Monocure 3D Pigmented Photoreactive Resin **Monocure Pty Ltd** Chemwatch: **5162-70** Version No: **4.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: 04/03/2015 Print Date: 19/04/2016 Initial Date: Not Available L.GHS.AUS.EN #### SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING #### **Product Identifier** | Product name | Monocure 3D Pigmented Photoreactive Resin | | | |-------------------------------|--|--|--| | Synonyms | Product Code: 3D3583W (White), 3D3584R (Red), 3D3585B (Blue), 3D3586Y (Yellow), 3D3587BK (Black), 3D3588GY(Grey) 3DR3583W(Rapid White), 3DR3584R(Rapid Red), 3DR3585B(Rapid Blue), 3DR3586Y(Rapid Yellow), 3DR3587BK(Rapid Black), 3DR3588GY(Rapid Grey) | | | | Other means of identification | Not Available | | | #### Relevant identified uses of the substance or mixture and uses advised against #### Details of the supplier of the safety data sheet | Registered company name | Monocure Pty Ltd | |-------------------------|---| | Address | 12-14 Alexander Street NSW 2144 Australia | | Telephone | +61 2 9644 9611 | | Fax | +61 2 9644 9288 | | Website | www.monocure.com.au | | Email | enquiries@monocure.com.au | #### Emergency telephone number | Association / Organisation | Chemwatch | |-----------------------------------|-----------------| | Emergency telephone numbers | 1800 039 008 | | Other emergency telephone numbers | +61 3 9573 3112 | #### **SECTION 2 HAZARDS IDENTIFICATION** #### Classification of the substance or mixture #### HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code. #### CHEMWATCH HAZARD RATINGS | | Min | Max | | |--------------|-----|-----|-------------------------| | Flammability | 1 | | | | Toxicity | 0 | | 0 = Minimum | | Body Contact | 2 | | 1 = Low
2 = Moderate | | Reactivity | 2 | | 3 = High | | Chronic | 2 | | 4 = Extreme | | Poisons Schedule | Not Applicable | | | |-------------------------------|--|--|--| | Classification ^[1] | Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3 | | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Directive 1272/2008 - Annex VI | | | #### Label elements GHS label elements Chemwatch: 5162-70 Page 2 of 9 Issue Date: 04/03/2015 Version No: 4.1.1.1 Print Date: 19/04/2016 ### Monocure 3D Pigmented Photoreactive Resin | WARNING | | | | |--|--|--|--| | Hazard statement(s) | | | | | Causes skin irritation. | | | | | Causes serious eye irritation. | | | | | May cause an allergic skin reaction. | | | | | May cause respiratory irritation. | | | | | Harmful to aquatic life with long lasting effects. | | | | | Prevention | | | | | Use in a well-ventilated area. | | | | | Wear protective gloves/protective clothing/eye protection/face protection. | | | | | Avoid breathing mist/vapours/spray. | | | | | Avoid release to the environment. | | | | | Contaminated work clothing should not be allowed out of the workplace. | | | | | | | | | #### Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | | | |----------------|--|--|--| | P363 | ash contaminated clothing before reuse. | | | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | | | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | P312 | Call a POISON CENTER or doctor/physician if you feel unwell. | | | | P333+P313 | If skin irritation or rash occurs: Get medical advice/attention. | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | P304+P340 | IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing. | | | #### Precautionary statement(s) Storage | P405 | Store locked up. | |-----------|--| | P403+P233 | Store in a well-ventilated place. Keep container tightly closed. | #### Precautionary statement(s) Disposal P501 Dispose of contents/container in accordance with local regulations. #### **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** #### Substances See section below for composition of Mixtures #### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|-------------------------------------| | Not Available | <50 | methacrylated oligomers proprietary | | Not Available | <50 | methacrylated monomers proprietary | | Not Available | <10 | photoinitiators proprietary | | Not Available | <0.5 | pigment proprietary | ### **SECTION 4 FIRST AID MEASURES** #### Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | |--------------|---| | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If furnes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay. | | Ingestion | Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. | Chemwatch: **5162-70**Version No: **4.1.1.1** # Page 3 of 9 Monocure 3D Pigmented Photoreactive Resin Issue Date: **04/03/2015**Print Date: **19/04/2016** #### Indication of any immediate medical attention and special treatment needed Treat symptomatically. #### **SECTION 5 FIREFIGHTING MEASURES** #### Extinguishing media - ▶ Foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit) - Carbon dioxide. - Water spray or fog Large fires only. Fire Fighting #### Special hazards arising from the substrate or mixture Fire Incompatibility ▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Advice for firefighters - Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. - ▶ Fight fire from a safe distance, with adequate cover. - If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. - Avoid spraying water onto liquid pools - ▶ Do not approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. # Fire/Explosion Hazard - Combustible - Slight fire hazard when exposed to heat or flame. