acids. It activates genes involved in the glyoxylate cycle 

(e.g. Icl1) [89] and gluconeogenesis (e.g. Fbp1) [90] by binding to a carbon source-responsive 

element (CSRE) found in their promoters. Expression of the transcription factor, Sip4 is 

dependent on Cat8 activation [91], and in turn Sip4 contributes to the activation of genes 

involved in the glyoxylate pathway and gluconeogenesis by binding to their CSRE [92]. The 

transcription factors Oaf1 and Pip2 bind as a heterodimer to oleate response elements (OREs) 

found within the promoters of β-oxidation and peroxisomal genes [77,93]. However, there is 

evidence that some targets (e.g Fox2) are regulated by Oaf1 homodimers in the absence of 
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Pip2 [94]. The direct binding of oleate to the ligand binding domain of Oaf1 leads to its 

activation, whereas activation of Pip2 is mediated by the Oaf1/Pip2 heterodimer [95]. In addition 

to its role as an alcohol dehydrogenase regulator [96], Adr1 activates Pip2 heterodimer for 

maximal inducibility of target genes in response to oleate [97].  

In A. nidulans, glucose repression is mediated by CreA, the Mig1 homologue [98].  FacB 

is a major regulator of genes that encode enzymes of acetate metabolism including isocitrate 

lyase (acuD) and malate synthase (acuE) [99,100].  Sequence analysis revealed FacB is similar 

to Cat8 and Sip4 of S. cerevisiae, but genetic studies showed facB mutations affect growth on 

acetyl-CoA sources, but not on gluconeogenic substrates indicating that FacB is a specific 

regulator of the glyoxylate cycle and not gluconeogenesis [101,102]. To activate genes involved 

in gluconeogenesis, A. nidulans instead employs two transcription factors, AcuK and AcuM 

[103,104]. Mutations in AcuK and AcuM affect growth on gluconeogenic substrates and result in 

loss of induction of the gluconeogenic genes acuF, encoding phosphoenolpyruvate 

carboxykinase, and acuG, encoding fructose-1,6-bisphosphatase[103,104]. Furthermore, A. 

nidulans lacks the Oaf1/Pip2 heterodimer which is important for activation of β-oxidation and 

peroxisome biogenesis in S. cerevisiae. In A. nidulans, the FarA and FarB proteins are 

responsible for activating not only β-oxidation and peroxisomal genes, but also those involved in 

the glyoxylate cycle [105].  In addition, Northern blot analysis has shown that deletion of the farA 

gene abolishes induction by fatty acids, both short-chain (e.g. butyrate) and long-chain (e.g. 

oleate), while deletion of the farB gene eliminates only short-chain fatty acid induction [105]. 

Regulatory networks governing alternative carbon metabolic pathways in C. albicans 

have diverged from S. cerevisiae and appear to be more similar to those seen in A. nidulans. 

There are clear homologs of Snf1, Mig1, Cat8 and Adr1 in C. albicans.  In C. albicans, SNF1 is 

essential [106], and although there are some regulatory differences, overall MIG1 has a similar 

function in both species [107]. Furthermore, data from our lab show the roles of Cat8 and Adr1 

are not conserved in C. albicans despite having high sequence homology to the S. cerevisiae 
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counterparts [83]. C. albicans is analogous to A. nidulans in that it also lacks Oaf1 and Pip2, 

and instead CTF1 is a single functional ortholog of the FarA/FarB proteins [83].  CTF1 was 

initially isolated from the plant pathogen Fusarium solani for its ability to induce cutinase genes 

in the presence of cutin monomers (hydroxylated fatty acids), and was designated as cutinase 

transcription factor 1α [108]. Studies done in Fusarium revealed that a palindrome rich site with 

a 6-bp core (CCTCGG) is required for DNA binding by CTF1α in the presence of fatty acids 

[108]. A single CCTCGG motif was shown to be required for binding of both FarA and FarB of A. 

nidulans [105].  In the presence of inducer, FarA/B positively regulates genes involved in fatty 

acid catabolism. FarA was also shown to have a repressor function in the absence of inducer. 

The exact molecular mechanisms have not been elucidated, but competition for the binding 

motif by the induced and non-induced FarA as well as a possible post-translational regulation 

has been suggested. According to Hynes et al., 2006, the CCTCGG motif is also conserved in 

other fungal species, but it is not conserved in genes involved in S. cerevisiae fatty acid 

catabolism [105]. C. albicans CTF1 shares 39.1% identity with FarA, 27.4% with FarB, and 28% 

with FsCTF1α [83].  Phenotypic assays of a strain lacking CTF1 show a considerable growth 

defect in various fatty acids including oleate indicating that CTF1 is required for fatty acid 

degradation. In addition, several key enzymes including ICL1 and FOX2 are under positive 

CTF1 regulation. Although these data indicate CTF1 is a regulator of fatty acid degradation, 

knowledge of how CTF1 directly regulates its target genes is limited. 
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SIGNIFICANCE OF THE STUDY 

C. albicans is typically carried as a relatively harmless commensal, but has the potential 

to cause a broad range of infections. Superficial mucocutaneous infections can affect relatively 

healthy individuals, whereas systemic infections pose a higher risk to immunodeficient 

individuals or critically ill patients. C. albicans is the causal agent of more than 50% of 

candidemias and is considered the major fungal pathogen of humans [1]. It can infect virtually 

any anatomical site, reflecting its remarkable plasticity in adapting to diverse niches within its 

host. The high mortality associated with disseminated candidiasis is attributed to several factors 

including poor diagnosis and inadequate or delayed treatment.  In addition, the management of 

Candida infections in clinical settings is hindered by drug toxicity and increasing drug 

resistance. Therefore, there is a need for novel therapeutic approaches that target unique 

aspects of fungal biology.  Ideally, new antifungal agents should target processes that are not 

present in humans (e.g. glyoxylate cycle ) or are highly divergent between the host and the 

pathogen (e.g. fatty acid β-oxidation)[77].  Most antifungal drugs currently available target the 

fungal cell membrane and cell wall, but metabolic pathways are also suitable candidates for the 

development of new drugs [109,110]. The knowledge about nutrient acquisition and essential 

metabolic pathways used by pathogenic fungi is critical for the development of novel disease 

control strategies. 

Several studies indicate that there are sufficient levels of glucose in the bloodstream, 

which allows rapid growth and dissemination, whereas C. albicans intracellular survival is 

dependent upon the utilization of alternative carbon sources such as acetate and fatty acids. 

The ability to use a wide variety of gluconeogenic substrates may be an important aspect of C. 

albicans pathogenicity. Increasing evidence indicates that upon phagocytosis, C. albicans 

undergoes a complex transcriptional response that leads to the upregulation of genes involved 

in alternative carbon metabolism, including the glyoxylate cycle, gluconeogenesis and β-

oxidation, and a downregulation of the translational machinery [57,64,71].  Mutations affecting 
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key enzymes of alternative carbon metabolic pathways attenuate the virulence of C. albicans, 

highlighting the importance of central carbon metabolism for the establishment of C. albicans 

infections. Evidence from genome-scale analyses in multiple fungi suggests metabolic 

processes are under a global coordination that is mediated in great part by transcriptional 

regulation [111]. This underscores the significance of elucidating transcriptional regulatory 

networks that govern alternative carbon metabolism.   However, knowledge of the strategies 

employed by C. albicans to control the expression of carbon metabolic genes is limited. Studies 

by Ramirez and Lorenz, 2009 [83], have started to elucidate the role of CTF1 in C. albicans. 

CTF1 is required for fatty acid degradation and is required for the co-regulation of fatty acid β-

oxidation, FOX2 and glyoxylate cycle, ICL1 genes. Microarray data indicate CTF1 has a large 

regulon (217 genes), and many of the genes under CTF1-dependent regulation have unknown 

functions [Ramírez, MA and Lorenz, MC unpublished data].  The fact that CTF1 regulates so 

many genes underscores its importance as a transcriptional regulator and warrants further 

studies on its mode of regulation. The expression pattern of genes is in great part determined by 

short promoter sequences or motifs that are binding elements for specific transcription factors. 

Hence, identifying and characterizing regulatory motifs within CTF1-dependent genes, FOX2 

and ICL1 is central in understanding regulatory networks that control alternative carbon 

metabolism. 
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Strains, growth, and transformation 

Table 2-1 lists all the C. albicans strains used for these studies, which are based on the 

parent wild-type strain SC5314 and its auxotrophic derivative CAI4-F2 (URA-) [112]. The strains 

were maintained on standard yeast media [113], including YPD (1% yeast extract, 2% peptone, 

2% dextrose) and YNB (0.17% yeast nitrogen base, 0.5% ammonium sulfate). To manipulate 

the expression of target proteins, YNB was supplemented with 2% glucose, 2% potassium 

acetate, or oleic acid solubilized with Tween 20 (0.5% oleic acid, 1% Tween 20). CAI4-F2 and 

ctf1Δ/Δ (MRC39) strains were transformed using the electroporation method as described by 

Reuss et al., 2004 [114]. 

Table 2-2 lists all the plasmids used for these studies. DNA manipulations including 

plasmid isolation, PCR, restriction digestion, cloning, and gel electrophoresis were performed by 

standard methods [115]. Genomic DNA was isolated by using the glass bead disruption method 

[116]. Automated DNA sequencing was performed by Genewiz Inc. (Southplain, NJ).  

