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infection. Based on my previous research on oxidative 
stress in trauma and surgical patients, I propose that 
managing the inflammatory process in COVID-19 infec-
tion with L-Glutamine could reduce morbidity and mor-
tality thus improving outcome.

Alveolar cells
There are 2 types of alveolar cells including Alveolar 

epithelial type 1 cells (AT I) and Alveolar epithelial type 
2 cells (AT II) [2,3]. Alveolar epithelial type 1 cells (AT 
I) are responsible for gas exchange. Alveolar epithelial 
type 2 cells (AT II) are progenitor cells for type 1 pneu-
mocytes [4,5]. Alveolar type 2 epithelial cells contribute 
to lung epithelial repair. They also synthesize and se-
crete all components of the pulmonary surfactant that 
regulate surface tension in the lungs [6].

Pulmonary surfactant
Pulmonary surfactant is a membrane-based system, 

a complex of lipids and proteins (90% lipid and 10% 
proteins) assembled and secreted by AT II into the thin 
layer of fluid coating the respiratory surface. Pulmonary 
surfactant fulfills two simultaneous functions: defensive 
role as the first barrier against the entry of pathogens; 
and a biophysical role of stabilizing the air-exposed in-
terface to prevent alveolar collapse. The absence or de-
ficiency of surfactant produces severe lung pathologies 
[7,8].

Pathogenesis of COVID-19 Infection
The literature is evolving on the pathophysiology of 

this novel infection [9] with presumed similarity to the 
SARS-COV, though COVID-19 appears to be more ag-

This overview focuses on how to overcome the treat-
ment challenges posed by COVID-19 infection and re-
duce mortality with antioxidant therapy. The rationale 
for this treatment approach is explored by addressing 
the following objectives: 

1.	 To review the pathophysiology of COVID-19 in-
fection in the respiratory tract.

2.	 To review how the infection and inflammation 
caused by COVID-19 results in oxidative stress 
with progression to multiple organ damage and 
possible death.

3.	 To review the body’s natural response to oxida-
tive stress.

4.	 To explain how increasing Glutathione level with 
L-Glutamine treatment could improve surfac-
tant regeneration and reverse the sequelae of 
COVID-19 infection.

Introduction
COVID-19 is the viral pandemic caused by the nov-

el severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) (WHO). SARS-CoV-2 is an enveloped posi-
tive-sense virus in the RNA beta Coronavirus family [1]. 
Identifying a definitive treatment for COVID-19 infection 
and complications has been challenging considering the 
rapid and devastating progression for the 20% of pa-
tients who develop severe infection. A lot of ongoing re-
search is focused on producing effective antiviral treat-
ment and vaccine. However, it appears that enhancing 
alveolar fluid clearance and reducing lung inflammation 
are key to recovery in moderate to severe COVID-19 
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gressive. Robert J Mason [2] has described three stages 
of COVID-19 infection based on SARS-COV model sum-
marized below in words and Figure 1.

1.	 Stage One: The asymptomatic stage in the initial 
1-2 days when COVID-19 virus likely binds to nasal 
epithelial cells by attaching to cell surface recep-
tor angiotensin-converting enzyme 2 (ACE2) fol-
lowed by viral replication. This process involves at-
tachment, penetration, biosynthesis, maturation, 
and viral release [10-12]. ACE2 expression is high 
in lungs, heart, ileum, kidneys, and bladder. There 
is limited innate immune response, but infected 
individuals are infectious. Nasal swabs might be 
more sensitive than throat swabs in identifying in-
dividuals [13-15].

2.	 Stage Two: This occurs in the next few days with up-
per and conducting airway involvement. COVID-19 
virus propagates and migrates down the lower re-
spiratory tract triggering innate immune response. 
C-X-C motif chemokine 10 (CXCL10), an interferon 
receptive gene is elevated, and it is a useful disease 

marker for COVID-19 infection [9,16,17]. It also pre-
dicts the duration of mechanical ventilation [16]. 
Clinical features are evident with mild to moderate 
symptoms in 80% of affected individuals, and nasal 
swabs are usually positive.

3.	 Stage Three: This involves the lower respiratory 
tract, 20% of infected patients progress to this stage 
with about 2% fatality [18]. COVID-19 virus preferen-
tially infects type II alveolar cells compared to type 
I alveolar cells [19,20]. The virus propagates in type 
2 cells and large number of viral particles/toxins are 
released. The alveolar cells undergo apoptosis and 
death. The effect of the invasion and unrestrained 
inflammation [13] is the likely loss of most type II 
alveolar cells [2,17,21]. This inflammatory response 
results in elevated CRP [22], depletion of alveolar 
glutathione, pulmonary oedema, pneumonia, ARDS. 
Depletion of alveolar glutathione leads to Systemic 
Inflammatory Response Syndrome (SIRS) and oxida-
tive stress [23]. The chest X-ray and CT scan reveal 
bilateral pneumonia with ground glass infiltrates.

         

Figure 1: Stages of COVID-19 Infection.

         

Proposed Flowchart of Inflammatory Response In 
COVID-19 Infec�on

Figure 2: Mechanism of Oxidative Stress in Trauma- Adapted from Obayan, 2004.
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Oxidative Homeostasis and Oxidative Stress
The body maintains oxidative homeostasis by using 

the antioxidant system to neutralize released free rad-
icals (Figure 3 and Figure 4). The most important anti-
oxidant in the body is glutathione (GSH), others include 
vitamin E, vitamin C and quercetin. The pathway for the 
body’s response to free radical production is illustrated 
in the flow chart (Figure 5). Oxidative stress is an imbal-
ance between free radicals in the body and the antioxi-
dant defense system (Figure 6). Oxidative stress can be 
measured the bedside with Urine Carbonyl Test (UCT) 

COVID-19 Infection and Oxidative Stress
All viral infections have been associated with the 

release of reactive oxygen species (ROS), accumulation 
of lipid peroxidation products and oxidized glutathione 
(GSH) [17]. The resultant effect on the body is severe 
oxidative stress with massive release of free radicals 
and significant depletion of antioxidants [15]. The lung 
damage in severe COVID-19 infection occurs through in-
flammatory mediated excessive secretion of proteases 
and reactive oxygen species (oxidative stress), as well as 
direct damage from viral replication [24,25] (Figure 2).

