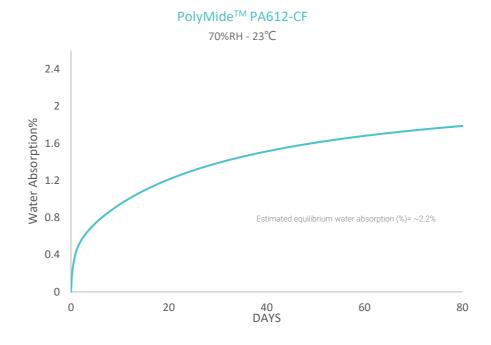


Innovators in 3D printing

Technical Data Sheet

PolyMide™ PA612-CF



PolyMide[™] PA612-CF is a carbon fiber reinforced long chain copolyimide filament. Thanks to its chemical structure, this product has lower moisture sensitivity compared to PA6/66 and PA6-based materials, and better mechanical properties than PA12-based materials. In addition, the carbon fiber reinforcement and Warpfree[™] technology enhance the size stability of the prints produced with this material.

PHYSICAL PROPERTIES

Property	Testing Method	Typical Value
Density	ISO1183, GB/T1033	1.03 g/cm ³ at 23°C
Melt index	260°C, 2.16 kg	9.91 g/10min

MOISTURE ABSORPTION CURVE

Note:

PolyMide™ PA612-CF absorbs moisture slowly over time. The estimated equilibrium water absorption is around 2.2%.

THERMAL PROPERTIES

Property	Testing Method	Typical Value
Glass transition temperature	DSC, 10°C/min	N/A
Melting temperature	DSC, 10°C/min	210 °C
Crystallization temperature	DSC, 10°C/min	180 °C
Decomposition temperature	TGA, 20°C/min	N/A
Vicat softening temperature	ISO 306, GB/T 1633	N/A
Heat deflection temperature	ISO 75 1.8MPa	114 °C
Heat deflection temperature	ISO 75 0.45MPa	175 °C
Thermal conductivity	N/A	N/A
Heat shrinkage rate	N/A	N/A

MECHANICAL PROPERTIES (Dry status)

Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	4735.7 ± 87.8 MPa
Young's modulus (Z)	150 527, GB/T 1040	2085.8 ± 91.7 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	86.0 ± 0.9 MPa
Tensile strength (Z)	130 327, GB/1 1040	29.9 ± 2.1 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	2.8 ± 0.1 %
Elongation at break (Z)	130 327, GB/ 1 1040	1.7 ± 0.1 %
Bending modulus (X-Y)	ISO 178, GB/T 9341	4331.2 ± 90.0 MPa
Bending modulus (Z)	130 176, GB/ 1 9341	NA
Bending strength (X-Y)	ISO 178, GB/T 9341	125.1 ± 2.6 MPa
Bending strength (Z)	130 176, GB/ 1 9341	NA
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	6.8 ± 0.3 kJ/m2
Charpy impact strength (Z)	130 179, 00/1 1043	NA

Note:

- 1. All specimens were annealed at 80°C for 24h and dried for 48h prior to testing
- 2. All specimens were printed on Raise 3D E2-CF and sliced on IdeaMaker, the printing settings are shown below. All data here is only for reference purposes, the mechanical properties of printed parts are depending on printers, printing settings and the thermal history of each printed layer.

MECHANICAL PROPERTIES (Wet Statu)

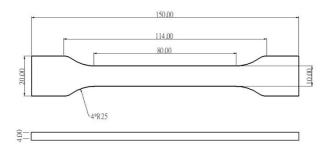
Property	Testing Method	Typical Value
Young's modulus (X-Y)	ISO 527, GB/T 1040	3513.4 ± 144.2 MPa
Young's modulus (Z)	150 527, GB/T 1040	2019.8 ± 93.6 MPa
Tensile strength (X-Y)	ISO 527, GB/T 1040	57.5 ± 0.8 MPa
Tensile strength (Z)	130 327, GB/T 1040	26.5 ± 1.3 MPa
Elongation at break (X-Y)	ISO 527, GB/T 1040	4.6 ± 0.2 %
Elongation at break (Z)	130 327, GB/T 1040	1.9 ± 0.6 %
Bending modulus (X-Y)	IOO 170 CD/T 004	3045.4 ± 85.2 MPa
Bending modulus (Z)	ISO 178, GB/T 934	NA
Bending strength (X-Y)	ISO 178, GB/T 934	89.8 ± 1.4 MPa
Bending strength (Z)	130 170, GB/1 934	NA
Charpy impact strength (X-Y)	ISO 179, GB/T 1043	8.0 ± 0.9 kJ/m2
Charpy impact strength (Z)	130 179, GB/1 1043	NA