Escherichia coli DH5α strain was used as a host for plasmid constructions and propagation. E. 

coli was grown on selective Ferric Broth (FB) liquid or agar growth media containing the 

appropriate antibiotics, ampicillin (100 μg/ml) or nourseothricin (100 μg/ml) at 37°C. A total of 5 

μl of ligation products or purified plasmid DNA was used to transform chemically competent 

JS238 E. coli cells [115]. 

Construction of C. albicans strains  

The FOX2 and ICL1 promoters were dissected via promoter deletion analysis using the 

yeast enhanced green fluorescent protein (GFP)  based on the pGFP vector described by 

Barelle et al., 2004 [117].  Constructs for GFP transcriptional reporters were made in which the 

expression of GFP is driven by 1000 bp promoter fragment or by systematic 5’ promoter 

deletions immediately upstream of the translational start codon (ATG).  To create the GFP 

reporter constructs, promoter-specific primer pairs containing a KpnI site in the 5’ oligo and an 

XhoI or HindIII site in the 3’ oligo were designed. The oligonucleotides listed in table 2-3 were 
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used to PCR amplify each DNA fragment to be inserted into the pGFP vector previously 

digested with KpnI/ XhoI or HindIII. A promoter-less pGFP vector lacking GFP activity was used 

as a negative control, whereas a 1000 bp ACT1 promoter- pGFP vector driving constitutive GFP 

expression was used as a positive control. Each plasmid was linearized with StuI, gel purified, 

and transformed via the Candida electroporation protocol [114] to the wild-type strain (CAI4-F2) 

and the CTF1 mutant strain, ctf1∆/∆.  Transformants were selected on SD-URA plates and 

grown at 30°C for 3 days.  All constructs were incorporated at the phenotypically neutral RPS10 

locus and correct integration was confirmed by PCR analysis of genomic DNA [75,118,119].  

Overlap extension PCR  

Overlap extension PCR as described by Heckman and Pease, 2007 [120] was used for 

deletion and site-directed mutagenesis of DNA sequences. Briefly, two separate PCRs that 

create overlapping gene segments were performed using internal primers designed to delete 

the 6 bp core CCTCGG motif from the FOX2 promoter, as well as to introduce nucleotide 

substitutions in the same motif (CCTCGG  CATCAG). In a subsequent PCR, flanking primers 

with KpnI/ XhoI were used to generate the full-length product. The product was then inserted 

into the pGFP vector (KpnI/ XhoI) and incorporated into the CAI4-F2 and ctf1∆/∆ as described 

previously.  

RNA extraction and Northern Blot Analysis 

C. albicans strains were grown overnight in YNB media supplemented with 2% glucose 

and subcultured to an OD600 of ~ 0.5 in the same media.  The cultures were grown at 30°C to 

mid-log phase (OD600 of ~1.0), collected by centrifugation and washed twice with double 

deionized water (ddH2O). The cells were resuspended in YNB media supplemented with one of 

three carbon sources:  glucose (2%), potassium acetate (2%) or 0.5% oleic acid, 1% Tween 20 

and incubated for 1 hour at 30°C. The cells were again collected by centrifugation and washed 

twice with ddH2O. The cell pellet was frozen in dry ice and ethanol for storage at -80 °C. Total 
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RNA was extracted from C. albicans using the hot acid phenol method with glass bead 

disruption [121]. 

For Northern Blot analysis, twenty micrograms of total RNA was resolved by 

electrophoresis using a 1% agarose/1X MOPS gel with formaldehyde.  The RNA was then 

transferred to a nylon membrane and was probed using gene-specific probes that were 

radioactively labeled at the 5’end with [ɣ-32P] ATP via the action of Polynucleotide kinase 

(Roche, Manheim Germany). Probes were purified using Roche Quick Spin columns and 

quantified using a scintillation counter. Blots were incubated in prehybridization solution 

containing 6X SSC, 10X Denhardt’s solution and 0.1% SDS for 1 h at 42°C followed by 

overnight hybridization with the 5’end labeled probe. Images were processed using a Storm 

PhosphorImager and exposed to film for autoradiography. Ribosomal RNA (rRNA) visualized by 

ethidium bromide staining was used as a loading control. 

GFP reporter assays and fluorescence microscopy 

Reporter strains were grown as described for Northern Blot analysis. After growing 

reporter strains for 1 hr in YNB media plus one of three carbon sources:  glucose (2%), 

potassium acetate (2%) or oleate (0.5% oleic acid, 1% Tween 20), C. albicans cells were 

harvested and visualized using an Olympus IX81–ZDC confocal inverted microscope (Tokyo, 

Japan). All images were obtained using a 60X immersion oil objective, as well as the following 

filters and exposure times: DIC (100 ms), FITC for GFP (100 ms) or TRITC for mCherry (500 

ms). Subsequently, SlideBook 5.0 digital microscopy software (Intelligent Imaging Innovations, 

Inc., Denver, CO, USA) was used to process DIC, FITC, and TRITC images. Quantification of 

GFP fluorescence intensity was done essentially as described by Brothers et al., 2011 [122], 

with some modifications. To quantify the level of fluorescence in individual cells on saved image 

files, the SlideBook 5.0  circle tool was used to trace at least 50 cell segments (yeast, hyphae 

and pseudohyphae), and a single area of background fluorescence. Each selected region was 

converted to a mask object and the mask statistic mean function was then used to generate the 
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mean FITC (green) and TRITC (red) fluorescence intensity values. After subtracting the 

background value, the data were graphed using Excel as the mean green to red fluorescence 

ratio ± S.D.   

5’- RNA Ligase Mediated Rapid Amplification of cDNA Ends (5’-RLM-RACE) Analysis of 

FOX2 and ICL1  

To map transcription initiation sites within the FOX2 and ICL1 promoters, 5’ Rapid 

amplification of complementary ends was performed using the FirstChoiceR RLM-RACE Kit 

(Ambion, USA).  RNA was extracted as described for Northern Blot analysis. Ten micrograms of 

total RNA was treated with Calf Intestine Alkaline Phosphatase (CIP) and Tobacco Acid 

Pyrophosphatase (TAP) to remove both free 5'-phosphates and the cap structure before the 

ligation of a 5’-RLM-RACE adapter to the mRNA. The processed mRNA was then reverse 

transcribed to cDNA, which served as the template for an outer PCR using a 5’-RLM-RACE 

outer primer (Ambion) and a gene-specific outer primer.  The outer PCR product was then 

amplified by 5’-RLM-RACE inner primer (Ambion, USA) and a 5’ gene-specific inner primer. The 

resulting PCR products were analyzed by agarose gel electrophoresis and sequencing. 
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Table 2-1: Lists of C. albicans strains used for this study 

Strain  Relevant genotype Complete genotype Source/ 
Reference 

SC5314 Wild-type prototroph  [112] 

CAI4-F2 Wild-type auxotroph 
(URA3-) 

ura3::λimm434/ura3:: λimm434 [112] 

AGC8 Promoterless-
GFP/WT 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG  
RPS10/rps10:: GFP-URA3-HIS1 
 

This study 

AGC10 
 

ACT1p-GFP/WT 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ACT1p-GFP-URA3-HIS1 
 

This study 

AGC22 FOX2p(1000)-GFP ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(1000)-GFP-
URA3-HIS1 
 

This study 

AGC24 FOX2p(500)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(500)-GFP-URA3-
HIS1 
 

This study 

AGC26 FOX2p(400)-GFP ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(400)-GFP-URA3-
HIS1 
 

This study 

AGC28 FOX2p(300)-GFP ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(300)-GFP-URA3-
HIS1 
 

This study 

AGC30 FOX2p(200)-GFP ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(200)-GFP-URA3-
HIS1 
 

This study 

AGC32 FOX2p(100)-GFP ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(100)-GFP-URA3-
HIS1 
 

This study 

MLC61 ICL1p(1000)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(1000)-GFP-URA3-
HIS1 
 

This study 
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AGC12 ICL1p(500)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(500)-GFP-URA3-
HIS1 
 

 

AGC14 ICL1p(400)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(400)-GFP-URA3-
HIS1 
 

 

AGC16 ICL1p(300)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(300)-GFP-URA3-
HIS1 
 

 

AGC18 ICL1p(200)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(200)-GFP-URA3-
HIS1 
 

 

AGC20 ICL1p(100)-GFP 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(100)-GFP-URA3-
HIS1 
 

 

AGC96 
 

Promoterless-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG  
RPS10/rps10:: GFP-URA3-HIS1 
ADH1/adh1::yCherry-SAT1 
 

This study 

AGC97 
 

ACT1p-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ACT1p-GFP-URA3-HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC98 
 

FOX2p(1000)-
GFP/ctf1Δ/Δ, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
ctf1::HIS1/ctf1::hisG  
RPS10/rps10:: FOX2p(1000)-GFP-
URA3-HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC99 
 

ICL1p(1000)-
GFP/ctf1Δ/Δ, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
ctf1::HIS1/ctf1::hisG  
RPS10/rps10:: ICL1p(1000)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC100 FOX2p(1000)-GFP, ura3::λimm434/ura3:: λimm434 This study 



30 
 

 ADH1p-mCherry 
 

his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(1000)-GFP-
URA3-HIS1 
ADH1/adh1:: yCherry-SAT1 
 

AGC10 FOX2p(1000)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(1000)-GFP-
URA3-HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC102 
 

FOX2p(500)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(500)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC103 
 

