RP2040 A microcontroller by Raspberry Pi

Pico Python SDK
A MicroPython environment
for RP2040 microcontrollers

__|
Raspberry Pi Trading Ltd

Pico Python SDK

Colophon

© 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-01-12
build-version: 4c83ab5a-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD ("RPTL) "AS IS" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE
LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL's Standard Terms. RPTL's provision of the RESOURCES does not
expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties expressed
in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Pico Python SDK

Table of Contents

Colophon

1. The MicroPython Environment

Legal Disclaimer Notice
1.1. Getting MicroPython for the RP2040
1.2. Building MicroPython for the RP2040
1.3. Installing MicroPython on the Raspberry Pi Pico. . ..

2. Connecting to the MicroPython REPL

3. The RP2040 Port

2.7. Connecting from a Raspberry Pi over USB
2.2. Connecting from a Raspberry Pi using GPIO
2.3. Connecting from a Mac using USB .
2.4. Saying "Hello World" from REPL . .

3.1. Blinking an LED in MicroPython
3.2. UART

3.3. Interrupts.
3.4. Multicore Support
3.5.12C
3.6.SPI

3.8. PIO Support
381.1IRQ ...
3.8.2.WS2812 LED (NeoPixel) . .
3.8.3. UART TX
3.8.4. SPI
385.PWM. .
3.8.6. Using pioasm.

4. Using an Integrated Development Environment (IDE)

Appendix A: App Notes.

4.1. Using Thonny

4.1.1. Connecting to the Raspberry Pi Pico from Thonny

4.1.2. Blinking the LED from Thonny
4.2.Usingrshell
Using a SSD1306-based OLED graphics display

Wiring information

ListofFiles.............

Bill of Materials
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)

Wiring information

ListofFiles...............

Bill of Materials

Table of Contents

Pico Python SDK

Chapter 1. The MicroPython
Environment

TO DO: Talk about C vs Micro Python here? Need to mention how to use the stuff in the BootRom from Python here.

MicroPython implements the entire Python 3.4 syntax (including exceptions, with, yield from, etc., and additionally async
/await keywords from Python 3.5). The following core datatypes are provided: str (including basic Unicode support), bytes,
bytearray, tuple, list, dict, set, frozenset, array.array, collections.namedtuple, classes and instances. Builtin modules
include sys, time, and struct, etc. Select ports have support for _thread module (multithreading). Note that only a subset of
Python 3 functionality is implemented for the data types and modules.

MicroPython can execute scripts in textual source form or from precompiled bytecode, in both cases either from an on-
device filesystem or "frozen" into the MicroPython executable.

1.1. Getting MicroPython for the RP2040

Pre-built Binary

A pre-built binary of the MicroPython firmware is available from the Pico Getting Started pages.

O IMPORTANT

The following instructions assume that you are using a Raspberry Pi Pico and some details may differ if you are using
a different RP2040-based board. They also assume you are using Raspberry Pi OS running on a Raspberry Pi 4, or an
equivalent Debian-based Linux distribution running on another platform.

If you do not want to download the pre-built release binary from the Pico Getting Started pages, and instead want to build
your own binary.

Start by creating a pico directory to keep all pico related checkouts in. These instructions create a pico directory at

/home/pi/pico.

S cd ~/
$ mkdir pico
$ cd pico

Then clone the micropython git repository.

$ git clone -b pico git@github.com:raspberrypi/micropython.git

To build the Raspberry Pi Pico MicroPython port you'll also need to install some extra tools. To build projects you'll need
CMake, a cross-platform tool used to build the software, and the GNU Embedded Toolchain for Arm. You can install both
these via apt from the command line. Anything you already have installed will be ignored by apt.

$ sudo apt update
$ sudo apt install cmake gcc-arm-none-eabi

]
1.1. Getting MicroPython for the RP2040 3

https://pico.raspberrypi.org/getting-started
https://pico.raspberrypi.org/getting-started
https://cmake.org/
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads

Pico Python SDK

1.2. Building MicroPython for the RP2040

To build the port, you should change directory into micropython check out, and then update the Git submodules, before
proceeding to build the MicroPython port.

