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Abstract
Quercetin, a naturally occurring dietary flavonoid, is well known to ameliorate chronic

diseases and aging processes in humans, and its antiviral properties have been

investigated in numerous studies. In silico and in vitro studies demonstrated that

quercetin can interfere with various stages of the coronavirus entry and replication

cycle such as PLpro, 3CLpro, and NTPase/helicase. Due to its pleiotropic activities and

lack of systemic toxicity, quercetin and its derivatives may represent target compounds

to be tested in future clinical trials to enrich the drug arsenal against coronavirus

infections. There is evidence that quercetin in combination with, for example, vitamins

C and D, may exert a synergistic antiviral action that may provide either an alternative

or additional therapeutic/preventive option due to overlapping antiviral and

immunomodulatory properties. This review summarizes the antiviral significance of

quercetin and proposes a possible strategy for the effective utilization of natural

polyphenols in our daily diet for the prevention of viral infection.
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Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) represents an

emergent global threat which is straining worldwide healthcare capacity. A coronavirus

such as SARS-CoV-2 can be deadly because of its ability to stimulate a part of the

innate immune response called the inflammasome, which can cause the uncontrolled

release of proinflammatory cytokines, namely, interleukin (IL)-1B and IL-18, leading to
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cytokine storm and severe, sometimes irreversible, damage to the respiratory

epithelium.1,2 The SARS-CoV-2 virus has been shown to activate the NLRP3 (NOD-,

LRR- and pyrin domain-containing protein 3) inflammasome.3,4

Among various polyphenolic natural products, quercetin (3,3′,4′,5,7-

pentahydroxyflavone, Figure 1), a flavonoid, found abundantly in fruits and vegetables,

including onions, broccoli, buckwheat, capers, peppers, Brassica vegetables, apples,

grapes, berries, tea, and wine, as well as many nuts, seeds, barks, flowers, leaves,

and spices,5-8 has been reported as one of the potent inhibitors of NLRP3

inflammasome-mediated IL-1β production, typically acting at more than one element of

the involved pathways.9 However, it is worthwhile to note that dietary intake of

flavonoids ranges from 5 to 100 mg/day (quercetin [Que] and its glycosides account for

about 75%), mostly depending on the consumption of fruits and vegetables and the

intake of tea.10,11 Que is largely metabolized in the intestine and liver12,13 so that its

plasma level is normally low. However, after consuming Que-rich foods, the plasma

level of this flavonoid increases to different ranges.

Figure 1 Structure of quercetin (Que).

In nature, Que predominantly occurs in O-glycosidic form, having either a

monosaccharide moiety, such as glucose, galactose, and/or rhamnose, or a

disaccharide, usually rutinose (3-O-α-ඔ-rhamnopyranosyl-(1→6)-β-ඌ-glucopyranoside),

linked to the 3, 7, and 4′-positions. The sugar moiety is usually O-linked to Que, but it

can be C-linked as well. The OH at C-3 is the most common position, but

O-glycosylation may occur on carbons 4′ and 7.14 The 4′-O-glucoside is considered

the major representative of Que glycosides in onion.15

Epidemiological studies suggested tight links between the intake of flavonoid-rich diets



and a decreased incidence of various chronic age-related diseases.16 From a dietary

point of view, Que glycosides are mostly found in food with a negligible portion of Que

itself,12,13 with the exception of some red wine.17 The excess consumption of

flavonoids is possibly toxic as flavonoids act as mutagens, pro-oxidants, and inhibitors

of vital enzymes responsible for metabolism.18 As a dietary constituent, Que has

unique biological properties that may improve mental/physical performance and

reduce infection risk.19 It is worthwhile to note that dietary supplements differ but often

contain the free form of Que—under the FDA national drug code numbers

65448-3085, 65448-3005.20

Que acts as a free radical scavenger, donating 2 electrons via o-quinone/quinone

methide21; both in vitro and in vivo22,23 studies implicate Que as a potent antioxidant.