FOX2p(500)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(500)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC104 
 

FOX2p(400)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(400)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC105 
 

FOX2p(400)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(400)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC106 
 

FOX2p(300)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(300)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC107 
 

FOX2p(300)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(300)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC108 
 

FOX2p(200)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(200)-GFP-URA3-

This study 
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HIS1 
ADH1/adh1:: yCherry-SAT1 
 

AGC109 
 

FOX2p(200)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(200)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC110 
 

FOX2p(100)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(100)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC111 
 

FOX2p(100)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: FOX2p(100)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC112 
 

ICL1p(1000)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(1000)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC113 
 

ICL1p(500)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(500)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC114 
 

ICL1p(500)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(500)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC115 
 

ICL1p(400)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(400)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC116 
 

ICL1p(400)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(400)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 

This study 
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AGC117 
 

ICL1p(300)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(300)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 
 

 

AGC118 
 

ICL1p(300)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(300)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC119 
 

ICL1p(200)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(200)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC120 
 

ICL1p(200)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(200)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 

AGC121 
 

ICL1p(100)-GFP, 
ADH1p-mCherry 
 

ura3::λimm434/ura3:: λimm434 
his1::hisG/his1::hisG 
RPS10/rps10:: ICL1p(100)-GFP-URA3-
HIS1 
ADH1/adh1:: yCherry-SAT1 
 

This study 
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Table 2-2: Lists of plasmids used for this study 

Plasmid Description Source/ 
Reference 

pGFP Promoterless GFP in CIp10, URA3 selection marker, 
ampicillin resistance 
 

[117] 

pADH1-
mCherry 

Construct to integrate mCherry at the ADH1 locus, 
driven by the ADH1 promoter. Nourseothricin selection 
marker 
 

[122] 

pAG3-1 ICL1p(1000)-pGFP This study 

pAG4-1 ICL1p(500)-pGFP This study 

pAG5-1 ICL1p(400)-pGFP This study 

pAG6-1 ICL1p(300)-pGFP This study 

pAG7-1 ICL1p(200)-pGFP This study 

pAG8-1 ICL1p(100)-pGFP This study 

pAG9-1 FOX2p(1000)-pGFP This study 

pAG10-1 FOX2p(500)-pGFP This study 

pAG11-1 FOX2p(400)-pGFP This study 

pAG12-1 FOX2p(300)-pGFP This study 

pAG13-1 FOX2p(200)-pGFP This study 

pAG14-1 FOX2p(100)-pGFP This study 
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Table 2-3: List of oligonucleotides used for this study 

Gene 
name 

Oligonucleotide 
(oligo) 

Description Sequencea 

Promoter deletion analysis 

FOX2 MLO882 5’ oligo -1000 bp 
relative to ATG 

CCAGGTACCAATCAACAATTTGAGGTT
TGT 

FOX2 MLO883 5’ oligo -500 bp  CCAGGTACCTTGCTGTTGGCATTGTG
TAATAAT 

FOX2 MLO884 5’ oligo -400 bp  CCAGGTACCTCGTTGTGTTATGTTAAA
GTGGAA 

FOX2 MLO885 5’ oligo -300 bp  CCAGGTACCTAATACACACGACTTTTC
TCCAG 

FOX2 MLO886 5’ oligo -200 bp  CCAGGTACCACAACAAATGATATGAAT
GAATATTTA 

FOX2 MLO887 5’ oligo -100 bp  CCAGGTACCCATCTGAAATTTATTTAA
TTGAAA 

FOX2 MLO1022 3’ oligo -1 bp  AGTAAGCTTGGAGGAAAGTATTATGTT
TGA 

FOX2 

MLO1125 

5’ oligo for 
deletion of 
CCTCGG  

GGAATTCCCACTTTTTATTTCATCTTG
GTTGAAGATG 

FOX2 

MLO1126 

Reverse 
complement of 
MLO1125 

CATCTTCAACCAAGATGAAATAAAAAG
TGGGAATTCC 

FOX2 

MLO1127 

5’ oligo for site-
directed 
mutagenesis of 
CCTCGG motif 
(CATCAG) 

GAATTCCCACTTTTTATTTCATCCATCA
GTTGGTTG 

FOX2 

MLO1128 

Reverse 
complement of 
MLO1127 

CAACCAACTGATGGATGAAATAAAAAG
TGGGAATTC 

 

ICL1 MLO888 5’ oligo -1000 bp CCAGGTACCCCAGCGTGGTCATGGAA
TCGT 

ICL1 MLO889 5’ oligo -500 bp  CCAGGTACCGTCAGCTTTTCTACTCAA
TCC 

ICL1 MLO890 5’ oligo -400 bp  CCAGGTACCGAATCAAAATAGATGTAA
TGTGATG 

ICL1 MLO891 5’ oligo -300 bp  CCAGGTACCGGATCAGTGGAAGATTG
CGAG 

ICL1 MLO892 5’ oligo -200 bp  CCAGGTACCGTCCGATTACAATATTTG
GCCC 

ICL1 MLO893 5’ oligo -100 bp  CCAGGTACCAAATTTCATTCTTTTTTAA
TACCC 

ICL1 MLO1015 3’ oligo -1 bp  AGTAAGCTTGGTAGATATTATTAATGT
TTATTCTT 

Northern Blot Analysis 

FOX2 MLO329 3’ oligo +1700 bp ACAGTGGTGTGTTCATCGTG 
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ICL1 MLO66 3’ oligo +2153 bp  TAAGCCTTGGCTTTGGATTCT 

GFP MLO1094 3’ oligo +536 bp  TACCAGCAGCAGTAACAAATTCT 

5’RACE Analysis 

FOX2 MLO1261 Gene specific 
oligo +103 bp 

GTTGTTGTCAACGATTTAGGAGGT 

FOX2 MLO1262 Gene specific 
inner oligo +197 
bp 

ACCACCGTTCTTGGTAATTTCA 

FOX2 MLO1263 Gene specific 
outer oligo +247 
bp 

TCAACAATTTTGGCACCATCCA 

ICL1 MLO1264  Gene specific 
oligo +77 bp 

GGTCTGAACCAAGATGGAGAAA 

ICL1 MLO1265 Gene specific 
inner oligo +228 
bp 

AACAGTCTTGTCAGCATCGTGT 

ICL1 MLO1266 Gene specific 
outer oligo +283 
bp 

AGTACTTGGCCATTTGAGCAACGT 

a The restriction sites introduced into the primers are underlined; 
KpnI (GGTACC ), HindIII (AAGCTT)  
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Chapter 3. Identification of cis-acting elements in the promoters of CTF1 co-regulated 

genes, FOX2 and ICL1  
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Introduction 

Increasing evidence indicates the ability to use a wide variety of gluconeogenic 

substrates may be an important aspect of C. albicans pathogenicity. As mentioned previously, 

C. albicans undergoes a dramatic reprogramming of transcription in order to adapt to changing 

host microenvironments.   Elucidating transcriptional regulatory networks that govern alternative 

carbon metabolism is important in order to gain insight into C. albicans pathogenic 

characteristics.   However, there is a gap in knowledge of how C. albicans controls the 

expression of carbon metabolic genes. Much of what we know about the transcriptional 

regulatory networks governing alternative carbon metabolic pathways is based on the 

paradigms seen in S. cerevisiae and A. nidulans. Several studies have revealed significant 

differences between C. albicans and S. cerevisiae, and increasing evidence shows these 

processes are more analogous to those employed by A. nidulans.  For example, in A. nidulans 

and C. albicans, β-oxidation and peroxisome biogenesis are regulated by the orthologues 

FarA/FarB and CTF1, but the unrelated transcription factors Oaf1/Pip2 in yeast [83,93,105]. 

Work published by our laboratory [75,83], showed a ctf1Δ/Δ mutant strain in a mouse model of 

disseminated candidiasis showed a mild, but significant attenuation in virulence. The results 

were comparable to a fox2∆/∆ mutant which showed a mean time to death of 6.9 days, 

compared to 4.8 days for the wild-type strain [75,83]. Because CTF1 is also relevant in vivo, it is 

important to gain insight on how CTF1 regulates target genes (e.g. FOX2 and ICL1). Northern 

blot analysis of strains grown in glucose and the non-fermentable carbon sources, acetate and 

oleate was used to assess the endogenous expression of CTF1, FOX2 and ICL1 genes [83].  

