Method 620
The Determination of Diphenylamine in Municipal and Industrial Wastewater
Method 620
The Determination of Diphenylamine in Municipal and Industrial Wastewater

1. **SCOPE AND APPLICATION**

1.1 This method covers the determination of diphenylamine, CAS. No. 122-39-4.

1.2 This is a gas chromatographic (GC) method applicable to the determination of diphenylamine in municipal and industrial discharges.

1.3 The method detection limit (MDL, defined in Section 15) for diphenylamine is listed in Table 1. The MDL for a specific wastewater may differ from those listed, depending upon the nature of interferences in the sample matrix.

1.4 The sample extraction and concentration steps in this method are similar to those of other 600-series methods. Thus, a single sample may be extracted to measure the compounds included in the scope of the methods. When cleanup is required, the concentration levels must be high enough to permit selecting aliquots, as necessary, in order to apply appropriate cleanup procedures.

1.5 This method is restricted to use by or under the supervision of analysts experienced in the use of gas chromatography and in the interpretation of gas chromatograms. Each analyst must demonstrate the ability to generate acceptable results with this method using the procedure described in Section 8.2.

1.6 When this method is used to analyze unfamiliar samples for any or all of the compounds above, compound identifications should be supported by at least one additional qualitative technique. This method describes analytical conditions for a second gas chromatographic column that can be used to confirm measurements made with the primary column. Section 14 provides gas chromatograph/mass spectrometer (GC/MS) criteria appropriate for the qualitative confirmation of compound identifications.

2. **SUMMARY OF METHOD**

2.1 A measured volume of sample, approximately 1 L, is extracted with methylene chloride using a continuous extractor. The methylene chloride extract is dried and concentrated to 5.0 mL. Gas chromatographic conditions are described which permit the separation and measurement of the compounds in the extract by alkali flame detector (AFD) gas chromatography.\(^1\)

2.2 This method provides an optional silica gel column cleanup procedure to aid in the elimination of interferences which may be encountered.
3. **INTERFERENCES**

3.1 Method interferences may be caused by contaminants in solvents, reagents, glassware, and other sample-processing apparatus that lead to discrete artifacts or elevated baselines in gas chromatograms. All reagents and apparatus must be routinely demonstrated to be free from interferences under the conditions of the analysis by running laboratory reagent blanks as described in Section 8.5.

3.1.1 Glassware must be scrupulously cleaned. Clean all glassware as soon as possible after use by thoroughly rinsing with the last solvent used in it. Follow by washing with hot water and detergent and thorough rinsing with tap and reagent water. Drain dry, and heat in an oven or muffle furnace at 400°C for 15 to 30 minutes. Thermally stable materials, such as PCBs, may not be eliminated by this treatment. Thorough rinsing with acetone and pesticide-quality hexane may be substituted for the heating. After drying and cooling, seal and store glassware in a clean environment to prevent any accumulation of dust or other contaminants. Store inverted or capped with aluminum foil.

3.1.2 The use of high-purity reagents and solvents helps to minimize interference problems. Purification of solvents by distillation in all-glass systems may be required.

3.2 Matrix interferences may be caused by contaminants that are coextracted from the sample. The extent of matrix interferences will vary considerably from source to source, depending upon the nature and diversity of the industrial complex or municipality being sampled. The cleanup procedure in Section 11 can be used to overcome many of these interferences, but unique samples may require additional cleanup approaches to achieve the MDL listed in Table 1.

4. **SAFETY**

4.1 The toxicity or carcinogenicity of each reagent used in this method has not been precisely defined; however, each chemical compound should be treated as a potential health hazard. From this viewpoint, exposure to these chemicals must be reduced to the lowest possible level by whatever means available. The laboratory is responsible for maintaining a current awareness file of OSHA regulations regarding the safe handling of the chemicals specified in this method. A reference file of material data handling sheets should also be made available to all personnel involved in the chemical analysis. Additional references to laboratory safety are available and have been identified for the information of the analyst.