Que has been shown to exert anticancer, anti-inflammatory, antiallergic, antioxidant,

antidiabetic, vasoprotective, antihypertensive, hypolipidemic, antithrombotic, and

psychostimulant activities, as well as having the ability to inhibit lipid peroxidation,

platelet aggregation, capillary permeability, and to stimulate mitochondrial

biogenesis.14,24-51

Beneficial Effects of Que in Viral Infections

There is a tremendous amount of literature supporting the antiviral properties of Que,

in both in vitro and in vivo experiments. Early in vivo studies showed that oral treatment

with Que displayed a beneficial effect in immunocompetent mice infected with the

Mengo virus.52,53 Que also demonstrated a dose-dependent antiviral activity against

herpes simplex virus, HSV-1 and HSV-2, in cell cultures.54,55 Que inhibits several

respiratory viruses in cultured cells.56,57 It inhibits the cytopathic effects provoked by

many serotypes of rhinovirus, echovirus (type 7, 11, 12, and 19), coxsackievirus (A21

and B1), and poliovirus (type 1 Sabin).58 Que exhibits antiviral activity against Canine

Distemper Virus as it decreases viral expression and improves cellular viability.59

In mice infected with rhinovirus, Que treatment decreased viral replication and

attenuated virus-induced airway cholinergic hyperresponsiveness.60 In silico analysis

revealed that Que may be a potential inhibitor of the neuraminidase of influenza A

H1N1 and H7N9 viruses.61,62 Molecular docking analysis also found that Que may

interact with HCV NS3 helicase, NS5B polymerase, and p7 proteins.63,64 These results

correlate with experimental studies showing the anti-HCV activity of Que through

inhibition of NS3 helicase and heat-shock proteins.65-67

A phase I trial investigated the potential antiviral effect of Que among patients with



hepatitis C virus (HCV).68 The results showed that the compound was safe in all

patients as there were no changes in liver enzymes (aspartate transaminase and

alanine transaminase), and about 25% of patients showed a “clinically meaningful”

decrease in viral load.68 An herbal formula containing Que was evaluated for its effects

in patients with oral herpes, caused by the HSV.69

In an animal study of influenza (H3N2), the onset of infection was associated with a

significant decrease in the pulmonary concentrations of catalase, reduced glutathione,

and superoxide dismutase (antioxidants); supplementation with Que given at the same

time as inoculation with the virus produced significant increases in the pulmonary

concentrations of these antioxidants.70 A similar study showed that Que exerted a mild

to moderate protective effect on lung morphology and a significant decrease in the

number of infiltrating cells.71

A randomized, double-blinded, placebo-controlled trial suggested significantly lower

upper respiratory tract infection (URTI) severity (36% reduction, P = 0.020) and URTI

total sick days (31% reduction, P = 0.048) in individuals (>40 years) of the Que 1000

mg group compared with placebo.72 The use of an herbal formula containing 1000 mg

Que and some other natural products in obese individuals reflects upregulation of

genes related to interferon-induced antiviral activity.73

Que and isoquercitrin (quercetin-3-O-β-ඌ-glucopyranoside) were the bioactive

compounds in the ethyl acetate fraction of Elaeocarpus sylvestris that effectively

inhibited human herpes virus replication.74 Que inhibits the infection by HSV-1, HSV-2,

and acyclovir-resistant HSV-1 mainly by blocking viral binding and penetration to the

host cell, and also suppresses NF-jB activation, which is essential for HSV gene

expression.75,76 Epimedium koreanum Nakai, which contains Que as its major active

component, has been shown to induce secretion of type I interferon (IFN), reducing

the replication of HSV, Newcastle disease virus, and vesicular stomatitis virus in vitro,

as well as influenza A subtypes (H1N1, H5N2, H7N3, and H9N2) in vivo.77 Que inhibits

the replication of cytomegalovirus inoculated HeLa cells at a half inhibitory

concentration (IC50) of 3.2 ± 0.8 µM and with a selectivity index of 22.78 Dengue virus

type 2 (DENV-2) replication in Vero cells is inhibited by Que at an IC50 of 35.7 µg/mL,

causing a DENV-2 ribonucleic acid (RNA) reduction of 67%. This is attributed to Que’s

ability to either block virus entry or inhibit viral replication enzymes such as viral

polymerases.79 Que and fisetin inhibited DENV-2 and DENV-3 infection in the absence

or presence of enhancing antibody (>90%, P < 0.001).80 Athletes supplemented with

