TC0376

OF SERIAL INTERFACE

BAUDRATE: 9600 PARITY: none DATA BITS: 8 STOP BITS: 1

Note: you have to send 8 byte to meter, for example, if you want to send A comand, the format will be $0 \times 020 \times 410 \times 000 \times 000 \times 000 \times 000 \times 000 \times 03$

USB command	function	note
A(ASC 41H)	Send encoded data	Return encoded 16 byte
C(ASC 43H)	C/F button	Return the same as you send
	REC button	Return the same as you send
E(ASC 45H)	HOLD butten	Return the same as you send
H(ASC 48H	Ask model	Return the same as you send
K(ASC 4BH)	MAX/MIN button	Return 0x33 0x37 0x36 0x0D 4 bytes
M(ASC 4DH)	Exit MAX/MIN mode	Return the same as you send
N(ASC 4EH)		Return the same as you send

$1^{\text {nd }}$ BYTE:

The first byte is the start byte, it value is 2 .

$2^{\text {nd }}$ BYTE:

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
C/F	Low Bat	Hold	REL	T1-T2	MAX/MIN	Recording	

bit0: 1->now is recording
bit 2 bit 1
0 0->normal mode
0 1->MAXIMUM mode
10 ->MINIMUM mode
1 1-> calculate MAX/MIN in background and Icd "MAX""MIN" will flash.
bit3:1 ->Memory Full
bit4:1->REL
bit5:1-HOLD 0->not HOLD
bit6:1->LOW BATTERY 0->BATTERY NORMAL
bit7:1->C 1->F

$3^{\text {nd }}$ BYTE:

bit0 ~ bit 4 : no use
bit5 auto power off on
bit6 ~ bit 7 : no use
$4^{\text {th }}$ BYTE:

$5^{\text {th }}$ BYTE: =>High byte of Lcd reading value
$\mathbf{6}^{\text {th }}$ BYTE :=>Low byte of Lcd reading value

$7^{\text {th }}$ BYTE:

Bit7	$1->$ MAX value is minus
Bit6	$1->$ MAX value is OL
Bit5 ~ bit 4 : no use	
Bit3	$1->$ MAX value is N/A(OPEN)
Bit2 ~ bit 1 : no use	
Bit0	$1->$ MAX value $=(65536+(8$ th BYTE) $\times 256$ +9th BYTE)/100.0
	$0->$ MAX value $=((8$ th BYTE $) \times 256+9$ th BYTE) $/ 100.0$

$\mathbf{8}^{\text {th }}$ BYTE: =>High byte of Max

9th BYTE: =>Low byte of Max
$10^{\text {th }}$ BYTE:

Bit7	$1->$ MIN value is minus
Bit6	$1->$ MIN value is OL
Bit5 ~ bit 4 : no use	
Bit3	$1->$ MIN value is $\mathrm{N} / \mathrm{A}(\mathrm{OPEN})$
Bit2 ~ bit 1 : no use	
Bit0	$1->$ MIN value $=(65536+(11$
	$0->$ MIN value $=$ ($(11$ th BYTE $)$

$11^{\text {th }}$ BYTE: => High byte of MIN value
$12^{\text {th }}$ BYTE: => Low byte of MIN value
$13^{\text {th }}$ BYTE: => represent HH of $\mathrm{HH}: \mathrm{MM}$
$14^{\text {th }}$ BYTE: => represent MM of HH:MM

15 ${ }^{\text {th }}$ BYTE: : => No use

$16^{\text {th }}$ BYTE:

The last byte is the end byte, it value is 3 , first and last byte are used to check frame error.

Example:

After sending A command to 376, it returned $0 \times 020 \times 060 \times 200 \times 000 \times 0 C 0 \times 760 \times 000 \times 0 \mathrm{C} 0 \times B C 0 \times 000 \times 0 B 0 \times B E 0 \times 080 \times 410 \times 820 \times 03$

The $2^{\text {nd }}$ byte is 0×06, that is $00000110 b$

bit0 $=0->$ not recording
bit2 bit $1=11$-> calculate MAX/MIN in background and Icd "MAX""MIN" will flash.
bit3 $=0$-> Memory is not full .
bit4=0->not in REL
bit5=0->not HOLD
bit6=0->BATTERY NORMAL
bit7 $=0->C$

The $3^{\text {nd }}$ byte is 0×20, that is 00100000 b

bit5=1->in auto power off mode

The $4^{\text {th }}$ byte: is 0×00, that is 00000000 b

Bit7=0->plus
Bit6=0-> not OL
Bit5 ~ bit 4 : no use
Bit3=0-> not OPEN ;
Bit2 ~ bit 1 : no use
Bit0=0-> Lcd reading $=((5$ th BYTE $) \times 256+6$ th BYTE $) / 100.0$
5th BYTE=0x0C=12(decimal) 6th BYTE=0x76=118(decimal)
So, the Lcd reading $=(12 \times 256+118) / 100.0=31.90$

The $7^{\text {th }}$ byte: is 0×00, that is 00000000 b

Bit7 $7=0->$ MAX value is plus
Bit6=0-> MAX value is not OL
Bit5 ~ bit 4 : no use
Bit3=0-> MAX value is not OPEN
Bit2 ~ bit 1 : no use
Bit0 $=0->$ MAX value $=((8$ th BYTE $) \times 256+9$ th BYTE $) / 100.0$ 8th BYTE $=0 \times 0 \mathrm{C}=12$ (decimal) 9 th $\mathrm{BYTE}=0 \times B C=188$ (decimal) So, the MAX value $=(12 \times 256+188) / 100.0=32.60$

The $10^{\text {th }}$ byte: is 0×00, that is 00000000 b
Bit $7=0->$ MIN value is plus
Bit6 $=0->$ MIN value is not OL
Bit5 ~ bit 4 : no use
Bit3 $=0->$ MIN value is not OPEN
Bit2 ~ bit 1 : no use
Bit0 $=0->$ MIN value $=((11$ th BYTE $) \times 256+12$ th BYTE $) / 100.0$
11th $\mathrm{BYTE}=0 \times 0 \mathrm{~B}=11$ (decimal) 12 th $\mathrm{BYTE}=0 \times B E=190$ (decimal)
So, the MIN value $=(11 \times 256+190) / 100.0=30.06$

$13^{\text {th }}$ BYTE $=0 \times 0814^{\text {th }}$ BYTE $=0 \times 41$

[^0]
[^0]: Represents that the clock shows 08:41