5. **APPARATUS AND MATERIALS**

5.1 Sampling equipment, for discrete or composite sampling.

5.1.1 Grab sample bottle: Amber borosilicate or flint glass, 1-L or 1-quart volume, fitted with screw-caps lined with PTFE/PIFE. Aluminum foil may be substituted for PTFE if the sample is not corrosive. If amber bottles are not available, protect
samples from light. The container and cap liner must be washed, rinsed with acetone or methylene chloride, and dried before use to minimize contamination.

5.1.2 Automatic sampler (optional): Must incorporate glass sample containers for the collection of a minimum of 250 mL. Sample containers must be kept refrigerated at 4°C and protected from light during compositing. If the sampler uses a peristaltic pump, a minimum length of compressible silicone rubber tubing may be used. Before use, however, the compressible tubing should be thoroughly rinsed with methanol, followed by repeated rinsings with reagent water to minimize the potential for contamination of the sample. An integrating flow meter is required to collect flow-proportional composites.

5.2 Glassware. (All specifications are suggested. Catalog numbers are included for illustration only.)

5.2.1 Continuous extractor: 2000-mL, available from Paxton Woods Glass Shop, Cincinnati, Ohio, or equivalent.

5.2.2 Drying column: Chromatographic column 400 mm long by 10 mm ID.

5.2.3 Chromatographic column: 400 mm long by 19 mm ID with 250-mL reservoir at the top and PTFE stopcock (Kontes K-420290 or equivalent).

5.2.4 Concentrator tube, Kuderna-Danish: 25-mL, graduated (Kontes K-570050-1025 or equivalent). Calibration must be checked at the volumes employed in the test. A ground-glass stopper is used to prevent evaporation of extracts.

5.2.5 Evaporative flask, Kuderna-Danish: 500-mL (Kontes K570001-0500 or equivalent). Attach to concentrator tube with springs.

5.2.6 Snyder column, Kuderna-Danish: Three-ball macro (Kontes K503000-0121 or equivalent).

5.2.7 Snyder column, Kuderna-Danish: Two-ball micro (Kontes K569001-0219 or equivalent).

5.2.8 Vials: Amber glass, 10- to 15-mL capacity with PTFE-lined screw-cap.

5.2.9 Volumetric flask: 5-mL with glass stopper.

5.3 Boiling chips: Approximately 10/40 mesh carborundum. Heat to 400°C for 4 hours or extract in a Soxhlet extractor with methylene chloride.

5.4 Water bath: Heated, capable of temperature control ±2°C. The bath should be used in a hood.

5.5 Balance: Analytical, capable of accurately weighing to the nearest 0.0001 g.
5.6 Gas chromatograph: Analytical system complete with gas chromatograph suitable for on-column injection and all required accessories including syringes, analytical columns, gases, detector, and strip-chart recorder. A data system is recommended for measuring peak areas.

5.6.1 Column 1: 180 cm long by 2 mm ID glass, packed with 3% SP2250 on Supelcoport (100/120 mesh) or equivalent. This column was used to develop the method performance statements in Section 15. Guidelines for the use of alternative columns are provided in Section 12.1.

5.6.2 Column 2: 180 cm long by 2 mm ID glass, packed with 3% SP 1000 on Supelcoport (100/120 mesh) or equivalent.

5.6.3 Detector: Alkali-flame detector (AFD), sometimes referred to as a nitrogen-phosphorous detector (NPD) or a thermionic-specific detector (TSD). This detector has proven effective in the analysis of wastewaters for the compounds listed in the scope and was used to develop the method performance statements in Section 15. Alternative detectors, including a mass spectrometer, may be used in accordance with the provisions described in Section 12.1.

6. REAGENTS

6.1 Reagent water: Reagent water is defined as a water in which an interferent is not observed at the method detection limit of each parameter of interest.

6.2 Methylene chloride, acetone, methanol, petroleum ether, ethyl ether, toluene (distilled-in-glass quality or equivalent). Ethyl ether must be free of peroxides as indicated by EM Quant test strips (available from Scientific Products Co., Catalog No. P1126-8, and other suppliers). Procedures recommended for removal of peroxides are provided with the test strips.

6.3 Sodium sulfate: ACS, granular, anhydrous; heated in a muffle furnace at 400°C overnight.

6.4 Silica gel: Davison Grade 923, 100-200 mesh; activated by heating for 24 hours at 150°C.

6.5 6N sulfuric acid: Slowly add 16.7 mL of concentrated H₂SO₄ (94%) to about 50 mL of reagent water. Dilute to 100 mL with reagent water.