Que are protected from stress-induced susceptibility to upper respiratory tract

infection,81 which is not related to immunomodulation.82,83



In vitro data suggest that Que may inhibit viral replication of the influenza virus, via

interfering with 3 stages of viral replication31,84: (1) blocks endocytosis (uptake of the

virus into the host cell) via inhibition of phosphatidylinositol 3-kinase; (2) blocks

transcription of the viral genome by inhibiting RNA polymerase and viral protein

translation by promoting cleavage of eukaryotic translation initiation factor 4G, and (3)

increases viral clearance by enhancing the mitochondrial antiviral response.84

Antiviral activity of Que against a wide spectrum of influenza virus strains has been

demonstrated via its interactions with influenza hemagglutinin protein, thereby

inhibiting viral cell fusion.85 Que has been documented for its efficacy against human

T-lymphotropic virus 1, as well as the Japanese encephalitis virus (JEV), a mosquito-

borne disease.86 Furthermore, Que has been reported to suppress DENV-2 and HCV

by suppressing the nonstructural protein 3 protease activity.65,79,80

Other Que formulations, such as quercetin-3-O-β-ඌ-glucuronide, Que-enriched lecithin

formulations, and quercetin-7-rhamnoside have been reported for their efficacy against

the porcine epidemic diarrhea virus (PEDV) and influenza A virus (IAV).87-89

Studies on the extracts of Zanthoxylum armatum and Hibiscus sabdariffa led to the

identification of Que as an antiviral constituent against norovirus as it was able to

considerably reduce the viral titer.90 Based on a comparative study of the antiviral

activity of flavonoids against murine norovirus and feline calicivirus, Que has been

identified as one of the active compounds.91

Que has been studied in various types and models of viral infection due to its

promising antiviral effects in inhibiting polymerases,92 proteases,65 reverse

transcriptase,93 suppressing deoxyribonucleic acid gyrase, and binding viral capsid

proteins.56,94 Similarly, 25 μM Que blocked IL-1β, IL-6, IFN-γ, and tumor necrosis

factor-alpha (TNF-α) secretion in human whole blood induced by lipopolysaccharide

(LPS).33 Que can also inhibit proinflammatory cytokines. A 6-week regimen of 150 mg

of Que taken daily by human subjects significantly lowered cytokine TNF-α serum

concentrations.33 In addition, Que uniquely blocked endocytosis by dendritic cells

(DCs) and LPS-induced DC migration.95 Que has been shown clinically to block

human mast cell cytokine release, possibly inhibiting the clinical manifestation of

cytokine storm.96 Among various flavonoids, Que has been found, in vitro, to reduce

NLRP3 inflammasome signaling, and consequently nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB), TNF-α, IL-6, IL-1B, and IL-18 expression; IL-1β

production was inhibited at 10 µM.97

Thus, studies have shown that Que exhibits antiviral properties against a variety of



viruses, including respiratory syncytial virus, polio type 1, parainfluenza type 3, HSV-1,

IAV, hepatitis B virus, IAV H1N1, Epstein-Barr virus, enterovirus 71, ADVs, arthropod-

borne Mayaro virus, porcine reproductive and respiratory syndrome virus, canine

distemper virus, JEV, DENV-2, PEDV, and equid herpesvirus 1.98-112

Que and SARS-COV-2

Que has been investigated for its possible antiviral effect on several members of the

Coronaviridae family. To the best of our knowledge, one of the first reports exploring

the antiviral effect of Que on coronaviruses appeared in 1990 suggesting that it

reduced infectivity of human and bovine coronaviruses, OC43 and NCDCV,

respectively, by 50% at a concentration of 60 µg/mL.56 On a different Coronaviridae of

veterinarian interest, PEDV, quercetin 7-O-rhamnoside inhibited PEDV replication in