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. - ▶ Mists containing combustible materials may be explosive. Combustion products include,: carbon dioxide (CO2), other pyrolysis products typical of burning organic materialMay emit clouds of acrid smokeMay emit poisonous fumes. May emit corrosive fumes. #### **SECTION 6 ACCIDENTAL RELEASE MEASURES** #### Personal precautions, protective equipment and emergency procedures # ► Remove all ignition sources. - Minor Spills - ► Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes - ► Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up - ▶ Place in a suitable, labelled container for waste disposal. ## ▶ DO NOT touch the spill material #### Moderate hazard - Clear area of personnel and move upwind. - ► Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - No smoking, naked lights or ignition sources. - Major Spills - Increase ventilation.Stop leak if safe to do so. - ► Contain spill with sand, earth or vermiculite - ► Collect recoverable product into labelled containers for recycling - ▶ Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. #### **SECTION 7 HANDLING AND STORAGE** Safe handling #### Precautions for safe handling Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating. - Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours. - ▶ Do NOT use localised heat sources such as band heaters to heat/ melt product. - Do NOT use steam - ► Hot boxes or hot rooms are recommended for heating/ melting material. The hot box or hot room should be set a maximum temperature of 60 deg. C. (140 F.). - ▶ Do NOT overheat this may compromise product quality and /or result in an uncontrolled hazardous polymerisation. - If product freezes, heat as indicated above and mix gently to redistribute the inhibitor. Product should be consumed in its entirety after heating/ melting; avoid multiple "reheats" which may affect product quality or result in product degradating the product degradating and pressure possibly unituring container. Product should be packaged with inhibitory by Italies inhibited product may polymerise religion temperature and pressure possibly unituring container. - Product should be packaged with inhibitor(s). Unless inhibited, product may polymerise, raising temperature and pressure, possibly rupturing container. Check inhibitor level periodically, adding to bulk material if needed. In addition, the product's inhibitor(s) require the presence of dissolved oxygen. Maintain, Chemwatch: 5162-70 Page 4 of 9 Issue Date: 04/03/2015 #### Monocure 3D Pigmented Photoreactive Resin Version No: 4.1.1.1 Print Date: 19/04/2016 - at a minimum, the original headspace in the product container and do NOT blanket or mix with oxygen-free gas as it renders the inhibitor ineffective. Ensure air space (oxygen) is present during product heating / melting. - Store product indoors at temperatures greater than the product's freeing point (or greater than 0 deg. C. (32 F).) if no freezing point available and below 38 dea. C (100 F.). - Avoid prolonged storage (longer than shelf-life) storage temperatures above 38 deg. C (100 F.). - Store in tightly closed containers in a properly vented storage area away from heat, sparks, open flame, strong oxidisers, radiation and other initiators, - Prevent contamination by foreign materials. - Prevent moisture contact - ▶ Use only non-sparking tools and limit storage time. Unless specified elsewhere, shelf-life is 6 months from receipt. - DO NOT allow clothing wet with material to stay in contact with skin - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. #### Other information - ▶ Store below 38 deg. C. - Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container - Metal can or drum - ▶ Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. # Storage incompatibility for multifunctional acrylates Avoid exposure to free radical initiators (peroxides, persulfates), iron, rust, oxidisers, and strong acids and strong bases. - Avoid heat, flame, sunlight, X-rays or ultra-violet radiation. - ▶ Storage beyond expiration date, may initiate polymerisation. Polymerisation of large quantities may be violent (even explosive) - ▶ Contamination with polymerisation catalysts peroxides, persulfates, oxidising agents also strong acids, strong alkalies, will cause polymerisation with exotherm - generation of heat. - ▶ Polymerisation of large quantities may be violent even explosive. #### **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### Control parameters #### OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | TEEL-1 | TEEL-2 | TEEL-3 | | |--|---------------|---------------|----------------------------------|---------------|--| | Monocure 3D Pigmented