$ cd micropython

$ git submodule update --init --recursive
S make -C mpy-cross

$ cd ports/rp2

$ make

Amongst other targets, we have now built:
® firmware.elf, which is used by the debugger
® firmware.uf2, which can dragged onto the RP2040 USB Mass Storage Device

you can find these in the ports/rp2/build/ directory.

1.3. Installing MicroPython on the Raspberry Pi Pico

The simplest method to load software onto a RP2040-based board is by mounting it as a USB Mass Storage Device.
Doing this allows you to drag the firmware.uf2 onto the board to program the flash. Go ahead and connect the Raspberry
Pi Pico to your Raspberry Pi using a micro-USB cable, making sure that you hold down the B0OOTSEL button to force it into
USB Mass Storage Mode.

O NoTE

If you are not following these instructions on a Raspberry Pi Pico, you may not have a BOOTSEL button. If this is the case,
you should check if there is some other way of grounding the flash CS pin, such as a jumper, to tell RP2040 to enter
the USB boot mode on boot. If there is no such method, you can load code using the Serial Wire Debug interface (see
the Getting started with Raspberry Pi Pico book for more details).

]
1.2. Building MicroPython for the RP2040 4

https://pico.raspberrypi.org/files/getting_started.pdf

Pico Python SDK

Chapter 2. Connecting to the
MicroPython REPL

The MicroPython port for Raspberry Pi Pico and other RP2040-based boards supports Serial-over-USB.

2.1. Connecting from a Raspberry Pi over USB

Once the MicroPython port has been installed, you can install minicom:
$ sudo apt install minicom

and then open the serial port:
$ minicom -b 1152008 -o -D /dev/ttyACM@

Toggling the power to Raspberry Pi Pico you should see,

MicroPython v1.12-725-g315e7f50c-dirty on 2020-08-21; Raspberry Pi PICO with cortex-m@plus
Type "help()" for more information.
>>>

printed to the console when the Raspberry Pi Pico is first powered on.

@ TP

When in minicom pressing CTRL-A followed by U will add carriage returns to the serial output so that each print will end
with a newline. To exit minicom, use CTRL-A followed by X.

O NoOTE

In the rare case where you can't connect to Raspberry Pi Pico you may have to reboot your Raspberry Pi.

2.2. Connecting from a Raspberry Pi using GPIO

The MicroPython port for RP2040 also provides the REPL over the Raspberry Pi Pico UART®, so alternatively you can

connect to the REPL via this mechanism. The first thing you'll need to do is to enable UART serial on the Raspberry Pi. To
do so, run raspi-config

$ sudo raspi-config

and go to Interfacing Options — Serial and select "No" when asked "Would you like a login shell to be accessible over
serial?" and "Yes" when asked "Would you like the serial port hardware to be enabled?" You should see something like

2.1. Connecting from a Raspberry Pi over USB 5

Pico Python SDK

Figure 1.
Figure 1. Enabling a pi@raspberrypi: ~
serial UART using File Edit Tabs Help
raspi-configon

the Raspberry Pi.

The serial login shell is disabled
The serial interface is enabled

Leaving raspi-config you should choose "Yes" and reboot your Raspberry Pi to enable the serial port.

You should then wire the Raspberry Pi and the Raspberry Pi Pico together with the following mapping:

Raspberry Pi Raspberry Pi Pico
GND GND

GPIO15 (UART_RXO) GPIO0 (UARTO_TX)
GPIO14 (UART_TXO) GPOIT (UARTO_RX)
See Figure 2.

Figure 2. A Raspberry
Pi 4 and the Raspberry
Pi Pico with UARTO
connected together.

-0|d9.
o0 0 00
e o 0 00
oo 0 00

8102 Id Auuagdsey 6
4 19pOW b 1d Auiaqdsey

o0 0 00
e o 000
e o0 00
o0 0 00

oo 0 00
e o 0 00

o0 0 00
o0 0 00
o0 0 00
o0 0 00

© 0 0000000000000 0000000

fritzing

then connect to the board using minicom connected to /dev/serialo,

2.2. Connecting from a Raspberry Pi using GPIO 6

Pico Python SDK

$ minicom -b 115200 -o -D /dev/serial®@

2.3. Connecting from a Mac using USB

So long as you're using a recent version of macOS like Catalina, drivers should already be loaded. Otherwise see the
manufacturers' website for FTDI Chip Drivers. Then you should use a Terminal program, e.g. Serial or similar to connect to
the serial port.