Vero cells with an IC50 of 0.014 µg/mL and a 50% cytotoxicity concentration (CC50) of

100 µg/mL.113 Luteolin and Que showed the capacity to block the entry of SARS-CoV

into host cells.114 Luteolin inhibited, in a dose-dependent manner, SARS-CoV infection

of Vero E6 cells with a half-effective concentration (EC50) value of 10.6 µM (CC50 = 155

µM), while Que antagonized HIV-luc/SARS pseudo-type virus entry with an EC50 of

83.4 µM.114 Thus, Que offers great promise as a potential drug in the clinical treatment

of SARS.114

SARS coronavirus, described in 2003,115 is a single-stranded RNA virus, which uses

ribosome sites to encode 2 replicase glycoproteins, PP1a and PP1b, which mediate

viral replication.115,116 Once these precursor glycoproteins are synthesized, 3C-like

protease (3CLpro) plays a critical role in the lytic release of its replicates.117

Que, identified as one of the constituents of Pichia pastoris displayed good inhibition

toward 3CLpro with an IC50 value of 73 M.118 Quercetin-3-O-β-galactoside binds to

SARS-Cov 3 Cl protease and inhibits its proteolytic activity with an IC50 of 42.79 ± 4.95

µM.119 This inhibitory action on 3CLpro is dependent on the hydroxyl group of Que

which, as shown through molecular modeling and Q189A mutation, recognizes Gln189

as a crucial site on 3CLpro responsible for the binding of Que.120 Que was also

identified as being able to block SARS-coronavirus entry into Vero E6 cells with a half-

effective concentration (EC50) of 83.4 µM and with low cytotoxicity (CC50 3.32 mM).114

SARS-CoV-2, the virus responsible for the coronavirus disease 2019 (COVID-19)

pandemic,120 belongs to the genus Betacoronavirus and subgenus Sarbecovirus and,

due to its similar receptor-binding domain, it is assumed, similarly to SARS-CoV, to

infect type II pneumocytes entering via the angiotensin-converting enzyme-2 (ACE2)

receptor.121 SARS-Cov-2 protease 3 Cl maintains the same Gln189 site122 of SARS-



Cov 3CLpro, which previously was identified as the binding site for the hydroxyl groups

of Que and its derivatives. Interestingly, an in vitro study of ascorbic acid treatment on

chick-embryo ciliated tracheal organ cells promoted resistance to coronavirus infection

but did not show any effect on either orthomyxovirus or paramyxovirus.123 Docking

studies of Que to 3CLpro, as well as other key targets, suggested that it bound well to

each target, with a binding energy of −5.6 kcal/mol to 3CLpro. Surprisingly, it has also

been found that Que binds better to Spike protein, ACE2, RdRp, and PLpro, indicating

good potential against SARS-CoV-2.124 SARS-CoV 3CLpro shares some features with

SARS-CoV2; therefore, Que might exert some protective or curative role against

COVID-19, particularly considering its antioxidant125 and anti-inflammatory36

properties, as well as the effects of Que observed against other viruses described

above. It also modulates the cellular unfolded protein response (UPR). As

coronaviruses can utilize the UPR to complete their entire replication cycle, Que may

have anticoronavirus effects through its modulation of this pathway.126

Coronavirus appears to be susceptible to the inhibitory actions of zinc, which may

prevent viral entry into cells127 and appears to reduce coronavirus virulence.128 Que

also functions as a zinc ionophore and has been shown to facilitate the transport of

zinc across lipid membranes.129 This could, theoretically, enhance the antiviral actions

of zinc.130

Animal coronavirus models131 have shown that mast cells residing in the respiratory

submucosa may play a mixed role, including the generation of Th2 proinflammatory

cytokines under the influence of viral stimulation and immunoglobulin E, an antibody

type associated with Th2 style immune reaction. Que has been shown in many human

studies to modulate mast cell degranulation.132 Que is also important as one of the

multiple flavonoids shown in vitro to block the activity of MERS-CoV 3CLpro, a critical

enzyme for coronavirus replication. Animal studies are limited at this time but support

efficacy.133

In silico modeling of the interaction between the SARS-CoV-2 Viral Spike Protein and