6.6 6N sodium hydroxide: Dissolve 24.0 grams of sodium hydroxide in 100 mL of reagent water.

6.7 Stock standard solutions (1.00 µg/µL): Stock standard solutions can be prepared from pure standard materials or purchased as certified solutions.

6.7.1 Prepare stock standard solutions by accurately weighing about 0.0100 g of pure material. Dissolve the material in distilled-in-glass quality methanol and dilute to volume in a 10 mL volumetric flask. Larger volumes can be used at the convenience of the analyst. If compound purity is certified at 96% or greater, the
weight can be used without correction to calculate the concentration of the stock standard. Commercially prepared stock standards can be used at any concentration if they are certified by the manufacturer or by an independent source.

6.7.2 Transfer the stock standard solutions into PTFE-sealed screw-cap bottles. Store at 4°C and protect from light. Frequently check stock standard solutions for signs of degradation or evaporation, especially just prior to preparing calibration standards from them.

6.7.3 Stock standard solutions must be replaced after 6 months, or sooner if comparison with check standards indicates a problem.

7. CALIBRATION

7.1 Establish gas chromatographic operating parameters equivalent to those indicated in Table 1. The gas chromatographic system may be calibrated using either the external standard technique (Section 7.2) or the internal standard technique (Section 7.3).

7.2 External standard calibration procedure.

7.2.1 For each compound of interest, prepare calibration standards at a minimum of three concentration levels by adding volumes of one or more stock standards to a volumetric flask and diluting to volume with toluene. One of the external standards should be at a concentration near, but above, the method detection limit. The other concentrations should correspond to the expected range of concentrations found in real samples or should define the working range of the detector.

7.2.2 Using injections of 2 to 5 µL of each calibration standard, tabulate peak height or area responses against the mass injected. The results can be used to prepare a calibration curve for each parameter. Alternatively, the ratio of the response to the mass injected, defined as the calibration factor (CF), can be calculated for each compound at each standard concentration. If the relative standard deviation of the calibration factor is less than 10% over the working range, the average calibration factor can be used in place of a calibration curve.

7.2.3 The working calibration curve or calibration factor must be verified on each working shift by the measurement of one or more calibration standards. If the response for any compound varies from the predicted response by more than ±10%, the test must be repeated using a fresh calibration standard. Alternatively, a new calibration curve or calibration factor must be prepared for that parameter.

7.3 Internal standard calibration procedure: To use this approach, the analyst must select one or more internal standards similar in analytical behavior to the compounds of interest. The analyst must further demonstrate that the measurement of the internal standard is not affected by method or matrix interferences. Due to these limitations, no internal standard applicable to all samples can be suggested, although carbazole has been used successfully in some instances.
7.3.1 Prepare calibration standards at a minimum of three concentration levels for each parameter of interest by adding volumes of one or more stock standards to a volumetric flask. To each calibration standard, add a known constant amount of one or more internal standards, and dilute to volume with toluene. One of the standards should be at a concentration near, but above, the method detection limit. The other concentrations should correspond to the expected range of concentrations found in real samples, or should define the working range of the detector.

7.3.2 Using injections of 2 to 5 µL of each calibration standard, tabulate the peak height or area responses against the concentration for each compound and internal standard. Calculate response factors (RF) for each compound as follows:

\[
RF = \frac{(A_s) (C_{is})}{(A_{is}) (C_s)}
\]

where
\(A_s\) = Response for the parameter to be measured
\(A_{is}\) = Response for the internal standard
\(C_{is}\) = Concentration of the internal standard, in µg/L
\(C_s\) = Concentration of the parameter to be measured, in µg/L

If the RF value over the working range is constant, less than 10% relative standard deviation, the RF can be assumed to be invariant and the average RF can be used for calculations. Alternatively, the results can be used to plot a calibration curve of response ratios, \(A_s/A_{is}\) against RF.

7.3.3 The working calibration curve or RF must be verified on each working shift by the measurement of one or more calibration standards. If the response for any compound varies from the predicted response by more than ±10%, the test must be repeated using a fresh calibration standard. Alternatively, a new calibration curve must be prepared for that compound.