O NoTE

Serial also includes driver support if needed.

The Serial-over-USB port will show up as /dev/tty.usbmodem0000000000001. If you're using Serial this will be shown as "Board
in FS mode — CDC" in the port selector window when you open the application. Connect to this port and hit Return and
you should see the REPL prompt.

2.4. Saying "Hello World" from REPL

Once connected you can check that everything is working by typing a simple "Hello World" into the REPL,

>>> print('hello pico!")
hello pico!

>>>>

]
2.3. Connecting from a Mac using USB 7

https://www.ftdichip.com/FTDrivers.htm
https://apps.apple.com/us/app/serial/id877615577?mt=12
https://www.decisivetactics.com/support/view?article=compatible-devices

Pico Python SDK

Chapter 3. The RP2040 Port

Currently supported features include:
® REPL over USB and UART (on GPO/GP1).
® 128KkB filesystem using littlefs2 on the internal flash.
® ytime module with sleep and ticks functions.
® ubinascii modile.
® machine module with some basic functions.
o machine.Pin class.
o machine.Timer class.
o machine.ADC class.
o machine.I2C and machine.SoftI2C classes.
o machine.SPI and machine.SoftSPI classes.
o machine.WDT class.
o machine.PWM class.
o machine.UART class.
® rp2 specific module.
o Support for PIO.
® Multicore support exposed via the standard _thread module
Documentation around MicroPython is available from https://docs.micropython.org.

TO DO: Talk about the chip-specific features here

3.1. Blinking an LED in MicroPython

The on-board LED on the Raspberry Pi Pico is connected to GPIO pin 25. You can blink this on and off from the REPL.
When you see the REPL prompt enter the following,

>>> from machine import Pin
>>> led = Pin(25, Pin.OUT)

then you can turn the LED on with,
>>> led.value(1)
and off again with,
>>> led.value(0)
Alternatively you can use a timer to blink the on-board LED.

]
3.1. Blinking an LED in MicroPython 8

https://github.com/ARMmbed/littlefs
https://docs.micropython.org

Pico Python SDK
]

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py Lines 1- 9

1 from machine import Pin, Timer
2

3 led = Pin(25, Pin.0UT)

4 tim = Timer()

5 def tick(timer):

global led

led.toggle()

O 0 N o

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

3.2. UART

USB serial is available from MicroPython, but the REPL is also available over UARTO by default. The default setting for
UART are taken from the C SDK.

Table T. Default UART | £ inction Default
UART_BAUDRATE 115,200
UART_BITS 8
UART_STOP 1
UARTO_TX Pin0
UARTO_RX Pin 1
UART1_TX Pin 4
UARTT_RX Pin 5

3.3. Interrupts

You can set an IRQ like this:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/irq/irq.py Lines 1 - §

1 from machine import Pin

2

3 p2 = Pin(2, Pin.IN, Pin.PULL_UP)

4 p2.irq(lambda pin: print("IRQ with flags:", pin.irq().flags()),
5 Pin.IRQ_FALLING)

It should print out something when GP2 has a falling edge.

3.4. Multicore Support

Example usage:

3.2. UART 9

https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py#L1-L9
https://github.com/raspberrypi/pico-micropython-examples/tree/master/irq/irq.py#L1-L5

Pico Python SDK
]

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/multicore/multicore.py Lines 1- 12

1 import time, _thread, machine

2

3 def task(n, delay):

4 led = machine.Pin(25, machine.Pin.OUT)
5 for i in range(n):

6 led.high()

7 time.sleep(delay)

8 led.low()

9 time.sleep(delay)

10 print('done')

11
12 _thread.start_new_thread(task, (108, 0.5))

Only one thread can be started/running at any one time, because there is no RT0S just a second core. The GIL is not
enabled so both cored and core1 can run Python code concurrently, with care to use locks for shared data.