         

Physiologic Response to Free Radical Produc�on

Figure 3: LOO (free radical), TOH (vitamin E), AscH2 (vitamin C) and GSH (Glutathione) - (Obayan, 2004).

         

Oxida�ve Stress

Figure 4: Oxidative Stress (Obayan, 2020).
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It reverses the effect of free radicals directly and in-
directly by regenerating vitamins C and E. High doses 
of vitamin C have reduced mortality and morbidity in 
COVID-19 patients [20]. Glutathione has been shown to 
be effective in reversing the dyspnea and further reliev-
ing respiratory symptoms in severe COVID 19 [26,27]. 
Glutathione plays a role in the recirculation of zinc in 
the body and acts as an intracellular transporter for zinc 

and the oxistress assay developed by Obayan, et al. [23] 
or other available tests.

Glutathione
Glutathione is a tripeptide thiol present in all animal 

cells and made from three amino acids namely, gluta-
mine, cysteine, and glycine (Figure 7). Glutathione is 
the most important cellular antioxidant in the body. 

         

Oxida�ve Homeostasis

Figure 5: Oxidative Homeostasis (Obayan, 2020).

         

Glutathione Cycle

Figure 6: Glutathione Cycle (Obayan 2004).
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Glutamine
The main source of glutathione is glutamine, a condi-

tional essential amino acid. It is also the most accessible 
exogenous precursor of glutathione that has been used 
in critical care, sepsis, trauma, burns and other condi-
tions with oxidative stress [21], known to suppress vi-
ral infection such as Herpes simplex virus reactivation 
in addition to glutamines benefit in colorectal cancer 
and radiation enteritis [34-36]. Glutamine also plays a 
vital role in cell proliferation, tissue repair and acts as an 
energy substrate [21,22]. There is increased production 
and release of glutamine in response to severe metabol-
ic stress from any cause. Glutamine provides the sub-
strate for rapidly dividing cells of the immune system 
and gastrointestinal tract [15]. Endogenous glutamine 
production mostly from skeletal muscles is inadequate 
in severe metabolic stress [15]. Exogenous glutamine 
treatment of oxidative stress in major surgery patients 
produced the following observations: increased plas-
ma glutamine level; increased total plasma antioxidant 
level (p = 0.05); increased red cell glutathione level; 
decreased free radical level in the treatment versus 
non-treatment group (p= 0.036 @ 24 hr) [23].

Glutamine Treatment for Covid-19 Infection
The benefit of exogenous glutamine administration 

for oxidative stress in surgery and critical care patients 
is well documented in the literature. Exogenous gluta-
mine treatment will likely increase antioxidant reserve 
and modulate the excessive inflammatory process re-
ported in moderate to severe COVID-19 infection [37]. 

into the cell. Zinc has been shown to diminish the intra-
cellular replication of viruses including COVID -19 [28]. 
The in-transportation of zinc into the mitochondria is 
significantly improved by cysteine which is a component 
of glutathione. The participation of zinc in antioxidant 
protection, redox sensing, and redox regulated signal-
ing is done in collaboration with glutathione [10,29]. 
Glutathione regenerates surfactant producing alveolar 
cells [30]. The primary role of free radicals is to attack 
the virus. However massive free radical release in the 
absence of neutralizing antioxidants causes significant 
endothelial damage, lipid peroxidation, protein damage 
and DNA modification resulting in systemic inflammato-
ry response (SIRS). The body’s antioxidant system neu-
tralizes regularly released free radicals that make up 
5% of every breath. The initial antioxidant response to 
excessive free radical release due to inflammation and 
infection is not different from baseline. The antioxidant 
system subsequently recruits more potent antioxidants 
including glutathione to neutralize excessive free radi-
cals [23]. The recruitment process takes about 5-7 days 
[15], which coincides with the clinical manifestations of 
COVID-19 infection. Individuals with premorbid medical 
conditions have a diminished antioxidant reserve and 
are more at risk of oxidative stress [15,31] (Figure 7). 
The management of severe COVID-19 infection will re-
quire regeneration of alveolar cells and reversal of the 
inflammatory response. A good antioxidant reserve will 
likely prevent SIRS and death [32]. However, the anti-
oxidant reserve is likely depleted in most patients with 
severe COVID-19 infection, therefore exogenous antiox-
idant therapy is indicated for improved outcome [33].

         

Red Cell Glutathione Levels in Trauma Pa�ents 

Figure 7: Red Cell Glutathione Levels in Trauma Patients (Obayan, 2004).
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Therapeutic doses of oral or parenteral glutamine be-
tween 0.3-0.75 g/kg body weight improved clinical out-
come of surgical and intensive care patients [21,23,38]. 
These doses can be adopted for COVID-19 patients. Pro-
phylactic glutamine treatment has also been employed 
in different conditions and may also be beneficial in 
some COVID-19 patients [6,34,37,39].

Conclusion
Glutamine treatment should be considered in the 

management of moderate to severe COVID-19 infection 
based on the benefits observed in previous studies with 
similar pathophysiology.
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