Several observations were made based on Northern blot analysis. First, the absence of CTF1 

mRNA transcripts in the tested conditions other than oleate indicates CTF1 is regulated by 

carbon source. Second, CTF1 positively regulates the expression of FOX2 and ICL1 only in the 

presence of oleate [83].   Third, ICL1 is expressed in a CTF1-independent manner in the 

presence of acetate, suggesting additional transcription factor(s) must be involved [83].  Recent 
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microarray analysis derived from wild-type vs. ctf1Δ/Δ mutant strains grown in glucose or oleate 

revealed a large CTF1-dependent regulon (217 genes) [Ramírez, MA and Lorenz, MC 

unpublished data]. The results show CTF1 regulates genes required for fatty acid catabolism, 

gluconeogenesis, and the glyoxylate cycle, as well as glucose transport and a few genes 

involved in other cellular processes. Surprisingly, 60% of the genes in this regulon lack 

homology to those found in other organisms or their homologs have not been characterized. C. 

albicans is highly specialized to exist within its host as a commensal, and when given the 

opportunity (e.g. defects in host immunity) it can alter its transcriptional response to adapt to 

changing host microenvironments, causing disease. Although CTF1 itself has a partial 

contribution to C. albicans virulence, CTF1-dependent genes that are transcriptionally 

upregulated in response to fatty acids and are fungal specific may represent genes that are 

important for C. albicans pathogenicity making them potential candidates for development of 

antifungal drugs. Genetic data indicate FOX2 and ICL1 are regulated by carbon source and that 

CTF1 plays a major role in the regulation of these genes.  Previous studies clearly highlight the 

importance of CTF1 as a regulator of fatty acid degradation, yet there is limited knowledge on 

how CTF1 regulates its targets. Of the CTF1 regulon I have focused on FOX2 and ICL1 in this 

study as model targets. The analysis of FOX2 and ICL1 promoter regions will help understand 

the mechanism of regulation by CTF1 of target genes, including whether regulation is direct or 

indirect. The knowledge resulting from understanding the mechanisms that govern gene 

expression of key metabolic enzymes can be used for designing novel antifungal drugs. 
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Results 

Endogenous FOX2 and ICL1 are rapidly expressed in alternative carbon sources 

The expression pattern of FOX2 and ICL1 from a wild-type background was determined 

over a three-hour period following transfer to media containing glucose, acetate or oleate as the 

sole carbon source (Figure 3-1 and 3-2). As demonstrated previously by our lab [75,83], 

Northern blot analysis probing for the endogenous FOX2 and ICL1 genes show their expression 

is completely repressed in the presence of glucose.  Transcripts for both FOX2 and ICL1 genes 

were detected within 30 minutes of incubation in the presence of acetate and oleate indicating a 

rapid cellular response to changing carbon conditions. Interestingly, high FOX2 expression 

levels are maintained throughout the three hours in oleate, but an apparent decline is seen after 

two hours in acetate. Based on these data, full induction of these genes should be observed 

within one hour.  Therefore, a one hour timepoint was chosen for later experiments. 

Identification of cis-acting elements involved in the regulation of FOX2 and ICL1 genes 

The expression pattern of a gene is in great part determined by cis-acting elements or 

motifs that are binding sites for specific transcription factors. Hence, the analysis of promoter 

regions to identifying regulatory motifs is important to understand regulation of specific genes. 

To identify cis-acting sequences important for the regulation of FOX2 and ICL1, a combination 

of bioinformatic analysis and promoter deletion analysis was employed. Initially to dissect FOX2 

and ICL1 promoters, we used the LacZ reporter system.  However, inconsistent results were 

obtained upon analyzing β-galactosidase activity.  Instead, we choose to use GFP as a reporter 

of transcription.  The GFP reporter is a good alternative to enzymatic reporters. For example, 

the GFP fluorescence signal from a single cell or a population of cells can be analyzed via 

fluorescence microscopy without the need to disrupt cells [123]. The GFP reporter system was 

constructed as described in Chapter 2 and as shown in figure 3-3. Briefly, constructs consisting 

of 1000 bp 5’ of the translational start of both genes were cloned upstream of the GFP ORF.  I 

also made 5’ sequential deletions at 100 bp intervals upstream of the translational start codon of 
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each gene to isolate promoter fragments with relevant cis-acting sequences.  To make C. 

albicans GFP reporter strains, constructs were used to transform a wild-type strain (CAI4-F2) or 

ctf1Δ/Δ mutant strain (MRC39). Integration at the desired RPS10 locus was confirmed by PCR.  

Reporter strains were grown as described in Figure 3-1, and cells were subsequently washed 

and analyzed by fluorescence microscopy. Initial attempts to quantify expression were 

complicated by inter-experimental variability, compromising interpretation of the data. Therefore, 

a different approach described by Brothers et al., 2011 [122] was used to quantify GFP 

fluorescence intensity.  This new approach requires the introduction of an additional expression 

plasmid encoding the red fluorescent protein (ADH1-mCherry) at the ADH1 locus.  The 

constitutive mCherry expression serves as an internal fluorescence standard.   
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Figure 3-1. Diagram for growth of strain in glucose or non-fermentable carbon sources  

The wild-type (SC5314) strain was grown overnight in YPD, collected by centrifugation, washed 

with water and diluted in YNB supplemented with 2% glucose and grown to log-phase.  Cells 

were collected by centrifugation, washed and grown in YNB with 2% glucose, 2% potassium 

acetate or 0.5% oleic acid/1% tween 20 for 1 hr at 30C. RNA was extracted for Northern Blot 

analysis as described in chapter 2.  
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Figure 3-1. Diagram for growth of strain in glucose or non-fermentable carbon sources  
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Figure 3-2. FOX2 and ICL1 expression is rapidly induced by alternative carbon sources  

The wild-type (SC5314) strain was grown overnight in YPD, collected by centrifugation, washed 

with water and diluted in YNB supplemented with 2% glucose and grown to log-phase.  Cells 

were collected by centrifugation, washed and incubated at 30C for a three-hour period in YNB 

media containing 2% glucose, 2% potassium acetate or 0.5% oleic acid/1% tween 20. 

Endogenous FOX2 A) and ICL1 B) gene expression was detected via Northern blot analysis 

using gene-specific probes. Ethidium bromide staining of the rRNA was used as a loading 

control.  
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Figure 3-2. FOX2 and ICL1 expression is rapidly induced by alternative carbon sources 
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Figure 3-3. Schematic representation of reporter strains used for promoter deletion 

analysis  

1000 bp 5’ of the translational start and systematic 100 bp deletions of the FOX2 or ICL1 

promoters were fused to GFP and chromosomally integrated into a wild-type strain (CAI4-F2) or 

ctf1Δ/Δ mutant strain (MRC39) at the phenotypically neutral RPS10 locus. The constitutive 

mCherry expression of the reporter strains serves as an internal reference. At least two 

independent strains were tested. 
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Figure 3-3. Schematic representation of reporter strains used for promoter deletion 

analysis  
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CTF1 regulates the FOX2 and ICL1 promoters in non-fermentable carbon sources  

The GFP reporter system has been employed in this study to gain insight into how CTF1 

regulates its targets, FOX2 and ICL1. The expression of 1000 bp FOX2-GFP and ICL1-GFP 

reporter strains, as well as the appropriate control strains was assessed using fluorescence 

microscopy as described in Chapter 2.  The representative images are shown in figure 3-4. 

Because all the strains exhibit constitutive mCherry expression, the ratio of GFP to mCherry 

fluorescence was generated to effectively normalize the GFP fluorescence intensity throughout 

the different reporter strains and conditions tested (Figure 3-5). Overall, GFP reporter results in 

a wild-type background correspond to previous Northern blot data obtained by our lab [83]. 

Fluorescence microscopy analysis of control strains shows that regardless of the conditions 

tested, high GFP fluorescence intensity is detected in the positive, but not the negative control 

strain. Consistent with FOX2 and ICL1 being glucose-repressed, expression of these genes was 

not detected in glucose-containing media.  On the other hand, FOX2-GFP and ICL1-GFP 

reporter strains were fluorescent in media containing acetate or oleate, indicating carbon-source 

dependent expression. These results are consistent with previous Northern analysis.   

To determine the contribution of CTF1 in regulating FOX2 and ICL1, I analyzed the 1000 

bp FOX2-GFP and ICL1-GFP reporters in a ctf1Δ/Δ mutant background (MRC39). In the 

absence of CTF1, the FOX2 reporter still shows some GFP activity in the presence of acetate 

and oleate that is apparent in the Northern Blot data and upon quantification of GFP 

fluorescence.  This indicates that in the absence of CTF1, FOX2 is no longer induced, but it is 

still subject to derepression. In contrast, minimal GFP activity is seen for the ICL1 reporter in the 

same conditions suggesting CTF1 is required for ICL1 expression even in the presence of 

acetate.  As mentioned previously, Northern blot data generated by Ramirez and Lorenz, 2009 

[83] showed CTF1 is not required for the expression of ICL1 in acetate.  The current ICL1 

reporter data in a ctf1Δ/Δ mutant background contradicts their data.  This discrepancy may be 

as a result of variations in the strains and requires further analysis. 
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Figure 3-4. CTF1 regulates the FOX2 and ICL1 promoters in non-fermentable carbon 

sources   

Fluorescence microscopy analysis of empty-GFP/WT (A) and ACT1-GFP/WT (B). Fluorescence 

microscopy analysis of FOX2-GFP/WT (C), FOX2-GFP/ctf1Δ/Δ (D), and ICL1-GFP/WT (E), 

ICL1-GFP/ctf1Δ/Δ (F). C. albicans wild-type cells expressing GFP reporters at the RPS10 locus, 

as well as ADH1-mCherry at the ADH1 locus were harvested and visualized using an Olympus 

IX81–ZDC confocal inverted microscope (Tokyo, Japan). All images were obtained using a 60X 

immersion oil objective and the following channels and exposure times: DIC (100 ms), FITC for 

GFP (100 ms) or TRITC for mCherry (500 ms). SlideBook 5.0 (Intelligent Imaging Innovations, 

Inc., Denver, CO, USA) was used to analyze all images.  
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Figure 3-4. CTF1 regulates the FOX2 and ICL1 promoters in non-fermentable carbon 

sources  
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Figure 3-5. Quantification of GFP fluorescence intensity  