3.5.12C

Example usage:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c.py Lines 1- 11

1 from machine import Pin, I2C

2

3 i2c = I2C(@, scl=Pin(9), sda=Pin(8), freq=100000)
4 i2c.scan()

5 i2c.writeto(76, b'123")

6 i2c.readfrom(76, 4)

7

8 i2c = I2C(1, scl=Pin(7), sda=Pin(6), freq=100000)
9 i2c.scan()

10 i2c.writeto_mem(76, 6, b'456")

11 i2c.readfrom_mem(76, 6, 4)

12C can be constructed without specifying the frequency, if you just want all the defaults.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c_without_freq.py Lines 1- 3

1 from machine import I2C
2
3 i2c = I2C(@) # defaults to SCL=Pin(9), SDA=Pin(8), freq=460000

© WARNING
There may be some bugs reading/writing to device addresses that do not respond, the hardware seems to lock up in
some cases.
T.ab,e 2 Default 26 Function Default
pins
12C Frequency 400,000
12CO SCL Pin9

3.5.12C 10

https://github.com/raspberrypi/pico-micropython-examples/tree/master/multicore/multicore.py#L1-L12
https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c.py#L1-L11
https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/i2c_without_freq.py#L1-L3

Pico Python SDK
]

12C0 SDA Pin8
12C1 SCL Pin7
12C1 SDA Pin 6

3.6. SPI

Example usage:

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/sqi/sqi.py Lines 1- 11

1 from machine import SPI

2

3 spi = SPI(@)

4 spi = SPI(©, 100_000)

5 spi = SPI(@, 100_600, polarity=1, phase=1)

6

7 spi.write('test')

8 spi.read(5)

9

10 buf = bytearray(3)

11 spi.write_readinto('out', buf)
O NoTE
The chip select must be managed separately using a machine.Pin.

T?ble . Default P Function Default
pins

SPI_BAUDRATE 1,000,000
SPI_POLARITY 0
SPI_PHASE 0
SPILBITS 8
SPI_FIRSTBIT MSB
SPI0_SCK Pin6
SPIO_MOSI Pin7
SPIO_MISO Pin 4
SPIT1_SCK Pin 10
SPI1_MOSI Pin 11
SPIT_MISO Pin 8

3.7. PWM

Example of using PWM to fade an LED:

3.6. SPI 1

https://github.com/raspberrypi/pico-micropython-examples/tree/master/sqi/sqi.py#L1-L11

Pico Python SDK
]

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pwm/pwm_fade.py Lines 1 - 25

Example using PWM to fade an LED.

import time
from machine import Pin, PWM

1
2
3
4
5
6
7 # Construct PWM object, with LED on Pin(25).
8 pwm = PWM(Pin(25))

9

10 # Set the PWM frequency.

11 pwm.freq(1000)

12
13 # Fade the LED in and out a few times.
14 duty = @

15 direction = 1
16 for _ in range(8 * 256):

17 duty += direction

18 if duty > 255:

19 duty = 255

20 direction = -1

21 elif duty < @:

22 duty = @

23 direction = 1

24 pwm.duty_u16(duty * duty)
25 time.sleep(0.001)

3.8. PIO Support

The current status of PIO support

The current development status of PIO support can be found in this Github issue. Support for PIO is
preliminary and may be unstable.

Current support allows you to define Programmable 10 (PI0) Assembler blocks and using them in the PIO peripheral, more
documentation around PIO can be found in Chapter 3 of the RP2040 Datasheet and Chapter 4 of the Pico C/C++ SDK
book.

The Raspberry Pi Pico MicroPython por a new @rp2.asm_pio decorator, along with a rp2.PI0 class. The definition of a PIO
program, and the configuration of the state machine, into 2 logical parts:

® The program definition, including how many pins are used and if they are in/out pins. This goes in the @rp2.asm_pio
definition. This is close to what the pioasm tool from the Pico SDK would generate from a .pio file (but here it's all
defined in Python).

® The program instantiation, which sets the frequency of the state machine and which pins to bind to. These get set
when setting a SM to run a particular program.

The aim was to allow a program to be defined once and then easily instantiated multiple times (if needed) with different
GPIO. Another aim was to make it easy to basic things without getting weighed down in too much PIO/SM configuration.