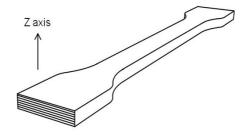
Note:

- 1. All specimens were annealed at 80 °C for 24h, and immerged in ambient temperature water for 3 days prior to testing.
- 2. All specimens were printed on Raise 3D E2-CF and sliced on IdeaMaker, the printing settings are shown below. All data here is only for reference purposes, the mechanical properties of printed parts are depending on printers, printing settings and the thermal history of each printed layer.

RECOMMENDED PRINTING CONDITIONS

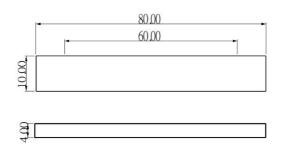
* Based on 0.4 mm nozzl may vary with different nozzle diameters

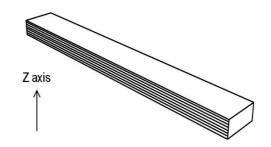

Based of 0.4 min flozzi may vary with different flozzie diameters	
Parameter	
Nozzle temperature	250 − 300 (°C)
Build surface treatment	PVP Glue
Build plate temperature	25 - 50 (°C)
Cooling fan	OFF
Printing speed	30-60 (mm/s)
Raft separation distance	0.1-0.2 (mm)
Retraction distance (Direct Drive)	3 (mm)
Retraction speed (Direct Drive)	40 (mm/s)
Retraction distance (Indirect Drive)	6 (mm)
Retraction speed (Indirect Drive)	60 (mm/s)
Environmental temperature	Room temperature
Threshold overhang angle	60 (°)
Recommended support material	PolySupport For PA12


Note:

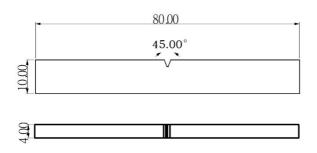
- Abrasion of the brass nozzle happens frequently when printing PolyMide™ PA612-CF. Normally, the life of a brass nozzle would be approximately 9h. A wear-resistance nozzle, such as hardened metal coated brass nozzle, for example, nickel coated brass nozzle, metal hardened steel and ruby nozzle, is highly recommended to be used with PolyMide™ PA612-CF.
- If printing PolyMide™ PA612-CF on a general desktop 3d printer at 250-260°C, it is highly recommended to use a hardened metal-coated brass nozzle, for example, a nickel-coated brass nozzle.
- If PolyMide™ PA612-CF is used as the support material for itself, please remove the support structure before excessive moisture absorption. Otherwise, the support structure can be permanently bonded to the model.
- After the printing process, it is recommended to anneal the model in the oven at 80°C for 6 hours.

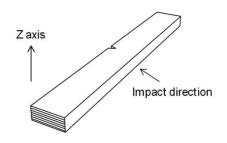
TENSILE TESTING SPECIMEN


ISO 527, GB/T 1040



FLEXURAL TESTING SPECIMEN


ISO 178, GB/T 9341



IMPACT TESTING SPECIMEN

ISO 179, GB/T 1043

HOW TO MAKE SPECIMENS

Printing temperature	290 °C
Bed temperature	50 °C
Shell	2
Top & bottom layer	3
Infill	100%
Environmental temperature	50 °C temperature
Cooling fan	OFF

DISCLAIMER:

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. End- use performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Polymaker materials for the intended application. Polymaker makes no warranty of any kind, unless announced separately, to the fitness for any use or application. Polymaker shall not be made liable for any damage, injury or loss induced from the use of Polymaker materials in any application.