
3-inch Water Hog

Maximum velocity when drain is full: $V_{max} = \sqrt{2gH}$ where H is the effective depth from bottom of grate to the bottom of the drain.

$$V_{\text{max}} = \sqrt{2x32.2x2.72/12} = 3.82 \text{ ft/sec}$$

For:

Orifice effect discharge coefficient = 0.63

Drain pipe length and bend coefficient = 0.8

Cross Sectional area for discharge $A = \pi r^2$ = 7.300 in² = 0.0507 ft²

Maximum Flow rate = Discharge Coefficien $x A x V_{max}$

= $(0.63 \times 0.8) \times 0.0507 \text{ ft}^2 \times 3.82 \text{ ft/sec}$

= 0.0976 ft³/sec

= 0.0976 ft³/sec x 60 sec/min x 7.48 Gal/ ft³

Maximum Flow rate = 43.8 Gallons/min

Note: As the depth of water decreases, the flow rate will decrease in proportion to the square root of depth.