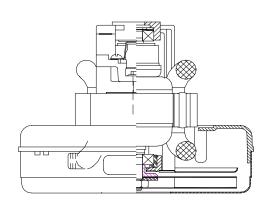


AMETEK

LAMB ELECTRIC

Model: 119621-00


DESCRIPTION

- One stage
- 240 volts
- 5.7"/145 mm diameter
- Ball/ sleeve bearings
- Single speed
- Thru-flow discharge
- Aluminum fan end bracket
- Aluminum commutator bracket

DESIGN APPLICATION

- Equipment operating in environments not requiring separation of working air from motor ventilating air

- Designed to handle clean, dry, filtered air only

SPECIAL FEATURES

- Suitable for 240 volt AC operation, 50/60 Hz

- UL recognized, category PGRY2 (E47185)

- Provision for grounding
- Skeleton-frame design
- Thermal protection, automatic reset, UL category XEWR2 (E27701)

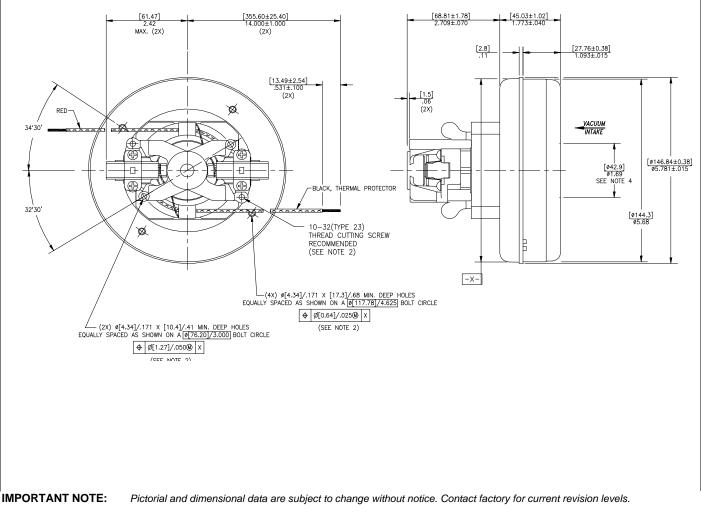
- The Lamb Electric vacuum motor line offers a wide range of performance levels to meet design needs

TYF	PICAL MOTOR PERFORMANCE.*	(At 240 v	volts, 60Hz, te	est data is o	corrected	l to stand	ard condi	tions of 29	.92 Hg, 6	8° F.)
				Orifice	Amps	Watts	RPM	Vac	Flow	Air
			120	(Inches)		(In)		(In.H2O)	(CFM)	Watts
			-1	2.000	4.0	874	21351	4.2	110.8	52
Α			- 100	1.750	4.0	884	21271	7.5	109.1	97
S				1.500	4.0	886	21236	12.1	100.2	142
т			- 80	1.250	4.0	884	21246	18.9	87.3	194
М			60 [₩]	1.125	4.0	868	21468	23.0	78.1	212
			Air Flow-	1.000	3.9	848	21872	27.6	67.4	219
D	CCH setup 40		+ 40 ¹	0.875	3.7	811	22414	32.6	55.9	214
Α	20			0.750	3.5	772	23071	38.1	44.3	198
т			- 20	0.625	3.3	722	23994	43.8	32.9	169
Α				0.500	3.0	675	24991	49.5	22.3	130
		$\left \right\rangle$		0.375	2.8	617	26050	55.1	13.4	87
	0.000 0.250 0.375 0.500 0.625 0.625 0.625 0.875 0.875 1.125 1.1250	1.750	2.000	0.250	2.6	578	27109	60.6	6.6	47
	Orifice DiameterInches			0.000	2.4	547	28044	67.0	0.0	0
	1800 -		60	Orifice	Amps	Watts	RPM	Vac	Flow	Air
М	1600 - Vac			(mm)	-	(In)		(mm H2O)	(L/Sec)	Watts
Е	1400		- 50	48.0	3.8	878	21316	143	51.9	72
т				40.0	4.0	885	21247	272	48.6	129
R		x	40	30.0	4.0	875	21368	537	38.8	204
L	1000		- 30	23.0	3.7	820	22279	796	27.7	215
С			- 30 🐇	19.0	3.5	771	23089	971	20.8	197
	600		20 [:] ₹	16.0	3.3	724	23957	1107	15.7	170
D		■		13.0	3.1	680	24891	1243	11.0	134
Α	400		- 10	10.0	2.8	626	25891	1378	7.0	93
Т	200	╶┤╺╸╲		6.5	2.6	580	27056	1532	3.3	49
Α			o	0.0	2.4	547	28044	1702	0.0	0
	0.0 6.5 13.0 19.0 23.0 23.0	30.0 40.0	48.0	Noto: Motri	o porforma	unco data is		from the AST	M data abo	

Note: Metric performance data is calculated from the ASTM data above.

* Data represents performance of a typical motor sampled from a large production quantity. Individual motor data may vary due to normal manufacturing variations.

Orifice Diameter--mm


Test opeas. 210 minimum ocaled Vadudini. 00.0 Okin IOE. 770 minimum Vadudini. 20.0 miaximum Vadus. 1010	Test Specs: 240	Minimum Sealed Vacuum:	63.0"	ORIFICE:	7/8"	Minimum Vacuum:	29.0"	Maximum Watts:	1010
---	-----------------	------------------------	-------	----------	------	-----------------	-------	----------------	------

PRODUCT BULLETIN

DIMENSIONS

NOTES:

- 1. LEADS: 18GA STRANDED. LEADS CAN BE ANY COLOR EXCEPT GREEN OR GREEN WITH YELLOW STRIPE. 2. GROUNDING OR EARTHING PROVISIONS: USE HOLES AS INDICATED FOR GROUNDING OR EARTHING.
- REFER TO APPROPRIATE LISTING OR REGULATORY AGENCY FOR PROPER METHOD OF GROUNDING OR EARTHING, MOTOR IDENTIFICATION: MANUFACTURER'S NAME, MODEL NUMBER, VOLTAGE, FREQUENCY, INSPECTOR'S CODE, DATE OF MANUFACTURE, AGENCY RECOGNITION CODE; PLANT LOCATION CODE, "THERMALLY PROTECTED L 3.8 AMPS" AND COUNTRY OF ORIGIN 3.
- 4. MOUNTING MUST NOT RESTRICT THIS DIAMETER.

WARNING AMETEK Lamb Electric thru-flow vacuum motors must never be used in applications in which wet or moist conditions are involved, where dry chemicals or other volatile materials are present, or where airflow may be restricted or blocked. Such motors are designed to permit the vacuumed air to pass over the electrical winding to cool it. Thus any foam, liquid (including water), dry chemical, or other foreign substance coming in contact with electrical conductors could cause combustion (depending on volatility) or electrical shock. Failure to observe these precautions could result in property damage and severe personal injury, including death in extreme cases. All applications incorporating Lamb Electric motors should be submitted to Underwriters Laboratories Inc. or other appropriate organizations or agencies for testing specifically related to the safety of your equipment.