Application Note #AA3012A

B U C K Scientific

Determination of Trace Elements in Lead for Battery Applications using Atomic Absorption Analysis

Sample and Standard Preparation procedures for Trace Elements in Lead

[1] Preparation of Lead (Pb) Samples:

Drill Pb metal to make small pieces. Weigh 2.0 grams of these pieces on a balance. Place the sample in a 400ml Pyrex beaker and add 10ml H_2O , 2.5 grams of tartaric acid and 7ml HNO₃. Warm on a hot-plate until the sample dissolves. Dilute to 100ml in a volumetric flask with water (H_2O). This prepares a 2% sample solution, with a dilution factor of 50.

[2] Preparation of Sulfuric Acid ($H_2 SO_4$) Samples:

Using a graduated cylinder, place 75ml of water (H_2O) into a 100ml volumetric flask. Slowly add sulfuric acid (H_2SO_4) to the water, swirling to mix. *Solution will bubble up and get hot, do NOT spill it on yourself* - *wear gloves!*. Add H_2SO_4 to bring the final volume to 100ml. This prepares a 25% sample solution, with a dilution factor of 4.

[3] Preparation of Pure/Waste Water (H₂ O) Samples:

Using a digital pipettor or glass pipet, add 1ml nitric acid (HNO_3) to 100ml volumetric flask. Add water sample to 100ml mark. There is basically no dilution and the energy relates directly to the sample.

[4] Preparation of Multi-element Standards for Calibration:

Using a pipet or pipettor, add 100ml of each of the 1000ppm stock concentrate standards (Buck standards) to a 1 Liter volumetric flask containing 250ml water (H_2O) and 50ml nitric acid (HNO₃). The following groupings will prepare stable 100ppm Stock Standards (Add water to bring final volume to 1 Liter):

> A) Bi, Ni, Ag, Zn, Cu, Cd B) Fe, Sb, Sn, As, Al, Ca

Dilute the 100ppm Stock Standards into the following Working Standards:

25ml	Stock $+ 1$ ml HNO ₃ to 100ml in			
	Volumetric Flask =		25ppm	
10ml	"	"	10ppm	
5ml	"	"	5ppm	
2ml	"	"	2ppm	
1ml	"	"	1ppm	
0.5ml	"	"	0.5ppm	

Use these standards for Cu, Ag, Fe, Ca: 0, 0.5, 2, 5ppm.

Use these standards for Ni, Zn, Cd: 0, 0.5, 1, 2ppm.

Use these standards for Bi, Sb, Sn, As, Al, Pb: 0, 5, 10, 25ppm.

Analyst: Gerald J. DeMenna

Determination of Trace Element in Lead

Samples:	Lead Sample #19, Lead Sample #21, Sulfuric Acid (~98%)		
Sample Prep.:	2% solutions of lead in 5% HNO_3 / 2.5% tartaric acid; 10% solution of sulfuric acid (1:10 dilution)		
Calibration:	0.5 and 2.5µg/ml (ppm) analyte metal standard in 2% high-purity lead matrix, 2% high-purity lead matrix blank; for lead samples. 1.0µg/ml (ppm) analyte metal standard in pure (distilled/deionized) water, pure water blank; for sulfuric acid sample.		
Instrument:	Buck 210VGP Atomic Absorption Spectrophotometer, Giant Pulse and In-Line D_2 Correction, and Model 420 Hydride Generation system.		
Conditions:	Standard operating conditions for 210 unit; analytical parameters and correction modes as listed per element; air/acetylene flame for Ni, Ag, Zn, Cu, Fe, Cd; nitrous oxide/acetylene for Al, Ca; argon hydrogen for As, Sb, Sn, Bi.		
Results:	Values are weight percent (% w/w) in original sample: Data based on 1:50 Pb dilution and 1:10		

 H_2SO_4 dilution: D.L. [detectability] based on 2-sigma statistics for Pb samples.

	Wave-		Lead	Lead	
Element	Length	D.L.	# 19	# 21	H ₂ SO ₄
NI:	222	0.00150/	-0.00150/	0.001.00/	<0.00150/
Ni	232nm	0.0015%	<0.0015%	0.0018%	< 0.0015%
Ag	328	0.0003	0.0017	0.0018	0.0005
Zn	213	0.0003	0.0009	0.0004	0.0027
Cu	324	0.0005	0.0150	0.0093	0.0021
Bi	223	0.0008	0.0167	0.0184	< 0.0008
Fe	248	0.001	< 0.001	0.002	0.005
Sb	217	0.0005	< 0.0005	0.0012	< 0.0005
Sn	224	0.0007	< 0.0007	0.0009	< 0.0007
As	193	0.0001	< 0.0001	0.0011	< 0.0001
Cd	228	0.0005	0.0006	0.0009	0.0008
Al	309	0.005	< 0.005	< 0.005	0.006
Ca	422	0.0005	0.0006	0.0022	0.0472

These data show the powerful flexibility and stability of the Buck 210VGP system for the wide-ranging requirements of the manufacturing industry. The overall high sensitivity of the various trace metals supports the interference-free quality of the data. The combination of unique components provides an un-matched system in performance and economy.

Basic System: \$12,950.00

Turnkey System: \$20,593.00

Includes: All recommended lamps, standards, and accessories for normal operation.