Photoreactive Resin | Not Available | Not Available | Not Available | Not Available | | | | | | | | | | Ingredient | Original IDLH | | Revised IDLH | | | | methacrylated oligomers proprietary | Not Available | | Not Available | | | | methacrylated monomers proprietary | Not Available | | mers Not Available Not Available | | | | photoinitiators proprietary | Not Available | | Not Available | | | | pigment proprietary | Not Available | | Not Available | | | #### MATERIAL DATA #### Exposure controls Appropriate engineering controls Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. #### The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Chemwatch: **5162-70** Page **5** of **9** Issue Date: **04/03/2015** #### Monocure 3D Pigmented Photoreactive Resin Print Date: 19/04/2016 Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion) | 2.5-10 m/s (500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |----------------------------------------------------------------|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Personal protection Version No: 4.1.1.1 # Eye and face protection - Safety glasses with side shields. - ▶ Chemical goggles. - Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection Hands/feet protection See Hand protection below #### NOTE: - ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - , Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. General warning: Do NOT use latex gloves! Use only recommended gloves - using the wrong gloves may increase the risk: | Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress | Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactibility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weigh acrylic monomers | |----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.) | Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactibility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour | Issue Date: 04/03/2015 Chemwatch: 5162-70 Page 6 of 9 Version No: 4.1.1.1 Print Date: 19/04/2016 #### Monocure 3D Pigmented Photoreactive Resin | | laminated multilayer gloves. | Nitrile rubber, NRL (latex) free; >0.56 mm low tactibility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commonly used solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions. lling (for example in long term handling of acrylates containing high levels of acetates and/ or ketones, use of UV/EB Acrylates Third edition, 231 October 2007 - Cefic | |------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Body protection | See Other protection below | | | Other protection | Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit. | | | Thermal hazards | Not Available | | #### **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** #### Information on basic physical and chemical properties | Appearance | Pigmented transparent liquid; insoluble in water. | | | |----------------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------| | Physical state | Liquid | Relative density (Water = 1) | 1.12 @ 20 deg.C | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | 200 approx. | | pH (as supplied) | 6.5 | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | -10 (freezing point) | Viscosity (cSt) | 500-600 @ 25 deg.C | | Initial boiling point and boiling range (°C) | >100 | Molecular weight (g/mol) | Not Applicable | | Flash point (°C) | >120 | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Applicable | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Nil | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water (g/L) | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | | |------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | Chemical stability | Polymerisation may occur at elevated temperatures. Polymerisation may be accompanied by generation of heat as exotherm. Process is self accelerating as heating causes more rapid polymerisation. Exotherm may cause boiling with generation of acrid, toxic and flammable vapour. Polymerisation and exotherm may be violent if contamination with strong acids, amines or catalysts occurs. Polymerisation and exotherm of material in bulk may be uncontrollable and result in rupture of storage tanks. Polymerisation may occur if stabilising inhibitor becomes depleted by aging. Stabilising inhibitor requires dissolved oxygen to be present in liquid for effective action. Specific storage requirements must be met for stability on ageing and transport. | | | Possibility of hazardous reactions | See section 7 | | | Conditions to avoid | See section 7 | | | Incompatible materials | See section 7 | | | Hazardous decomposition products | See section 5 | | #### **SECTION 11 TOXICOLOGICAL INFORMATION** #### Information on toxicological effects Inhaled Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Chemwatch: 5162-70 Page 7 of 9 Issue Date: 04/03/2015 Version No: 4.1.1.1 Print Date: 19/04/2016 Monocure 3D Pigmented Photoreactive Resin No report of respiratory illness in humans as a result of exposure to multifunctional acrylates has been found. Similarly evidence of systemic damage does not appear to exist. Inhalation hazard is increased at higher temperatures. Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea. The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing Ingestion morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis Skin Contact All multifunctional acrylates (MFA) produce skin discomfort and are known or suspected skin sensitisers. Aerosols generated in the industrial process are reported to produce dermatitis - vapours generated by the heat of milling may also occur in sufficient concentration to produce dermatitis. Because exposure to industrial aerosols of MFA may also include exposure to various resin systems, photo-initiators, solvents, hydrogen-transfer agents, stabilisers, surfactants, fillers and polymerisation inhibitors, toxic effects may arise due to a range of chemical actions. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may Eve cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater Chronic frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. Sensitisation may give severe responses to very low levels of exposure, in situations where exposure may occur. TOXICITY IRRITATION Monocure 3D Pigmented **Photoreactive Resin** Not Available Not Available Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances N N **Acute Toxicity** Carcinogenicity Skin Irritation/Corrosion Reproductivity 0 0 STOT - Single Exposure Damage/Irritation Respiratory or Skin STOT - Repeated Exposure 0 sensitisation Ø Ø Mutagenicity **Aspiration Hazard** Legend: Data available but does not fill the criteria for classification - Data required to make classification available Not Available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Ingredient | Endpoint | Test Duration (hr) | Species | Value | Source | |---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|----------------|----------------| | Not Available | Not Applicable | | Legend: | Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data | | | | | Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment Wastes resulting from use of the product must be disposed of on site or at approved waste sites DO NOT discharge into sewer or waterways #### Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------------|-------------------------|---------------------------------------| | No Data available for all ingredients | | No Data available for all ingredients | #### Bioaccumulative potential Chemwatch: 5162-70 Page 8 of 9 Issue Date: 04/03/2015 Version No: 4.1.1.1 Print Date: 19/04/2016 #### Monocure 3D Pigmented Photoreactive Resin | Ingredient | Bioaccumulation | |------------------|---------------------------------------| | | No Data available for all ingredients | | Mobility in soil | | | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods Product / Packaging disposal - ▶ Containers may still present a chemical hazard/ danger when empty - ▶ Return to supplier for reuse/ recycling if possible #### Otherwise: - ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ▶ Reuse - Recycling - ▶ Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate - ▶ DO NOT allow wash water from cleaning or process equipment to enter drains - ▶ It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - ▶ Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill #### **SECTION 14 TRANSPORT INFORMATION** #### Labels Required | Marine Pollutant | NO | |------------------|----------------| | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable #### **SECTION 15 REGULATORY INFORMATION** #### Safety, health and environmental regulations / legislation specific for the substance or mixture | National Inventory | Status | |----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Australia - AICS | Υ | | Canada - DSL | Υ | | Canada - NDSL | Υ | | China - IECSC | Υ | | Europe - EINEC / ELINCS /
NLP | Y | | Japan - ENCS | Υ | | Korea - KECI | Υ | | New Zealand - NZIoC | Υ | | Philippines - PICCS | Υ | | USA - TSCA | Υ | | Legend: | Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | #### **SECTION 16 OTHER INFORMATION** Chemwatch: 5162-70 Page 9 of 9 Issue Date: 04/03/2015 Version No: 4.1.1.1 Print Date: 19/04/2016 Monocure 3D Pigmented Photoreactive Resin #### Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references A list of reference resources used to assist the committee may be found at: www.chemwatch.net The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC- STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit . IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.