7.4 Before using any cleanup procedure, the analyst must process a series of calibration standards through the procedure to validate elution patterns and the absence of interferences from the reagents.
8. **QUALITY CONTROL**

8.1 Each laboratory using this method is required to operate a formal quality control program. The minimum requirements of this program consist of an initial demonstration of laboratory capability and the analysis of spiked samples as a continuing check on performance. The laboratory is required to maintain performance records to define the quality of data that is generated.

8.1.1 Before performing any analyses, the analyst must demonstrate the ability to generate acceptable accuracy and precision with this method. This ability is established as described in Section 8.2.

8.1.2 In recognition of the rapid advances occurring in chromatography, the analyst is permitted certain options to improve the separations or lower the cost of measurements. Each time such modifications to the method are made, the analyst is required to repeat the procedure in Section 8.2.

8.1.3 The laboratory must spike and analyze a minimum of 10% of all samples to monitor continuing laboratory performance. This procedure is described in Section 8.4.

8.2 To establish the ability to generate acceptable accuracy and precision, the analyst must perform the following operations.

8.2.1 Select a representative spike concentration for each compound to be measured. Using stock standards, prepare a quality control check sample concentrate in methanol, 1000 times more concentrated than the selected concentrations.

8.2.2 Using a pipette, add 1.00 mL of the check sample concentrate to each of a minimum of four 1000-mL aliquots of reagent water. A representative wastewater may be used in place of the reagent water, but one or more additional aliquots must be analyzed to determine background levels, and the spike level must exceed twice the background level for the test to be valid. Analyze the aliquots according to the method beginning in Section 10.

8.2.3 Calculate the average percent recovery (R), and the standard deviation of the percent recovery (s), for the results. Wastewater background corrections must be made before R and s calculations are performed.

8.2.4 Using the appropriate data from Table 2, determine the recovery and single-operator precision expected for the method, and compare these results to the values measured in Section 8.2.3. If the data are not comparable, the analyst must review potential problem areas and repeat the test.

8.3 The analyst must calculate method performance criteria and define the performance of the laboratory for each spike concentration and parameter being measured.
Calculate upper and lower control limits for method performance as follows:

Upper Control Limit (UCL) = R + 3s
Lower Control Limit (LCL) = R − 3s

where R and s are calculated as in Section 8.2.3. The UCL and LCL can be used to construct control charts\(^6\) that are useful in observing trends in performance.

The laboratory must develop and maintain separate accuracy statements of laboratory performance for wastewater samples. An accuracy statement for the method is defined as \(R \pm s\). The accuracy statement should be developed by the analysis of four aliquots of wastewater as described in Section 8.2.2, followed by the calculation \(R\) and \(s\). Alternatively, the analyst must use four wastewater datapoints gathered through the requirement for continuing quality control in Section 8.4. The accuracy statements\(^6\) should be updated regularly.

The laboratory is required to collect in duplicate a portion of their samples to monitor spike recoveries. The frequency of spiked sample analysis must be at least 10% of all samples or one sample per month, whichever is greater. One aliquot of the sample must be spiked and analyzed as described in Section 8.2. If the recovery for a particular compound does not fall within the control limits for method performance, the results reported for that compound in all samples processed as part of the same set must be qualified as described in Section 13.3. The laboratory should monitor the frequency of data so qualified to ensure that it remains at or below 5%.

Before processing any samples, the analyst should demonstrate through the analysis of a 1-L aliquot of reagent water that all glassware and reagent interferences are under control. Each time a set of samples is extracted or there is a change in reagents, a laboratory reagent blank should be processed as a safeguard against laboratory contamination.

It is recommended that the laboratory adopt additional quality assurance practices for use with this method. The specific practices that are most productive depend upon the needs of the laboratory and the nature of the samples. Field duplicates may be analyzed to monitor the precision of the sampling technique. When doubt exists over the identification of a peak on the chromatogram, confirmatory techniques such as gas chromatography with a dissimilar column, specific element detector, or mass spectrometer must be used. Whenever possible, the laboratory should perform analysis of standard reference materials and participate in relevant performance evaluation studies.