ACE2 protein identified Que, from a database of known drugs, metabolites, and

natural products, as one of the top 5 most potent compounds for binding to the

interface site and potentially disrupting the initiating infection process.134 In support of

this hypothesis, Que was active against infection in a model of virus cell entry and also

inhibited the 3C-like protease of SARS-CoV in vitro.118,124 Que modulates NF-kB

upregulation, which is useful to counteract the COVID-19 hyperinflammation.135 Que

has a pleiotropic role as an antioxidant and anti-inflammatory, modulating signaling

pathways that are associated with post-transcriptional modulators affecting postviral

healing.136



Proteases play essential roles in viral replication, and specifically, 6LU7 was

determined to be the main protease (Mpro) found in SARS-CoV-2. In vitro molecular

docking studies between Que and viral protease suggest that Que forms H-bonds with

the 6LU7 amino acids His164, Glu166, Asp187, Gln192, and Thr190, with all of the

H-bonds interacting with amino acids in the virus Mpro active site.137 The genome of

SARS-CoV-2 is approximately 79% identical to that of SARS-CoV-1.138 It is, therefore,

not surprising that Que showed an IC50 of 8.6  ±  3.2 µM against SARS-CoV-1

PLpro.139

Que has been investigated as a pneumolysin (PLY) inhibitor that protects mice against

Streptococcus pneumoniae infection. PLY is the pore-forming cytotoxin and the major

virulence determinant that belongs to the cholesterol-dependent cytolysin family (CDC)

and is found in infections with S. pneumoniae. Hemolysis tests were used to confirm

that Que can inhibit PLY activity. Que significantly reduced PLY-induced hemolytic

activity and cytotoxicity suggesting that Que may be a new potential drug candidate in

the treatment of clinical pneumococcal infections.140 The senolytic property of Que141

has also been considered as one of the important factors for its use for the prevention

of coronavirus.142

In any case, based on the strong inflammatory cascade and the blood-clotting

phenomena triggered during SARS-CoV-2 infection, the multifaceted aspect of Que,

which has been well described as exerting both anti-inflammatory (Que dose-

dependently decreases the messenger RNA and protein levels of intercellular

adhesion molecule-1, IL-6, IL-8, and monocyte chemoattractant protein-1) and

thrombin-inhibitory actions,143-145 should be taken into consideration.

Synergistic Therapy and Integrative Considerations

There is a high level of interest in integrative strategies to augment public health

measures to prevent COVID-19 infection and associated pneumonia. Unfortunately, no

integrative measures have been validated in human trials as effective specifically for

COVID-19. Using available in vitro evidence and an understanding of the virulence of

COVID-19, as well as data from similar, but different, viruses, as mentioned above, the

use of Que seems to be appealing.

Que and Vitamin C

Vitamin C is an essential vitamin with known antiviral properties146 which is under

investigation for its beneficial effects during the stress response in sepsis and critically

ill patients.147 Co-administration of Que (12.5 mg/kg/week) and vitamin C and B3 in a

murine model of exercise-induced susceptibility to influenza H1N1 prolonged time-to-



death (median time to death: placebo 9.0 ± 0.33 vs Que 16.5 ± 1.2) and improved

survival (mortality: placebo 74% vs Que 52%) when compared with mice receiving only

vitamins B3 and C.102 An older, small clinical trial identified the combination of

flavonoids and ascorbic acid (1:1 ratio) as beneficial for respiratory infection (200 mg

thrice a day).148 There is evidence that vitamin C and Que co-administration exerts a

synergistic antiviral action due to overlapping antiviral and immunomodulatory

properties and the capacity of ascorbate to recycle Que, increasing its efficacy. Safe,

cheap interventions which have a sound biological rationale should be prioritized for