For detailed configuration, refer to Quote #AA40012A

1-800-562-5566

58 Fort Point Street • East Norwalk, CT 06855 Phone: 203-853-9444 • Fax: 203-853-0569 quality@bucksci.com • www.bucksci.com

Application Note #AA3012B

B U C K Scientific

Determination of Trace Elements in Lead for Battery Applications using Atomic Absorption Analysis

Sample and Standard Preparation procedures for Trace Elements in Lead

[1] Preparation of Lead (Pb) Samples:

Drill Pb metal to make small pieces. Weigh 2.0 grams of these pieces on a balance. Place the sample in a 400ml Pyrex beaker and add 10ml H_2O , 2.5 grams of tartaric acid and 7ml HNO₃. Warm on a hot-plate until the sample dissolves. Dilute to 100ml in a volumetric flask with water (H_2O). This prepares a 2% sample solution, with a dilution factor of 50.

[2] Preparation of Sulfuric Acid ($H_2 SO_4$) Samples:

Using a graduated cylinder, place 75ml of water (H_2O) into a 100ml volumetric flask. Slowly add sulfuric acid (H_2SO_4) to the water, swirling to mix. *Solution will bubble up and get hot, do NOT spill it on yourself* - *wear gloves!*. Add H_2SO_4 to bring the final volume to 100ml. This prepares a 25% sample solution, with a dilution factor of 4.

[3] Preparation of Pure/Waste Water (H₂ O) Samples:

Using a digital pipettor or glass pipet, add 1ml nitric acid (HNO_3) to 100ml volumetric flask. Add water sample to 100ml mark. There is basically no dilution and the energy relates directly to the sample.

[4] Preparation of Multi-element Standards for Calibration:

Using a pipet or pipettor, add 100ml of each of the 1000ppm stock concentrate standards (Buck standards) to a 1 Liter volumetric flask containing 250ml water (H_2O) and 50ml nitric acid (HNO₃). The following groupings will prepare stable 100ppm Stock Standards (Add water to bring final volume to 1 Liter):

A) Bi, Ni, Ag, Zn, Cu, Cd B) Fe, Sb, Sn, As, Al, Ca

Dilute the 100ppm Stock Standards into the following Working Standards:

25ml	Stock $+ 1$ ml HNO ₃ to 100ml in			
	Volumetric Flask =		25ppm	
10ml	"	"	10ppm	
5ml	"	"	5ppm	
2ml	"	"	2ppm	
1ml	"	"	1ppm	
0.5ml	"	"	0.5ppm	

Use these standards for Cu, Ag, Fe, Ca: 0, 0.5, 2, 5ppm.

Use these standards for Ni, Zn, Cd: 0, 0.5, 1, 2ppm.

Use these standards for Bi, Sb, Sn, As, Al, Pb: 0, 5, 10, 25ppm.

Analyst: Gerald J. DeMenna

Determination of Trace Element in Lead

Samples:	Lead Sample #19, Lead Sample #21, Sulfuric Acid (~98%)		
Sample Prep.:	2% solutions of lead in 5% $HNO_3/2.5\%$ tartaric acid; 10% solution of sulfuric acid (1:10 dilution)		
Calibration:	0.5 and 2.5µg/ml (ppm) analyte metal standard in 2% high-purity lead matrix, 2% high-purity lead matrix blank; for lead samples. 1.0µg/ml (ppm) analyte metal standard in pure (distilled/deionized) water, pure water blank; for sulfuric acid sample.		
Instrument:	Buck 200A Atomic Absorption Spectrophotometer, Model 420 Hydride Generation system, and strip chart recorder.		
Conditions:	Standard operating conditions for 210 unit; analytical parameters and correction modes as listed per element; air/acetylene flame for Ni, Ag, Zn, Cu, Fe, Cd; nitrous oxide/acetylene for Al, Ca; argon hydrogen for As, Sb, Sn, Bi.		
Results:	Values are weight percent (% w/w) in original sample: Data based on 1:50 Pb dilution and 1:10		

 H_2SO_4 dilution: D.L. [detectability] based on 2-sigma statistics for Pb samples.

Element	Wave- Length	D.L.	Lead # 19	Lead # 21	H,SO4
					2 4
Ni	232nm	0.0015%	< 0.0015%	0.0018%	< 0.0015%
Ag	328	0.0003	0.0017	0.0018	0.0005
Zn	213	0.0003	0.0009	0.0004	0.0027
Cu	324	0.0005	0.0150	0.0093	0.0021
Bi	223	0.0008	0.0167	0.0184	< 0.0008
Fe	248	0.001	< 0.001	0.002	0.005
Sb	217	0.0005	< 0.0005	0.0012	< 0.0005
Sn	224	0.0007	< 0.0007	0.0009	< 0.0007
As	193	0.0001	< 0.0001	0.0011	< 0.0001
Cd	228	0.0005	0.0006	0.0009	0.0008
Al	309	0.005	< 0.005	< 0.005	0.006
Ca	422	0.0005	0.0006	0.0022	0.0472

These data show the powerful flexibility and stability of the Buck 200A system for the wide-ranging requirements of the manufacturing industry. The overall high sensitivity of the various trace metals supports the interference-free quality of the data. The combination of unique components provides an un-matched system in performance and economy.

Basic System: \$8,495.00

Turnkey System: \$16,138.00

Includes: All recommended lamps, standards, and accessories for normal operation.

For detailed configuration, refer to Quote #AA40012B

1-800-562-5566

58 Fort Point Street • East Norwalk, CT 06855 Phone: 203-853-9444 • Fax: 203-853-0569 quality@bucksci.com • www.bucksci.com