SAMPLE COLLECTION, PRESERVATION, AND HANDLING

Grab samples must be collected in glass containers. Conventional sampling practices\(^7\) should be followed; however, the bottle must not be prerinsed with sample before collection. Composite samples should be collected in refrigerated glass containers in accordance with the requirements of the program. Automatic sampling equipment must be as free as possible of plastic and other potential sources of contamination.
9.2 The samples must be iced or refrigerated at 40°C, from the time of collection until extraction.

9.3 Adjust the pH of the sample to 6 to 8 with 6N sodium hydroxide or 6N sulfuric acid immediately after sampling.

10. **SAMPLE EXTRACTION**

10.1 Assemble continuous extraction apparatus by placing 5 to 10 carborundum chips into the 500-mL round-bottom flask and attaching to the extraction flask.

10.2 Add 400 mL methylene chloride to the extraction flask. Some methylene chloride should displace into the round-bottom flask.

10.3 Mark the water meniscus on the side of the sample bottle for later determination of sample volume. Pour the entire sample into the extraction flask and add sufficient distilled water to fill the extraction flask (2 L total volume aqueous phase).

10.4 Check the pH of the sample with wide-range pH paper and adjust to 6-8 with 6N sodium hydroxide or 6N sulfuric acid.

10.5 Connect the stirring apparatus to the extraction flask without the frit touching the sample. Heat methylene chloride in round-bottom flask to continuous reflux and continue heating for 30 minutes to 1 hour until frit is thoroughly wetted with methylene chloride.

10.6 Lower frit until it just touches the sample and start the stirring apparatus rotating.

10.7 Continuously extract sample for 18 to 24 hours.

10.8 Assemble a Kuderna-Danish (K-D) concentrator by attaching a 10-mL concentrator tube to a 500-mL evaporative flask. Other concentration devices or techniques may be used in place of the K-D if the requirements of Section 8.2 are met.

10.9 Pour the extract from the round-bottom flask through a drying column containing about 10 cm of anhydrous sodium sulfate, and collect the extract in the K-D concentrator. Rinse the flask and column with 20 to 30 mL of methylene chloride to complete the quantitative transfer. Once the flask rinse has passed through the drying column, rinse the column with 30 to 40 mL of methylene chloride.

10.10 Add one to two clean boiling chips to the evaporative flask and attach a three-ball Snyder column. Snyder column by adding about 1 mL methylene chloride to the top. Place the K-D apparatus on a hot water bath, 60 to 65°C, so that the concentrator tube is partially immersed in the hot water, and the entire lower rounded surface of the flask is bathed with hot vapor. Adjust the vertical position of the apparatus and the water temperature as required to complete the concentration in 15 to 20 minutes. At the proper rate of distillation, the balls of the column will actively chatter but the chambers will not flood with condensed solvent. When the apparent volume of liquid reaches approximately 4 mL, remove the K-D apparatus and allow it to drain and cool for at least 10 minutes.
10.11 Remove the Snyder column and flask and adjust the volume of the extract to 5.0 mL with methylene chloride. Stopper the concentrator tube and store refrigerated if further processing will not be performed immediately. If the extract is to be stored longer than 2 days, transfer the extract to a screw-capped vial with a PTFE-lined cap. If the sample extract requires no further cleanup, proceed with solvent exchange to toluene and gas chromatographic analysis as described in Sections 11.5 and 12 respectively. If the sample requires cleanup, proceed to Section 11.

10.12 Determine the original sample volume by refilling the sample bottle to the mark and transferring the water to a 1000-mL graduated cylinder. Record the sample volume to the nearest 5 mL.

11. **CLEANUP AND SEPARATION**

11.1 Cleanup procedures may not be necessary for a relatively clean sample matrix. The cleanup procedure recommended in this method has been used for the analysis of various clean waters and industrial effluents. If particular circumstances demand the use of an alternative cleanup procedure, the analyst must determine the elution profile and demonstrate that the recovery of each compound of interest is no less than 85%.

11.2 Stir 20 g of silica gel in 100 mL of acetone and 1.2 mL of reagent water for 30 minutes on a stirring plate. Transfer the slurry to a chromatographic column (silica gel may be retained with a plug of glass wool). Wash the column with 20 mL of methylene chloride and then with 30 mL of petroleum ether. Use a column flow rate of 2 to 2.5 mL/min throughout the wash and elution profiles. Add an additional 50 mL of petroleum ether to the head of the column.

