LDL-C Response to Portfolio Foods Containing High Levels of Phytosterols, Whole Food Fiber, and Alpha-Linoleic Acid in Statin Reluctant Patients: Impact of CYP7A1-rs3808607 and APOE Isoforms

Author Block: Stephen L. Kopecky, Mayo Clinic, Rochester, MN; Elizabeth Klodas, Step One Foods, Minneapolis, MN; Soumya Alias, Univ of Manitoba, Winnipeg, MB, Canada; Jessica Bauman, Mayo Clinic, Rochester, MN; Stephanie Jew, Peter J Jones, Univ of Manitoba, Winnipeg, MB, Canada

Abstract:

INTRODUCTION: Up to 20% of outpatients receiving HMG-CoA reductase inhibitors (statins) experience treatment reluctance on the basis of side effects, leaving a large population at increased risk of CVD. We hypothesized that a practical food-based approach can be utilized to lower LDL-C in statin reluctant patients and that the lipid response can be predicted based upon CYP7A1-rs3808607 (CYP7A1) and APOE genetic isoforms.

METHODS: This was a multicenter, randomized, double-blind, free-living cross-over study composed of 2 phases of 4 wk each, separated by a 4 wk washout. Participants (n=54) received an assortment of individually packaged, shelf stable snacks along with printed instructions to ingest 2 servings of the foods per day as a substitute for similar items they were eating already. No other dietary or behavior adjustments were requested. Treatment products supplied at least 1800 mg alpha-linoleic acid (ALA), 5 g of fiber and 1g of phytosterols per serving. Control products were calorie-matched like items drawn from the general grocery marketplace. Lipid parameters were measured and averaged over 2 d at baseline and at 4 wk of each phase. Ingestion of study foods was confirmed by C18:3n3 serum level assessment. Single nucleotide polymorphisms and APOE isoform were assessed by Taqman genotyping assay.

RESULTS: As compared to control, LDL-C decreased 8.8% in the treatment arm (p<0.0001, range -37.6% to +20.5%) and total cholesterol fell 5.1% (p<0.004). No significant change was seen in HDL-C, TG or fasting glucose levels. LDL-C was reduced by diet in CYP7A1 T/T homozygotes (-0.3924±0.1271mmol/l, p = 0.0033) and APOE4 carriers (-0.3808±0.098 mmol/l, p = 0.0003).

CONCLUSIONS: Significant LDL-C reductions can be affected through a simple food intervention supplying high levels of phytosterols, fiber and ALA. CYP7A1 and APOE isoforms influence the variability in LDL-C response and can help identify individual patients especially appropriate for a food-based LDL-C lowering approach. Given the large number of patients unable/unwilling to take statins, our findings have significant impact for management of this challenging population.

Author Disclosure Information:

S.L. Kopecky: Other Research Support; Modest; Step One Foods. E. Klodas: Ownership Interest; Significant; Step One Foods. S. Alias: None. J. Bauman: None. S. Jew: None. P.J. Jones: Other Research Support; Modest; Step One Foods. Other Research Support; Significant; Manitoba Agri Health Research Network.

Category (Complete): 18.80 Nutrition in CVD Risk and Prevention

Keyword (Complete): LDL ; Diet ; Genetics

Presentation Preference (Complete): Any Format

Additional Info (Complete):
Selection 1: (Required) None
Are you an AHA member? (Required): Yes
If yes, please select which primary council: Clinical Cardiology
Has this research received full or partial funding support from the American Heart Association? (Required): No
Disclosure (Required): There are no unlabeled/unapproved uses of drugs or products.
Abstract Copyright Transfer Agreement (Required): Yes
This abstract is currently on a pre-print server or based on a manuscript that is on a pre-print server. (Required): No

Payment (Complete): Your credit card order has been processed on Thursday 7 June 2018 at 10:45 PM.

Status: Complete

For Programming Related Questions, please email us!

Need Technical Support?
OASIS Helpdesk at Coe-Truman Technologies, Inc.
Email | aha@support.ctmeetingtech.com
Phone | 217-398-1792
Helpdesk Hours | Mon-Fri., 7am-6pm CDT

American Heart Association
7272 Greenville Avenue
Dallas, Texas 75231
OASIS Helpdesk

Leave cOASIS Feedback

Powered by cOASIS, The Online Abstract Submission and Invitation System™
© 1996 - 2018 CTI Meeting Technology. All rights reserved.