To quantify GFP fluorescence intensity, the ellipse tool from SlideBook 5.0 was used to select at 

least 50 cell segments (yeast, hyphae and pseudohyphae), and a single area of background 

fluorescence [122]. Each selected region was converted to a mask object and the mask statistic 

mean function was then used to generate the mean FITC (green) and TRITC (red) fluorescence 

intensity values. After subtracting the background value, the data were graphed using Excel as 

the mean green to red fluorescence ratio ± S.D.  
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Figure 3-5. Quantification of GFP fluorescence intensity 
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Several transcription initiation sites are located within the FOX2 and ICL1 promoters  

To identify cis-acting sequences within the FOX2 and ICL1 promoters, the next step was 

to perform promoter truncation analysis.  Before proceeding, it was important to ensure that any 

loss of GFP activity was not due to deletion of transcription initiation sites within proximal 

promoter regions. Transcription initiation sites had not been previously mapped for FOX2 and 

ICL1.  Therefore, 5’- RNA Ligase Mediated Rapid Amplification of cDNA Ends (5’-RLM-RACE) 

was used to determine transcription initiation sites within the FOX2 and ICL1 promoters. The 5’-

RLM-RACE PCR reactions for each promoter resulted in multiple bands. However, sequencing 

of the PCR fragments revealed the location of the transcription initiation sites within the FOX2 

and ICL1 promoters (Figure 3-6). The results showed that the FOX2 promoter contains two 

transcription initiation sites at positions -100 and -74 relative to the translation start codon, 

whereas the ICL1 promoter contains only one transcription initiation site located at position -95. 

As expected, both the FOX2 and ICL1 promoters contain at least one TATA box consensus 

sequence (TATAWAWR, W indicates A/T; R indicates A/G) [124] within a reasonable distance 

upstream of the transcription initiation sites (Figure 3-6).  The FOX2 promoter has two 

overlapping putative TATA boxes between positions – 168 and -161, and -164 and -157. On the 

other hand, only one TATA box can be found in the ICL1 promoter between positions – 140 and 

-133. TATA-containing genes are known to be involved in response to environmental stress 

such as heat and starvation [124].  The presence of putative TATA boxes within these 

promoters agrees with the involvement of FOX2 and ICL1 in the assimilation of alternative 

carbon sources. 
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Figure 3-6. Several transcription initiation sites are located within the FOX2 and ICL1 

promoters  

To map transcription initiation sites within the FOX2 and ICL1 promoters, 5’RACE PCR analysis 

was performed using both 5’RACE primers and gene-specific primers.  Processed mRNA 

harboring a 5’RACE adapter was reverse transcribed to cDNA and used as the PCR template.   

The location of transcription initiation sites within the FOX2 and ICL1 promoters was then 

revealed via agarose gel electrophoresis and sequencing analysis of the resulting 5’RACE PCR 

products. 
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Figure 3-6. Several transcription initiation sites are located within the FOX2 and ICL1 

promoters 
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Putative DNA binding sites within the FOX2 and ICL1 promoters 

In parallel with promoter deletion analysis we began a search for putative DNA binding 

sites within the FOX2 and ICL1 promoters that are regulated by carbon source through a survey 

of the literature. Transcription factors with zinc binuclear clusters can recognize regulatory 

elements that contain trinucleotide sequences (e.g CGG) in single or repeat forms, in either a 

symmetrical or an asymmetrical format [125]. In addition to binding DNA as monomers, these 

transcription factors can function as homodimers or as heterodimers [126]. DNA binding 

specificity is largely determined by the orientation of trinucleotide sequences and the nucleotide 

spacing between the triplets [127].  In the plant pathogen Fusarium solani, the CTF1 orthologue, 

CTF1α binds a GC-rich palindrome with an oppositely oriented 5’-GCC(n2)GGC to induce the 

cutinase gene in the presence of fatty acids [108].  In A. nidulans, both FarA and FarB positively 

regulate genes involved in fatty acid catabolism by binding sequences containing the 6-bp core 

CCTCGG motif [105].  According to Hynes et al., 2006, the CCTCGG motif is overrepresented 

in the 5’ regions of genes predicted to be induced by fatty acids in filamentous fungi, but not in 

S. cerevisiae [105].  

Guided by the studies performed in other fungi including F. solani and A. nidulans we 

decided to scan 1000 bp upstream of the translational start codon for exact matches to the 

CCTCGG sequence using pattern match software (Patmatch) from the Candida genome 

database (http://www.candidagenome.org/cgi-bin/PATMATCH/nph-patmatch). Patmatch 

analysis revealed one or more copies of the CCTCGG motif are present in the promoters of 

CTF1 target genes including FOX2 and ICL1 (Figure 3-7).  A single copy of the CCTCGG motif 

was found between -350 and -355 relative to the translational start codon in FOX2.  On the 

other hand, ICL1 contains two regions with the CCTCGG motif positioned between -618 and -

623, and its complement, CCGAGG positioned between -333 and -338, respective to the 

translational start codon. A more extensive Patmatch analysis showed the motif was also 

conserved in numerous other C. albicans genes that have a known role in alternative carbon 
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metabolism. A total of 252 genes containing the CCTCGG motif and its complement within 

1,000 bp 5' of the translational start codon were analyzed by the Gene Ontology (GO) term 

mapper from the Candida genome database (http://www.candidagenome.org/cgi-

bin/GO/goTermMapper) (Table 3-1) [Lorenz, M. C., unpublished results).  The GO term mapper 

results for these genes show an overrepresentation of genes that are induced by fatty acids, 

such as those involved in β-oxidation and peroxisome processes.  For example, the fatty acid 

oxidation GO term shows that the CCTCGG motif and its complement are upstream of 9 out of 

12 genes annotated to that term (Table 3-1).   

Transcript profiling studies performed by Murad et al., 2001 [107] identified both FOX2 

and ICL1 as targets for MIG1 repression in C. albicans. Nehlin and Rohne, 1990 [87] previously 

identified the sequence 5’-(G/C)(C/T)GG(G/A)G  or SYGGRG as the DNA binding element for 

Mig1 in S. cerevisiae. Because FOX2 and ICL1 are under glucose repression it is possible that 

they harbor a Mig1 site that allows their expression to be repressed.  To determine if FOX2 and 

ICL1 harbor this putative Mig1 binding site, I scanned the promoters using Patmatch and found 

both promoters carry multiple copies within 1000 bp upstream of the translational start codon. 

Putative Mig1 sites were found within the following regions:   -865 to -860, -623 to -618, -282 to 

-277, and -260 to -255 for the FOX2 promoter, whereas ICL1 harbored two putative sites within 

-747 to -742 and-252 to -247 regions (Figure 3-7).  The relevance of the putative DNA binding 

sites found by bioinformatic analysis in C. albicans needs to be assessed in future studies.  
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Figure 3-7. Putative DNA binding sites within the FOX2 and ICL1 promoters 

Pattern match software (Patmatch) from the Candida genome database was used to find 

putative DNA binding sequences within the FOX2 A) and ICL1 B) promoters. Putative DNA 

binding sequences include the fatty acid response element, CCTCGG , as well as the more 

degenerate SYGGRG sequence required for Mig1 repression. 
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Figure 3-7. Putative DNA binding sites within the FOX2 and ICL1 promoters 
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Table 3-1. GO-enriched terms for genes with CCGAGG/CCTCGG within 1,000 bp 5' of the 

translational start codon 

Process  
GO terms  

Cluster 
Frequency 
(252 
genes) 

Background 
Frequency 
(6514 
genes) 

Corrected  
P-value 

False 
Discovery 
Rate 

Gene(s) 
annotated  
to the term 

fatty acid 
oxidation 

9, 3.6% 12, 0.2% 1.60E-08 0.00% 

PEX11:FOX2: 
POX1-3:PXP2: 
orf19.4122: 
CAT2:PEX5: 
POX1:ANT1 

lipid oxidation 9, 3.6% 12, 0.2% 1.60E-08 0.00% 

PEX11:FOX2: 
POX1-3:PXP2: 
orf19.4122: 
CAT2:PEX5: 
POX1:ANT1 

fatty acid β- 
oxidation 

8, 3.2% 10, 0.2% 9.03E-08 0.00% 

FOX2:POX1-3: 
PXP2:orf19.41
22:CAT2:PEX5
:POX1:ANT1 

lipid 
modification 

10, 4.0% 30, 0.5% 4.55E-05 0.00% 

PEX11:FOX2: 
POX1-3:PXP2: 
orf19.4122: 
CAT2:orf19.48
65:PEX5: 
POX1:ANT1 

cellular lipid 
catabolic 
process 

9, 3.6% 28, 0.4% 0.00029 0.00% 

FOX2:POX1-3: 
PXP2:orf19.41
22:CAT2:PEX5
:POX1:ANT1: 
PLB3 

fatty acid 
metabolic 
process 

12, 4.8% 58, 0.9% 0.00075 0.00% 

PEX11:FOX2: 
POX1-3:PXP2: 
CRC1:orf19.41
22:CAT2:PEX5
:POX1:ANT1: 
PEX13:PEX7 

mono- 
carboxylic  
acid  
metabolism 

14, 5.6% 89, 1.4% 0.00319 0.00% 

PEX11:FOX2: 
POX1-3:PXP2: 
CRC1:orf19.41
22:CAT2:MLS1
:PEX5:POX1: 
ANT1:ICL1: 
PEX13:PEX7 

lipid catabolic 
process 

9, 3.6% 40, 0.6% 0.00766 0.00% 

FOX2:POX1-3: 
PXP2:orf19.41
22:CAT2:PEX5
:POX1:ANT1: 
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PLB3 