11.3 Add the extract from Section 10.11 to the head of the column. Allow the solvent to elute from the column until the Florisil is almost exposed to the air. Elute the column with 50 mL of 6% ethyl ether in petroleum ether. Discard this fraction.

11.4 Elute the column with 100 mL of 15% ethyl ether in petroleum ether and collect in a K-D apparatus.

11.5 Add 2.5 mL of toluene to the fraction. Concentrate the fraction to approximately 4 mL with the water bath at 75 to 80°C as described in Section 10.10. Transfer the sample to a 5-mL volumetric flask and dilute to 5 mL with toluene. Proceed with gas chromatographic analysis.
12. **GAS CHROMATOGRAPHY**

12.1 Table 1 summarizes the recommended operating conditions for the gas chromatograph. Included in this table are estimated retention times and method detection limits that can be achieved by this method. An example of the separations achieved by Column 1 and Column 2 are shown in Figures 1 and 2. Other packed columns, chromatographic conditions, or detectors may be used if the requirements of Section 8.2 are met. Capillary (open-tubular) columns may also be used if the relative standard deviations of responses for replicate injections are demonstrated to be less than 6% and the requirements of Section 8.2 are met.

12.2 Calibrate the gas chromatographic system daily as described in Section 7.

12.3 If an internal standard approach is being used, the analyst must not add the internal standard to the sample extracts until immediately before injection into the instrument. Mix thoroughly.

12.4 Inject 2 to 5 µL of the sample extract using the solvent flush technique. Record the volume injected to the nearest 0.05 µL and the resulting peak sizes in area or peak height units.

12.5 The width of the retention-time window used to make identifications should be based upon measurements of actual retention-time variations of standards over the course of a day. Three times the standard deviation of a retention time for a compound can be used to calculate a suggested window size; however, the experience of the analyst should weigh heavily in the interpretation of chromatograms.

12.6 If the response for the peak exceeds the working range of the system, dilute the extract and reanalyze.

12.7 If the measurement of the peak response is prevented by the presence of interferences, further cleanup is required.

13. **CALCULATIONS**

13.1 Determine the concentration of individual compounds in the sample.

13.1.1 If the external standard calibration procedure is used, calculate the amount of material injected from the peak response using the calibration curve or calibration factor in Section 7.2.2. The concentration in the sample can be calculated as follows:
Method 620

Equation 2

\[
\text{Concentration, } \mu g/L = \frac{(A)}{(V)} \frac{(V_i)}{(V_s)}
\]

where
\[
A = \text{Amount of material injected, in ng}
\]
\[
V = \text{Volume of extract injected, in } \mu L
\]
\[
V_i = \text{Volume of total extract, in } \mu L
\]
\[
V_s = \text{Volume of water extracted, in mL}
\]

13.1.2 The internal standard calibration procedure was used, calculate the concentration in the sample using the response factor (RF) determined in Section 7.3.2 as follows:

Equation 3

\[
\text{Concentration, } \mu g/L = \frac{(A_s)}{(A_{is})} \frac{(I)}{(RF)} \frac{(V_o)}{(V_s)}
\]

where
\[
A_s = \text{Response for parameter to be measured}
\]
\[
A_{is} = \text{Response for the internal standard}
\]
\[
I = \text{Amount of internal standard added to each extract, in } \mu g
\]
\[
V_o = \text{Volume of water extracted, in L}
\]

13.2 Report results in micrograms per liter without correction for recovery data. When duplicate and spiked samples are analyzed, report all data obtained with the sample results.

13.3 For samples processed as part of a set where the laboratory spiked sample recovery falls outside of the control limits in Section 8.3, data for the affected compounds must be labeled as suspect.