Example usage, to blink the on-board LED connected to GPIO 25,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_blink.py Lines 1 - 28

1 import time

3.8. PIO Support

12

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pwm/pwm_fade.py#L1-L25
https://github.com/raspberrypi/micropython/issues/16#issuecomment-698996984
https://pico.raspberrypi.org/files/rp2040_datasheet.pdf#section_pio
https://pico.raspberrypi.org/files/rp2040_datasheet.pdf
https://pico.raspberrypi.org/files/pico_sdk.pdf#section_pio
https://pico.raspberrypi.org/files/pico_sdk.pdf
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_blink.py#L1-L28

Pico Python SDK
]

a b WN

0 N o

11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28

from rp2 import PIO, asm_pio
from machine import Pin

Define the blink program. It has one GPIO to bind to on the set instruction,

output pin.
Use lots of delays to make the blinking visible by eye.
@asm_pio(set_init=rp2.PI0.0UT_LOW)
def blink():
wrap_target()
set(pins, 1) [31]

nop () [31]
nop () [31]
nop () [31]
nop () [31]
set(pins, 0) [31]
nop () [31]
nop () [31]
nop () [31]
nop () [31]
wrap()

Instantiate a state machine with the blink program, at 1000Hz, with set bound to Pin(25)

(LED on the rp2 board)
sm = rp2.StateMachine(®, blink, freq=1000, set_base=Pin(25))

Run the state machine for 3 seconds. The LED should blink.
sm.active(1)
time.sleep(3)
sm.active(0)

or via explict exec.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_exec.py Lines 1- 27

o N o o wWwN =

N NN N NNMNNMNNAQ A aaaaaaaaaaa
N o o WODN =2 ®©® O 00N WN =2 O®© Vv

Example using PIO to turn on an LED via an explicit exec.
#

Demonstrates:

- using set_init and set_base

- using StateMachine.exec

import time
from machine import Pin
import rp2

Define an empty program that uses a single set pin.
@rp2.asm_pio(set_init=rp2.PI0.0UT_LOW)
def prog():

pass

Construct the StateMachine, binding Pin(25) to the set pin.
sm = rp2.StateMachine(®, prog, set_base=Pin(25))

Turn on the set pin via an exec instruction.
sm.exec("set(pins, 1)")

Sleep for 500ms.
time.sleep(0.5)

Turn off the set pin via an exec instruction.
sm.exec("set(pins, 0)")

3.8. PIO Support

13

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_exec.py#L1-L27

Pico Python SDK
]

Some points to note,

® All program configuration (eg autopull) is done in the gasm_pio decorator. Only the frequency and base pins are set in
the StateMachine constructor.

® [n]is used for delay, .set(n) used for sideset

® The assembler will automatically detect if sideset is used everywhere or only on a few instructions, and set the
SIDE_EN bit automatically

The idea is that for the 4 sets of pins (in, out, set, sideset, excluding jmp) that can be connected to a state machine, there's
the following that need configuring for each set:

1. base GPIO

2. number of consecutive GPIO

3. initial GPIO direction (in or out pin)
4. initial GPIO value (high or low)

In the design of the Python API for PIO these 4 items are split into "declaration” (items 2-4) and "instantiation" (item 1). In
other words, a program is written with items 2-4 fixed for that program (eg a WS2812 driver would have 1 output pin) and
item 1 is free to change without changing the program (eg which pin the WS2812 is connected to).

Soin the easm_pio decorator you declare items 2-4, and in the StateMachine constructor you say which base pin to use (item
1). That makes it easy to define a single program and instantiate it multiple times on different pins (you can't really
change items 2-4 for a different instantiation of the same program, it doesn't really make sense to do that).

And the same keyword arg (in the case about it's sideset_pins) is used for both the declaration and instantiation, to show
that they are linked.