hydrogen 
peroxide 
catabolism 

3, 1.2% 3, 0.0% 0.02712 1.09% 
CAT1:TSA1B: 
TSA1 

glyoxylate 
cycle 

3, 1.2% 3, 0.0% 0.02712 1.00% 
FOX2:MLS1: 
ICL1 

glucose 
transport 

6, 2.4% 22, 0.3% 0.06644 1.14% 
HGT6:SHA3: 
HGT17:HGT19
HGT10:HGT13 

peroxisomal 
transport 

5, 2.0% 15, 0.2% 0.08637 1.20% 
PEX4:PEX5: 
PEX1:PEX13: 
PEX7 

protein 
targeting to 
peroxisome 

5, 2.0% 15, 0.2% 0.08637 1.12% 
PEX4:PEX5: 
PEX1:PEX13: 
PEX7 

Component  
GO_terms 

peroxisome 17, 6.7% 48, 0.7% 9.91E-11 0.00% 

PEX11:orf19.1
64:POX13:PX
P2:PEX4:orf19
.4122:CAT2: 
MLS1:PEX5: 
POX1:CAT1: 
ANT1:PEX1: 
orf19.6591: 
ICL1:PEX13: 
PEX7 

peroxisomal 
part 

7, 2.8% 22, 0.3% 0.00147 0.00% 

PEX11:orf19.1
64:POX1-3: 
PEX5:CAT1: 
ANT1:PEX13 
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The CCTCGG motif is required for FOX2 regulation  

To identify promoter regions that harbor relevant cis-acting sequences, I tested the 5’ 

sequential deletions at 100 bp intervals upstream of the start codon of each gene and analyzed 

them in a wild-type background using Northern Blot and Fluorescence microscopy. Northern 

Blot analysis of the 100 bp-FOX2 deletions showed that in contrast to the 1000 and 500 bp-

FOX2-GFP promoter fragments, there is a significant reduction in expression for the 400 bp and 

300 bp fragments (Figure 3-8 A). These results indicated that the region between -500 and -300 

is important for fatty acid regulation.  However, fluorescence microscopy analysis demonstrated 

that cis-acting sequences under positive fatty acid regulation are more likely to be located 

between -400 and -300 (Figure 3-8 B).  Based on these results and the fact that the CCTCGG 

motif is found at position -350 within the FOX2 promoter, I hypothesized that this motif is the 

relevant cis-acting sequence under positive fatty acid regulation.  To test this, I made additional 

reporter constructs that consisted of 1000 bp upstream of the start codon with either a deleted 

motif or a motif with a specific-site mutation (CCTCGG  CCTCAG). The relevance of the 

CCTCGG motif was analyzed using fluorescence microscopy (Figure 3-9). The results show a 

significant reduction in GFP fluorescence upon deleting the CCTCGG motif. A disadvantage of 

deleting the motif is that a new sequence is generated and it is often necessary to perform site-

specific mutations to maintain intact flanking sequences.  Changing a guanine to an adenine 

residue in the CGG triplet showed a reduced GFP activity indicating that the second guanine 

residue is important for positive fatty acid regulation. Surprisingly, a reduction in GFP 

expression is seen in acetate.  It is possible that changing the guanine residue may lead to a 

change in DNA conformation that allows a subtle Mig1-dependent or –independent repression. 

Overall, these results are consistent with other studies performed in related fungi were the 

importance of the CCTCGG motif for carbon source regulation has been shown. In particular, 

the second guanine residue in the CGG triplet was determined to be the dominant contact for 

Gal4 binding in S. cerevisiae [128], suggesting that a similar scenario may occur in C. albicans. 
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Figure 3-8. FOX2 promoter contains one cis-acting element under fatty acid regulation  

A) The wild-type (SC5314) strain  and FOX2-GFP reporter strains harboring 5’ 1000 bp or 

systematic 100 bp deletions (see table 2-1) were grown overnight in YPD, collected by 

centrifugation, washed with water and diluted in YNB supplemented with 2% glucose and grown 

to log-phase.  Cells were collected by centrifugation, washed and incubated at 30C for a one-

hour period in YNB media containing 2% glucose, 2% potassium acetate or 0.5% oleic acid/1% 

tween 20. Expression of endogenous FOX2 gene and the GFP gene was detected via Northern 

blot analysis using gene-specific probes.  Ethidium bromide staining of the rRNA was used as a 

loading control. B) Quantification of FOX2-GFP reporter strains was performed as described 

previously chapter 2. 
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Figure 3-8. FOX2 promoter contains at least one cis-acting element under fatty acid 

regulation 
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Figure 3-9. The CCTCGG motif is required for FOX2 regulation 

Overlap extension PCR was used to delete the entire CCTCGG motif from the FOX2 promoter 

or to mutate key residues using site-directed mutagenesis (SM) (CCTCGG  CCTCAG).   

FOX2-GFP reporter strains lacking the CCTCGG motif or containing the mutagenized version 

(see table 2-1) were grown overnight in YPD, collected by centrifugation, washed with water and 

diluted in YNB supplemented with 2% glucose and grown to log-phase.  Cells were collected by 

centrifugation, washed and incubated at 30C for a one-hour period in YNB media containing 

2% glucose, 2% potassium acetate or 0.5% oleic acid/1% tween 20. Quantification of reporter 

strains was performed as described previously. 
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Figure 3-9. The CCTCGG motif is required for FOX2 regulation 
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The CCTCGG motif does not appear to be relevant for ICL1 regulation, whereas 

additional unidentified elements seem to be important 

The 5’ sequential deletions at 100 bp intervals upstream of the start codon of ICL1 were 

also analyzed in a wild-type background using Northern Blot and Fluorescence microscopy. 

Northern Blot analysis of the 100 bp-ICL1 deletions showed the ICL1 promoter contains one or 

more positively regulated sites between -1000 and -500 relative to the translational start (Figure 

3-10). As shown previously in figure 3-7, the ICL1 reporter harbors a CCTCGG motif between -

623 to -618 and its complement between -338 to -333 relative to the translational start codon.  

Therefore, I hypothesized that the CCTCGG motif found between -623 to -618 in the ICL1 

promoter was a relevant cis-acting sequence for ICL1 regulation. Overlap extension PCR was 

used to delete or mutagenize this motif using the 1000 bp-GFP reporter construct as a template. 

The goal was to delete or alter each motif as done previously for FOX2.  Initial PCR products 

were obtained and used as templates to create a final PCR product. However, even after 

multiple attempts I was unable to generate a final PCR product. As a result, the relevance of the 

CCTCGG motif for ICL1 regulation could not be assessed.  Therefore, I decided to create 

additional 5’ systematic deletions at 100 bp intervals between the -1000 and -500 promoter 

region relative to the translational start.   Quantification of GFP fluorescence of the ICL1 reporter 

in a wild-type background suggests ICL1 contains one or more positively regulated sites 

between -1000 and -900 relative to the translational start codon. Overall, these results suggest 

that it is unlikely that the CCTCGG motifs found at positions -618 and the complement, 

CCGAGG at position -333 are relevant for ICL1 regulation. Conclusions and a discussion of 

these findings are addressed in the next chapter. 
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Figure 3-10. ICL1 cis-acting elements are found upstream of -900 position and CCTCGG 

motif does not appear to be relevant for ICL1 regulation.  

A) The ICL1-GFP reporter strains harboring 5’ 1000 bp or systematic 100 bp deletions (see 

table 2-1) were grown overnight in YPD, collected by centrifugation, washed with water and 

diluted in YNB supplemented with 2% glucose and grown to log-phase.  Cells were collected by 

centrifugation, washed and incubated at 30C for a one-hour period in YNB media containing 

2% glucose, 2% potassium acetate or 0.5% oleic acid/1% tween 20. Expression of ICL1-GFP 

was detected via Northern blot analysis using a GFP-specific probe.  Ethidium bromide staining 

of the rRNA was used as a loading control. B) Quantification of ICL1-GFP reporter strains was 

performed as described previously. 
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Figure 3-10. ICL1 cis-acting elements are found upstream of -900 position and CCTCGG 

motif does not appear to be relevant for ICL1 regulation. 
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Chapter 4. Conclusions and Perspectives 
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In the past two decades, there has been an increase in infections caused by 

opportunistic fungal pathogens. The rise of hospital-acquired fungal infections has been 

attributed in part to an increase in immunocompromised and non-immunocompromised, 

critically ill patients. In addition, the management of invasive candidiasis is complicated by 

several factors including poor diagnosis, inadequate or delayed treatment, drug-related toxicity 

and increasing drug resistance. Under predisposing conditions, C. albicans can switch from a 

commensal to a pathogenic state, causing a broad range of infections which manifest as 

superficial or systemic infections. Because C. albicans is considered the predominant cause of 

invasive candidiasis and is associated with high morbidity and mortality, it has become the 

subject of extensive research.  However, most studies have focused on classical virulence 

factors such as adhesins and hydrolytic enzymes involved in persistence of colonization.  Less 

emphasis has been placed on the metabolic requirements of C. albicans during infection. 