14. **GC/MS CONFIRMATION**

14.1 It is recommended that GC/MS techniques be judiciously employed to support qualitative identifications made with this method. The mass spectrometer should be capable of scanning the mass range from 35 amu to a mass 50 amu above the molecular weight of the compound. The instrument must be capable of scanning the mass range
at a rate to produce at least 5 scans per peak but not to exceed 7 seconds per scan utilizing a 70 V (nominal) electron energy in the electron impact ionization mode. A GC-to-MS interface constructed of all glass or glass-lined materials is recommended. When using a fused-silica capillary column, the column outlet should be threaded through the interface to within a few millimeter of the entrance to the source ionization chamber. A computer system should be interfaced to the mass spectrometer that allows the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program.

14.2 Gas chromatographic columns and conditions should be selected for optimum separation and performance. The conditions selected must be compatible with standard GC/MS operating practices. Chromatographic tailing factors of less than 5.0 must be achieved. The calculation of tailing factors is illustrated in Method 625.

14.3 At the beginning of each day that confirmatory analyses are to be performed, the GC/MS system must be checked to see that all DFTRP performance criteria are achieved.9

14.4 To confirm an identification of a compound, the background corrected mass spectrum of the compound must be obtained from the sample extract and compared with a mass spectrum from a stock or calibration standard analyzed under the same chromatographic conditions. It is recommended that at least 25 ng of material be injected into the GC/MS. The criteria below must be met for qualitative confirmation.

14.4.1 The molecular ion and all other ions that are present above 10% relative abundance in the mass spectrum of the standard must be present in the mass spectrum of the sample with agreement to ±10%. For example, if the relative abundance of an ion is 30% in the mass spectrum of the standard, the allowable limits for the relative abundance of that ion in the mass spectrum for the sample would be 20 to 40%.

14.4.2 The retention time of the compound in the sample must be within 30 seconds of the same compound in the standard solution.

14.4.3 Compounds that have very similar mass spectra can be explicitly identified by GC/MS only on the basis of retention time data.

14.5 Where available, chemical ionization mass spectra may be employed to aid in the qualitative identification process.

14.6 Should these MS procedures fail to provide satisfactory results, additional steps may be taken before reanalysis. These may include the use of alternate packed or capillary GC columns or additional cleanup (Section 11).
15. **METHOD PERFORMANCE**

15.1 The method detection limit (MDL) is defined as the minimum concentration of a substance that can be measured and reported with 99% confidence that the value is above zero. The MDL concentrations listed in Table 1 were obtained using reagent water. Similar results were achieved using representative wastewaters.

15.2 This method has been tested for linearity of recovery from spiked reagent water and has been demonstrated to be applicable over the concentration range from 10 x MDL to 1000 x MDL.

15.3 In a single laboratory, Battelle Columbus Laboratories, using spiked wastewater samples, the average recoveries presented in Table 2 were obtained. Seven replicates of each of two different wastewaters were spiked and analyzed. The standard deviation of the percent recovery is also included in Table 2.
References

Table 1. Chromatographic Conditions and Method Detection Limits

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Retention Time (min)</th>
<th>Method Detection Limit (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylamine</td>
<td>Column 1 18.1</td>
<td>Column 2 19.3</td>
</tr>
</tbody>
</table>

Column 1 conditions: Supelcoport (100/120 mesh) coated with 3% SP-2250 packed in a glass column 1.8 m long by 2 mm ID with helium carrier gas at a flow rate of 30 mL/min. Column temperature is held at 80°C for four minutes, programmed from 80 to 300°C at 8°C/min, and held at 300°C for 4 minutes.

Column 2 conditions: Supelcoport (100/120 mesh) coated with 3% SP-1000 packed in a glass column 1.8 m long by 2 m ID with helium carrier gas at a flow rate of 30 mL/min. Column temperature is held at 80°C for four minutes, programmed from 80 to 250°C at 80°C/min, and held at 250°C for 4 minutes.

Table 2. Single-Laboratory Accuracy and Precision

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average Recovery</th>
<th>Relative Standard Deviation (%)</th>
<th>Spike Level (µg/L)</th>
<th>Number of Analyses</th>
<th>Matrix Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diphenylamine</td>
<td>120</td>
<td>25</td>
<td>5.0</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>89</td>
<td>11</td>
<td>50.0</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) Column 1 conditions were used.
(b) 1 = Columbus secondary POTW effluent.
Figure 1. GC-AFD Chromatogram of 100 ng of Diphenylamine (Column 1)