To declare multiple pins in the decorator (the count, ie item 2 above), you use a tuple/list of values. And each item in the
tuple/list specified items 3 and 4. For example:

1 @asm_pio(set_pins=(PI0O.OUT_LOW, PIO.OUT_HIGH, PIO.IN_LOW), sideset_pins=PI0.OUT_LOW)
2 def foo():

3

4

5 sm = StateMachine(®, foo, freq=10000, set_pins=Pin(15), sideset_pins=Pin(22))

In this example:

e there are 3 set pins connected to the SM, and their initial state (set when the StateMachine is created) is: output low,
output high, input low (used for open-drain)

® thereis 1 sideset pin, initial state is output low
® the 3 set pins start at Pin(15)
e the 1 sideset pin starts at Pin(22)

The reason to have the constants 0UT_LOW, OUT_HIGH, IN_LOW and IN_HIGH is so that the pin value and dir are automatically set
before the start of the PIO program (instead of wasting instruction words to do set(pindirs, 1) etc at the start).

3.8.1.IRQ

There is support for PIO IRQs, e.g.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_irq.py Lines 1 - 25

1 import time
2 import rp2

|
3.8. PIO Support 14

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_irq.py#L1-L25

Pico Python SDK
]

8
4 @rp2.asm_pio()

5 def irq_test():

6 wrap_target()

7 nop() [31]
8 nop () [31]
9 nop() [31]
10 nop () [31]
11 irq(e)

12 nop() [31]
13 nop () [31]
14 nop () [31]
15 nop () [31]
16 irq(1)

17 wrap()

18

19
20 rp2.PI0(0).irq(lambda pio: print(pio.irq().flags()))
21

22 sm = rp2.StateMachine(®, irq_test, freq=1000)
23 sm.active(1)

24 time.sleep(1)

25 sm.active(0)

An example program that blinks at THz and raises an IRQ at THz to print the current millisecond timestamp,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_1hz.py Lines 1 - 33

1 # Example using PIO to blink an LED and raise an IRQ at THz.
2

3 import time

4 from machine import Pin

5 import rp2

6

7

8 @rp2.asm_pio(set_init=rp2.PI0.0UT_LOW)
9 def blink_1hz():

10 # Cycles: 1 + 1 + 6 + 32 * (30 + 1) = 1000
11 irq(rel(0))

12 set(pins, 1)

13 set(x, 31) [5]

14 label("delay_high")

15 nop () [29]
16 jmp(x_dec, "delay_high")

17

18 # Cycles: 1 + 7 + 32 * (30 + 1) = 1000
19 set(pins, 0)

20 set(x, 31) [6]

21 label("delay_low")

22 nop () [29]
23 jmp(x_dec, "delay_low")

24

25

26 # Create the StateMachine with the blink_Thz program, outputting on Pin(25).
27 sm = rp2.StateMachine(®, blink_1hz, freq=2000, set_base=Pin(25))

28

29 # Set the IRQ handler to print the millisecond timestamp.

30 sm.irq(lambda p: print(time.ticks_ms()))

31

32 # Start the StateMachine.

33 sm.active(1)

|
3.8. PIO Support 15

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_1hz.py#L1-L33

Pico Python SDK
]

or to wait for a pin change and raise an IRQ.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pinchange.py Lines 1 - 46

1 # Example using PIO to wait for a pin change and raise an IRQ.

2 #

3 # Demonstrates:

4 # - PIO wrapping

5 # - PIO wait instruction, waiting on an input pin

6 # - PIO irq instruction, in blocking mode with relative IRQ number
7 # - setting the in_base pin for a StateMachine

8 # - setting an irq handler for a StateMachine

9 # - instantiating 2x StateMachine's with the same program and different pins
10

11 import time

12 from machine import Pin

13 import rp2

14

15

16 @rp2.asm_pio()

17 def wait_pin_low():

18 wrap_target()

19

20 wait(@, pin, @)

21 irq(block, rel(®@))

22 wait(1, pin,)

23

24 wrap()

25

26

27 def handler(sm):

28 # Print a (wrapping) timestamp, and the state machine object.
29 print(time.ticks_ms(), sm)
30

31

w
N

Instantiate StateMachine(@) with wait_pin_low program on Pin(16).

33 pin16 = Pin(16, Pin.IN, Pin.PULL_UP)

34 sm@ = rp2.StateMachine(0, wait_pin_low, in_base=pin16)

35 sm@.irq(handler)

36

37 # Instantiate StateMachine(1) with wait_pin_low program on Pin(17).
38 pinl17 = Pin(17, Pin.IN, Pin.PULL_UP)

39 sm1 = rp2.StateMachine(1, wait_pin_low, in_base=pin17)

40 sm1.irq(handler)

41

42 # Start the StateMachine's running.