C. albicans has the ability to survive in a variety of harsh micro-environments within its 

mammalian host.  Its remarkable plasticity in adapting to diverse host niches is reflected by its 

ability to invade virtually any site of the human body.  The nutrient composition in different 

anatomical sites varies throughout the body, and some micro-environments lack preferred 

carbon sources that allow fungal growth and survival. For example, glucose, the preferred 

carbon source for C. albicans appears to be scarce inside phagocytic cells, but is accessible in 

the bloodstream. Several research groups, including ours have focused on the interaction of C. 

albicans with host innate immune cells, which serve as the first line of antifungal defense. 

Phagocytic cells such as neutrophils and macrophages play a key role in preventing disease 

progression by confining C. albicans to site of colonization or infection, and in preventing 

dissemination to the bloodstream and tissue invasion. Upon phagocytosis, C. albicans 

undergoes a complex transcriptional response that leads to the upregulation of genes involved 

in alternative carbon metabolism, including the glyoxylate cycle, gluconeogenesis and β-

oxidation [57,64,71]. It has been proposed that C. albicans upregulates these pathways in order 
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to use a wide variety of non-preferred carbon sources such as fatty acids, acetate and other 

gluconeogenic substrates encountered upon phagocytosis.  Without the acquisition of essential 

nutrients required for growth, C. albicans would not be able to maintain infection.  The 

importance of the metabolic flexibility displayed by C. albicans is evident, since mutations 

affecting key enzymes of alternative carbon metabolic pathways attenuate the virulence of C. 

albicans. Due to the importance of alternative carbon metabolic pathways during infection, these 

pathways are promising candidates for the development of new anti-fungal drugs [109,110].  

The regulation of alternative carbon metabolism in C.  albicans appears to be a 

combination of the regulatory systems in S. cerevisiae and A. nidulans 

To enhance our understanding on how C. albicans may regulate alternative carbon 

metabolic pathways, homologs of the well-characterized transcription factors in the non-

pathogenic yeast, S. cerevisiae and the filamentous fungus, A. nidulans have been identified in 

our lab. Although the metabolic machinery is essentially conserved among different yeast 

species, variations in the regulatory networks confer phenotypic differences between them 

[129].  Current data indicates the mode of transcription-based regulation in C. albicans is 

significantly different from yeast and although some aspects appear more analogous to 

filamentous fungi, specific adaptations in C. albicans may contribute to its ability to survive in 

harsh microenvironments.   C. albicans has homologs of the S. cerevisiae CAT8 and ADR1 

proteins, which correspond to FacB and AmdX in A. nidulans and are known to regulate 

gluconeogenesis, the glyoxylate cycle, and ethanol utilization. In contrast to S. cerevisiae and A. 

nidulans, deleting these genes in C. albicans does not confer a phenotype [83]. Furthermore, 

the transcription factors Oaf1p and Pip2p, which regulate genes involved in fatty acid -

oxidation and peroxisome biogenesis in S. cerevisiae are lacking in both A. nidulans and C. 

albicans.  In A. nidulans, the FarA and FarB proteins are responsible not only for regulating fatty 

acid -oxidation and peroxisome biogenesis, but also the glyoxylate cycle. It has become 
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apparent that C. albicans has a more integrated regulatory network than S. cerevisiae and 

displays more similarities to regulatory networks in A. nidulans.  According to Ramirez and 

Lorenz, 2009 [83], C. albicans cannot afford to have periods of metabolic inactivity if it is to 

prevail against the host’s immune response.  In order to counteract immune attack, it must be 

able to rapidly adapt to hostile environments such as those provided by the macrophage 

intracellular milieu, where there it encounters limited nutrients. Being able to rapidly assimilate 

multiple non-preferred carbons sources may make the difference between life and death.  The 

different environmental pressures faced by the S. cerevisiae and C. albicans may have resulted 

in metabolic gene expression differences between species. 

CTF1 regulates fatty acid metabolism and glyoxylate cycle genes 

Recently, the C. albicans transcription factor CTF1 has been identified and characterized 

based on its homology to the known A. nidulans transcripiton factors FarA and FarB [83].  Gene 

deletion of CTF1 results in a mild, but significant decrease in virulence. Northern blot analysis 

revealed CTF1 is required for the regulation of genes involved in fatty acid β-oxidation, the 

glyoxylate cycle, and peroxisome biogenesis [83]. In S. cerevisiae, the transcription factors Oaf1 

and Pip2 control the expression of broad range of genes that are involved β-oxidation or 

peroxisomal biogenesis. Although CTF1 is significantly different from Oaf1 and Pip2, it has a 

similar function to these factors since it regulates a wide array of genes required for fatty acid 

degradation. Based on Northern Blot analysis, the induction of some of these genes in the 

presence of fatty acids has been shown to be either partially dependent or entirely dependent 

on CTF1 regulation [83].  Global transcription profiling using microarray is a powerful approach 

to gain insight into the mode of regulation of a transcription factor under different conditions, 

such in the presence of different carbon sources. Microarray analysis derived from wild-type vs. 

ctf1Δ/Δ mutant strains grown in glucose or oleate revealed CTF1 coordinates the expression of 

a large set of genes (217 genes) [Ramírez, MA and Lorenz, MC unpublished data]. This large 

CTF1 regulon consists of genes required for fatty acid catabolism, gluconeogenesis, and the 
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glyoxylate cycle, as well as glucose transport and a few genes involved in other cellular 

processes including the stress response.   Consistent with previous Northern blot analysis, 

some of the genes were identified as being partially dependent or entirely dependent on CTF1 

regulation.  It was surprising to find that 60% of the genes either lack homology to those found 

in other organisms or their homologs have not been characterized. Many of these genes are 

fungal specific and may represent genes that are important for C. albicans pathogenicity making 

them potential candidates for development of antifungal drugs.  

To gain insight into the interplay between transcription factors and cis-acting sequences 

that equip C. albicans with the metabolic flexibility necessary for disease progression, we have 

focused on CTF1 and two of its regulatory target genes, FOX2 and ICL1. Identifying and 

characterizing regulatory motifs within CTF1 co-regulated genes, FOX2 and ICL1 is important to 

increase the current knowledge on the regulatory mechanisms that govern alternative carbon 

metabolism at the transcriptional level.  Previous Northern blot results generated in our lab 

[75,83], have been confirmed in this study.  The endogenous expression of FOX2 and ICL1 

genes is repressed in the presence of glucose, whereas their expression in the presence of 

acetate and oleate is relatively rapid. To identify cis-acting sequences important for the 

regulation of FOX2 and ICL1, a combination of bioinformatic analysis and promoter deletion 

analysis was employed. 1000 bp 5’ of the translational start and systematic 100 bp deletions of 

each gene were fused to the GFP reporter and analyzed for reporter expression in wild-type 

strains and strains lacking CTF1 using Northern blot analysis and fluorescence microscopy. 

FOX2-GFP and ICL-GFP reporter expression was not detected in glucose-containing media.  

These data confirms previous Northern blot [75,83] and transcript profiling results [107] that 

identified both FOX2 and ICL1 as glucose-repressed genes.  In addition, a carbon-source 

dependent expression of FOX2 and ICL1 was evident since FOX2-GFP and ICL1-GFP reporter 

strains were fluorescent in media containing acetate or oleate. In the absence of CTF1, FOX2 is 

no longer induced, but it is still subject to derepression. These results are consistent with 
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previous Northern analysis [75,83]. However, the results obtained for ICL1-GFP reporter strains 

are less clear. Northern blot data generated in our lab [83] showed CTF1 is not required for the 

expression of ICL1 in the presence of acetate.  Therefore, it was surprising to find that the ICL1-

GFP reporter expression was significantly reduced in the absence of CTF1. Future experiments 

are needed to resolve the discrepancies seen between previous Northern results and current 

GFP reporter data for ICL1. 

The CCTCGG motif is a cis-regulatory element important for control of the fatty acid β-

oxidation gene, FOX2  

In A. nidulans, the cis-acting sequence (CCTCGG) has been shown to be required for 

fatty acid regulation and binding of both FarA and FarB target genes.  This motif is present 

within the FOX2 and ICL1 promoters and is a candidate sequence for fatty acid CTF1-

dependent regulation and binding.   To determine its relevance in C. albicans, the CCTCGG 

motif found within the FOX2 promoter was deleted or mutagenized and fused to the GFP 

reporter for fluorescence analysis. In this work, we have identified the CCTCGG motif as 

necessary for control of the fatty acid β-oxidation, FOX2 gene. Previous Northern analysis of 

wild-type strains grown in glucose, acetate and oleate showed expression of CTF1 only in the 

presence of oleate. This suggests FOX2 is only induced by CTF1 in the presence of oleate.  

However, deleting or mutagenizing the CCTCGG motif results in a significant reduction in 

FOX2-GFP reporter regardless of whether it is grown in acetate or oleate. These results indicate 

additional mechanisms are involved.  For example, deleting the motif may cause spacing 

alterations that disrupt regulation at the chromatin level. 

Contrary to what is seen for FOX2, the CCTCGG motif does not appear to be relevant 

for ICL1 regulation. Positively regulated site(s) between -1000 and -900 relative to the 

translational start appear to be more relevant for ICL1 regulation. Based on the ICL1 promoter 

truncation analysis performed in this study, there is no role for one specific motif, but there could 

be close mismatches elsewhere that are important for ICL1 regulation.  The significance of the 
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CCTCGG motif and its complement for ICL1 regulation remains questionable since their 

position does not coincide with previously identified regions. Although this study has helped 

increase the current knowledge on the regulatory mechanisms that govern alternative carbon 

metabolism at the transcriptional level, several unanswered questions remain. 1) What are the 

additional cis-acting sites involved in FOX2 and ICL1 regulation? and 2) Is CTF1 regulation 

direct or indirect? 