experimental use in the current context of a global health pandemic. The use of

vitamin C and Que has also been suggested both for prophylaxis in high-risk

populations and for the treatment of COVID-19 patients as an adjunct to promising

pharmacological agents such as Remdesivir or convalescent plasma.149

Que, Vitamin D, and Estradiol

Using Gene Set Enrichment Analyses, vitamin D and Que have been identified as

putative COVID-19 mitigation agents. Que alters the expression of 98 of 332 (30%)

human genes encoding protein targets of SARS-CoV-2, thus potentially interfering with

functions of 23 of 27 (85%) of the SARS-CoV-2 viral proteins in human cells. Similarly,

vitamin D may interfere with functions of 19 of 27 (70%) of the SARS-CoV-2 proteins by

altering the expression of 84 of the 332 (25%) human genes encoding protein targets

of SARS-CoV-2. Significantly, numerous observational studies suggest that age-

associated vitamin D insufficiency and/or deficiency may contribute to the high

mortality of older adults and elderly individuals during the COVID-19 pandemic.

Consequently, vitamin D supplementation may mitigate the severity of the disease.

Considering the potential effects of both Que and vitamin D, the inference could be

made that functions of 25 of 27 (93%) SARS-CoV-2 proteins in human cells may be

altered. Estradiol also affects the expression of the majority of human genes (203 of

332; 61%) encoding SARS-CoV-2 targets, thus potentially interfering with functions of

26 of 27 SARS-CoV-2 viral proteins. A hypothetical tripartite combination consisting of

Que/vitamin D/estradiol may affect the expression of 244 of 332 (73%) human genes

encoding SARS-CoV-2 targets.150

Que, Zinc, Bromelain, and Vitamin C

A quadruple therapy consisting of zinc, Que, bromelain, and vitamin C has been

suggested to show a promising positive therapeutic effect in patients.151

Others

However, Que has low bioavailability and, therefore, requires special formulations to

achieve clinically effective blood levels. A trial with a phytosomal Que formulation has



been started for COVID-19 patients.152-154 Considering bioavailability issues, a nasal

spray of dilute Que has been suggested to be a suitable vehicle, administered

regularly at low doses during the early stages of infection, as it could attenuate entry

of the virus into cells and so halt progress of the infection, possibly leading to a

reduced need for hospitalization.155

Concluding Remarks

Viruses causing respiratory diseases invade their host via the nasopharyngeal,

oropharyngeal, and tracheal mucosa. At present, there are no specific antiviral drugs

or vaccines against SARS-CoV2 infection for potential therapy of humans. Identifying

methods able to either reduce or prevent colonization, viral adhesion, and promote

virus shedding on mucous membranes or have the ability to inactivate pathogens and

thus reduce virus dose and/or increase immune response would be useful.156 Waiting

for the generation of vaccines and for proven, safe, and effective treatments, any

therapy shown to be safe and capable of mitigating the effects of the disease on the

body should be welcomed. Que displays a broad range of antiviral properties which

can interfere at multiple steps of pathogen virulence-virus entry and virus replication.

According to researchers at the Montreal Clinical Research Institute “A cell has a lock,

and the virus has a key [to enter and infect the cell];” Chrétien said, “But quercetin

puts glue in the lock.”157 Therefore, we anticipate that Que could be a therapeutic tool

to be assayed against COVID-19, either alone or in combination with other nutritional

substances, antivirals, or other drugs. Que may affect medications metabolized by

CYP2C8, CYP2D6, CYP3A4, and P-glycoprotein substrates, and this is a concern for

its use that has to be taken into consideration.152 As Que can inhibit coronavirus

enzymes, which are essential for virus replication and infection, therefore it provides a

potential key for designing antiviral therapies for inhibiting viral proteases. With well-

known pharmacokinetic and absorption, distribution, metabolism and excretion-toxicity

(ADMET) properties,158 Que can be considered as a good candidate for further

optimization and development or repositioned for COVID-19 therapeutic treatment.

Furthermore, the known pharmacophore structures of bioactive substances can be

useful in the elaboration of new anti-COVID-19 formulations.
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