N
w

sm@.active(1)
sm1.active(1)

5D
o o b

Now, when Pin(16) or Pin(17) is pulled low a message will be printed to the REPL.

3.8.2. WS2812 LED (NeoPixel)

While a WS2812 LED (NeoPixel) can be driven via the following program,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_ws2812.py Lines 1 - 52

1 # Example using PIO to drive a set of WS2812 LEDs.
2
3 import array, time

3.8. PIO Support 16

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pinchange.py#L1-L46
https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_ws2812.py#L1-L52

Pico Python SDK
]

- ® VOV © N o g >

R

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

52

from machine import Pin
import rp2

Configure the number of WS2812 LEDs.
NUM_LEDS = 8

@rp2.asm_pio(sideset_init=rp2.PI0.OUT_LOW, out_shiftdir=rp2.PI0.SHIFT_LEFT, autopull=True,

pull_thresh=24)
def ws2812():

T = 2
T2 = 5
T3 =3

wrap_target()
label("bitloop")

out(x, 1) .side(0) [T3 - 1]
jmp(not_x, "do_zero") .side(1) [T1 - 1]
jmp(“bitloop") .side(1) [T2 - 1]
label("do_zero")

nop() .side(0) [T2 - 1]
wrap()

Create the StateMachine with the ws2812 program, outputting on Pin(22).
sm = rp2.StateMachine (@, ws2812, freq=8_000_000, sideset_base=Pin(22))

Start the StateMachine, it will wait for data on its FIFO.
sm.active(1)

Display a pattern on the LEDs via an array of LED RGB values.
ar = array.array("I", [8 for _ in range(NUM_LEDS)])
Cycle colours.
for i in range(4 * NUM_LEDS):
for j in range(NUM_LEDS):
r=3j * 100 // (NUM_LEDS - 1)
b =100 - j * 180 // (NUM_LEDS - 1)
if j !'= 1 % NUM_LEDS:
r >>= 3
b >>= 3
ar[jl =r << 16 | b
sm.put(ar, 8)
time.sleep_ms(50)

Fade out.
for i in range(24):
for j in range(NUM_LEDS):
ar[j] >>=1
sm.put(ar, 8)
time.sleep_ms(50)

3.8.3. UART TX

A UART TX example,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_uart_tx.py Lines 1 - 42

1
2
3

Example using PIO to create a UART TX interface

from machine import Pin

3.8. PIO Support

17

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_uart_tx.py#L1-L42

Pico Python SDK

0w N o o b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

from rp2 import PIO, StateMachine, asm_pio

UART_BAUD = 115200
PIN_BASE = 10
NUM_UARTS = 8

@asm_pio(sideset_init=PI0.0UT_HIGH, out_init=PI0.OUT_HIGH, out_shiftdir=PI0.SHIFT_RIGHT)
def uart_tx():
Block with TX deasserted until data available

pull()
Initialise bit counter, assert start bit for 8 cycles
set(x, 7) .side(®@) [7]

Shift out 8 data bits, 8 execution cycles per bit
label("bitloop")

out(pins, 1) [6]

jmp(x_dec, "bitloop")

Assert stop bit for 8 cycles total (incl 1 for pull())
nop() .side(1) [6]

Now we add 8 UART TXs, on pins 10 to 17. Use the same baud rate for all of them.
uarts = []
for i in range(NUM_UARTS) :

sm = StateMachine(

i, uart_tx, freq=8 * UART_BAUD, sideset_base=Pin(PIN_BASE + i), out_base=Pin

(PIN_BASE + i)

)

sm.active(1)

uarts.append(sm)

We can print characters from each UART by pushing them to the TX FIFO
def pio_uart_print(sm, s):
for ¢ in s:
sm.put(ord(c))

Print a different message from each UART
for i, u in enumerate(uarts):
pio_uart_print(u, "Hello from UART {}!\n".format(i))

© NoTE

You

need to specify an intial OUT pin state in your program in order to be able to pass OUT mapping to your SM

instantiation, even though in this program it is redundant because the mappings overlap.

3.8.4. SPI

An SPI example.

