

Biocrede Incorporated

Tel:1-734-678-6956 Email:info@Biocrede.com Website:www.Biocrede.com

Store at -20°C

Second-Strand cDNA Synthesis Kit

Cat. No.	Description	Quantity	
PCR-2161	Second-Strand cDNA Synthesis Kit-dNTP based	1.25 ml	
PCR-2162	Second-Strand cDNA Synthesis Kit-dNTP/dUTP based	1.25 ml	

The following items are also included with Biocrede's Second Strand cDNA Synthesis Kits.

E. coli DNA Ligase (10 U/µl)

E. coli DNA Polymerase I (10 U/µl)

RNase H E. coli (5 U/µl)

dNTPs Mixture (10 mM)

dNTP/dUTP Mixture (10 mM)

10X Second Strand cDNA Synthesis Buffer

Product

Biocrede's Second Strand cDNA Synthesis Kit is an efficient system of generating double stranded cDNA from first strand cDNA templates. The *E. coli* RNase H nicks RNA in the DNA:RNA hybrid, while the *E. coli* DNA Polymerase replaces the RNA with deoxyribonucleotides. The *E. coli* DNA Ligase completes the double stranded DNA formation by linking the gaps between the newly synthesized cDNA strand. The dNTP based kit (Cat. No. PCR-2161) and dNTP/ dUTP based kit (Cat. No. PCR-2162) provide different combinations of deoxyribonucleotides to support a full range of end user needs and applications.

Unit Definition

One unit is defined as the amount of enzyme required to incorporate 1 nmol of deoxynucleotide into acid-precipitable material in 10 minutes at 37°C using Poly(A) and Oligo(dT) as template and primer, respectively.

Applications

- RNA-Seq Library Construction
- Downstream double-stranded blunt-end cDNA synthesis for cloning
- Downstream double-stranded cDNA library construction

Reaction Buffer Components

20 mM Tris-HCl (pH 7.5), 12 mM (NH4)2SO4, 10 mM MgCl2, 0.16 mM β-NAD.

Shipping and Storage

Store all components at -20°C. All components are stable for 1 year from the date of shipping when stored and handled properly. Avoid repeated freeze-thaw cycles to retain maximum performance.

Protocol

1. Prepare the following reaction mixture on ice:

Components	Volume	Final Concentration
First Strand cDNA (RT products)	Variable	10 ng - 2 µg/rxn
E. coli DNA Ligase (10 U/µl) E. coli DNA Polymerase I (10 U/µl)	4 µl 4 µl	40 U 40 U
RNase H E. coli (5 U/µI)	4 µl	20 U
dNTP Mixture (10 mM each) or dNTP/dUTP Mixture (10 mM each)	1 µl	200 µM
10X Second Strand cDNA Synthesis Buffer	5 µl	1X
Nuclease-free H ₂ O	Up to 50 µl	-

2. Collect all components by a brief centrifugation. Incubate the reaction at 16°C for 2.5 hours.

- Chill on ice. The newly generated double-stranded cDNA is ready for immediate downstream applications, or for long-term storage at -20°C.
- The quantity and size distribution of the synthesized products can be visualized by agarose gel electrophoresis with ethidium bromide or SafeView[™] (Cat No. G108) staining.

Troubleshooting

Problem	Possible Cause	Possible Solution
Low yield	Incorrect reaction preparation	Check reaction components and use only the reagents provided
	Incorrect temperature	Incubate reaction at 16°C to prevent spurious synthesis by <i>E. coli</i> DNA Polymerase
	Low quality of RNA into the first strand cDNA synthesis	Assess the integrity of RNA prior to cDNA synthesis

For laboratory research only. Not for clinical applications. For technical questions, please email us at technical@biocrede.com or visit our website at www.biocrde.com