What are the additional cis-acting sites involved in the regulation of FOX2 and ICL1? 

Promoter regions are likely to harbor multiple elements that act in a combinatorial 

manner thereby complicating the identification of discrete elements.  The mechanisms by which 

FOX2 and ICL1 are activated by CTF1 seem to be different. Bioinformatic analysis of the 

upstream region of FOX2 and ICL1 genes revealed their promoters contain several putative cis-

regulatory elements for transcription factors found in S. cerevisiae (Sc) and A. nidulans (An).  

These include putative sites for ScMig1, ScCat8/ AnFacB, ScAdr1, and AnFarA/FarB. 

Consistent with FOX2 being under Mig1 repression and its role in fatty acid metabolism, the 

FOX2 promoter harbors several putative Mig1 sites and a single copy of the CCTCGG motif. In 

A. nidulans, Hynes et al., 2006 [105] predicted that there are three classes of genes, class I: 

genes induced specifically by acetate, class II: genes that are induced by both acetate and fatty 

acids and class III: genes that are only induced by fatty acids. Based on our results and the 

putative sites found within FOX2 promoters, it appears that FOX2 might be a class III gene, 

since it is highly induced in the presence of oleate and is required for fatty acid catabolism.  

Increasing evidence indicates that although there is conservation of cis- and trans-

regulatory systems across different fungal species, extensive transcriptional reorganization or 

rewiring can lead to highly plastic regulatory networks [130,131].  These can form as a result of 

many types of modifications including mutations in cis- regulatory sequences. Changes in 

transcription factors, including binding specificity, trans-activating potential, and/or cooperative 

binding characteristics  can also contribute to transcriptional flexibility [129]. In addition, some 
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transcription factors with identical binding specificity and kinetics can regulate genes that are 

considerably different, thereby changing the members of a particular regulon [132]. Evidence of 

transcriptional rewiring across species has been provided by several studies. For example, 

Martchenko et al., 2007, showed that Gal4, a transcription factor that is required for galactose 

utilization in S. cerevisiae is instead required for glycolysis in C. albicans [133]. Studies in our 

lab have demonstrated that CAT8 and ADR1 have no apparent phenotype in C. albicans 

despite having significant sequence similarity to their counterparts in S. cerevisiae.   In C. 

albicans, CTF1 is the single functional ortholog of the A. nidulans FarA/FarB proteins, which are 

known to bind the CCTCGG motif [83].  However, DNA sequences that are relevant in related 

fungi may not be functional in C. albicans. The in vivo function of putative cis-acting element 

across multiple fungal species can be influenced by several factors including site degeneracy, a 

requirement for specific adjacent sequences and changes in transcription binding specificity.  

Although the CCTCGG motif is present in both FOX2 and ICL1, it is not equally important for the 

regulation of both genes. It is possible that the identification of regulatory sites within the ICL1 

promoter may have been complicated by the presence of multiple regulatory sites.  

Bioinformatic analysis of the ICL1 promoter showed multiple putative sites for Mig1, Cat8/ FacB, 

and AnFarA/FarB. Many of these sequences were found at overlapping positions.  Based on 

this, I speculate that the regulation of ICL1 is most likely as a result of multiple inputs, unlike 

FOX2, whose induction is dependent on the presence of fatty acids. Although, 5’ promoter 

deletion analysis is useful in defining the boundaries of a regulatory region, a more refined 

deletion and substitution analysis is required to identify all the cis-acting elements involved in 

carbon based source regulation. 

Is CTF1 regulation direct or indirect? 

Genetic data indicates CTF1 is a regulator of fatty acid degradation, yet knowledge of 

whether CTF1 regulation is direct or indirect is limited. Since, the CCTCGG motif is a cis-

regulatory element important for control of the fatty acid β-oxidation, FOX2 gene, gel shift 
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assays can be used to determine if FOX2 is a direct target of CTF1.  Gel shift assays are 

particularly useful for analyzing DNA-protein interactions when using short probes with well-

defined elements.  Therefore, using a short FOX2 probe containing the CCTCGG motif can be 

used.  In addition, competition assays using specific competitors (unlabeled wild-type and 

mutant probes) can be employed to effectively determine CTF1 binding. I have performed 

preliminary gel shift assays using C. albicans whole cell lysates and purified recombinant CTF1 

protein from E. coli.  A faint band shift was observed when C. albicans lysates were tested 

suggesting a binding event is taking place. Additional attempts to detect CTF1 specific binding 

events were not successful and further optimization is required.  Specific binding events may 

have been missed when using protein from C. albicans lysates due to insufficient CTF1 protein 

levels. To detect potential specific CTF1 binding events, gel shift assays using a purified CTF1-

TAP protein can be performed in future experiments.  I have created two independent strains 

that express CTF1 with the TAP tag at the C-terminus using PCR-mediated homologous 

recombination [7] and efforts to purify the protein using the TAP method as described by Lavoie 

et al., 2008 [7] are underway in our lab. 

Although in vitro approaches performed in F. solani and A. nidulans have been 

successful in detecting binding to the CCTCGG motif, this may not be equally feasible in C. 

albicans. It is possible that CTF1 itself is regulated by phosphorylation in a context-dependent 

manner. Studies in F. solani indicate that phosphorylation correlates with FsCTF1α DNA binding 

and transcriptional activity [134]. In vitro gel shift assays and transcription assays revealed the 

phosphorylation was required for binding and transactivation capacity of FsCTF1α. In silico 

analysis of the CTF1 amino acid sequence revealed multiple putative serine, threonine, and 

tyrosine phosphorylation sites. Based on these findings, it is possible that phosphorylation of 

CTF1 influences DNA binding and activation of FOX2 and ICL1. In addition, DNA topology and 

other transcription factors may influence binding, therefore hindering detection of CTF1-DNA 
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complexes in vitro. Chromatin immunoprecipitation followed by high throughput sequencing 

(ChIP-Seq) may be required to actually detect in vivo CTF1 binding events. 

Promising strategies for the development of antifungal drugs  

Several strategies have been proposed for the development of more effective antifungal 

drugs. Transcription factor-based therapeutic approaches include creating artificial transcription 

factors and the use of small molecules that disrupt DNA binding. However, these approaches 

have inherent disadvantages and targeting a particular carbon metabolic pathway as a whole 

may be more effective.  For example, Simm et al., 2011 [135] have used a cell-based screen to 

identify new antifungal drugs that target fungal zinc homeostasis.  A similar approach that 

targets fatty acid β-oxidation in C. albicans could be used instead. This would involve the use of 

a strain that monitors changes in fatty acid utilization. In this study, we have shown that wild-

type cells transformed with the FOX2-GFP reporter is repressed in the presence of glucose and 

induced in acetate and oleate.  Because FOX2 is a key enzyme required for the assimilation of 

fatty acids, a cell-based assay using the FOX2-GFP reporter can be used to identify compounds 

that inhibit fatty acid β-oxidation. For this assay, reporter cells would be grown in oleate and 

treated with test compounds. Fluorescence microscopy analysis would then allow the detection 

of compounds that inhibit GFP fluorescence. To facilitate high through-put screening, a multi-

well format (e.g. 384 micro-titer plates) would be used in a primary screen of compound libraries 

along with positive and negative controls. GFP fluorescence intensity would then be measured 

using an automated plate reader. Cells treated with a known compound that inhibits fatty acid β-

oxidation in C. albicans such as 2-methoxy-4-thia fatty acid (±)-2-methoxy-4-thiatetradecanoic 

acid [136] can be used as a positive control, whereas a negative control would consist of 

untreated samples. Additional positive controls such as including untransformed wild-type cells 

or the addition of glucose to the wells would increase the confidence of the screen. Compounds 

that significantly reduce GFP expression would be candidates for further validation tests. A 

secondary screen for growth inhibition would allow the identification of potent and specific 
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inhibitors of fatty acid β-oxidation and would give insight into compounds’ mode of action.  For 

the secondary screen, reporter cells treated with candidate compounds would be grown in 

glucose, acetate or oleate as the sole carbon source. Compounds found to inhibit FOX2-GFP 

expression in the primary screen are expected to inhibit growth in oleate. Growth inhibition in 

acetate would suggest the test compound does not directly disrupt fatty acid β-oxidation, but 

may be targeting a downstream pathway or enzyme. Additional studies such as microarray 

analysis of treated versus untreated cells can be performed to determine the identity of their 

targets.   

In this study, a combination of bioinformatics and promoter analysis was employed to 

determine how CTF1 regulates its target genes FOX2 and ICL1 involved in alternative carbon 

metabolism.  This study has revealed the CCTCGG motif is relevant for CTF1-dependent 

regulation of FOX2, but not for ICL1.  However, it is unknown whether CTF1 binds the CCTCGG 

motif and further studies are required to determine if CTF1 regulation is direct or indirect. C. 

albicans has adapted its metabolic regulatory repertoire resulting in a dynamic response that 

allows it to thrive within nutrient poor microenvironments. This study provides insight into the 

adaptation strategies at the transcriptional level used by C. albicans.  Understanding how these 

strategies lead to the metabolic flexibility displayed by C. albicans will be a cornerstone for 

future advances in anti-fungal treatments against systemic candidiasis. 
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