TO DO: 8 bit only for now because we need to set pullthresh per program not per SM

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_spi.py Lines 1- 48

1
2
3

4

from machine import Pin

@rp2.asm_pio(out_shiftdir=0, autopull=True, pull_thresh=8, autopush=True, push_thresh=8,
sideset_init=(rp2.PI0.OUT_LOW, rp2.PIO.OUT_HIGH), out_init=rp2.PI0.0UT_LOW)
def spi_cpha@():

3.8. PIO Support

18

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_spi.py#L1-L48

Pico Python SDK
]

5 # Note X must be preinitialised by setup code before first byte, we reload after sending
each byte

6 # Would normally do this via exec() but in this case it's in the instruction memory and is
only run once

7 set(x, 6)

8 # Actual program body follows

9 wrap_target()

10 pull(ifempty) .side(Bx2) [1]

11 label("bitloop")

12 out(pins, 1) .side(0x0) [1]

13 in_(pins, 1) .side(@x1)

14 jmp(x_dec, "bitloop") .side(@x1)

15

16 out(pins, 1) .side(0x0)

17 set(x, 6) .side(@x0) # Note this could be replaced with mov x, y for
programmable frame size

18 in_(pins, 1) .side(@x1)

19 jmp(not_osre, "bitloop") .side(@x1) # Fallthru if TXF empties

20

21 nop () .side(0x0) [1] # CSn back porch

22 wrap()

23

24

25 class PIOSPI:

26

27 def __init__(self, sm_id, pin_mosi, pin_miso, pin_sck, cpha=False, cpol=False, freq
=1000000) :

28 assert(not(cpol or cpha))

29 self._sm = rp2.StateMachine(sm_id, spi_cpha®, freq=4*freq, sideset_base=Pin(
pin_sck), out_base=Pin(pin_mosi), in_base=Pin(pin_sck))

30 self._sm.active(1)

31

32 # Note this code will die spectacularly cause we're not draining the RX FIFO

33 def write_blocking(wdata):

34 for b in wdata:

35 self._sm.put(b << 24)

36

37 def read_blocking(n):

38 data = []

39 for i in range(n):

40 data.append(self._sm.get() & Oxff)

41 return data

42

43 def write_read_blocking(wdata):

44 rdata = []

45 for b in wdata:

46 self._sm.put(b << 24)

47 rdata.append(self._sm.get() & Oxff)

48 return rdata

O NoTE

This SPI program supports programmable frame sizes (by holding the reload value for X counter in the Y register) but
currently this cant be used, because the autopull threshold is associated with the program, instead of the SM
instantiation.

|
3.8. PIO Support 19

Pico Python SDK

3.8.5. PWM

A PWM example,

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pwm.py Lines 1 - 43

Example of using PIO for PWM, and fading the brightness of an LED

1
2

3 from machine import Pin

4 from rp2 import PIO, StateMachine, asm_pio
5 from time import sleep
6
7
8

@asm_pio(sideset_init=PI0.0UT_LOW)
9 def pwm_prog():
10 pull(noblock) .side(®)

11 mov(x, osr) # Keep most recent pull data stashed in X, for recycling by noblock
12 mov(y, isr) # ISR must be preloaded with PWM count max

13 label("pwmloop")

14 jmp(x_not_y, "skip")

15 nop () .side(1)

16 label("skip")

17 jmp(y_dec, "pwmloop")

18

19

20 class PIOPWM:

21 def __init__(self, sm_id, pin, max_count, count_freq):

22 self._sm = StateMachine(sm_id, pwm_prog, freq=2 * count_freq, sideset_base=Pin(pin))
23 # Use exec() to load max count into ISR

24 self._sm.put(max_count)

25 self._sm.exec("pull()")

26 self._sm.exec("mov(isr, osr)")

27 self._sm.active(1)

28 self._max_count = max_count

29

30 def set(self, value):

31 # Minimum value is -1 (completely turn off), @ actually still produces narrow pulse
32 value = max(value, -1)

33 value = min(value, self._max_count)

34 self._sm.put(value)

85

36

37 # Pin 25 is LED on Pico boards
38 pwm = PIOPWM(@, 25, max_count=(1 << 16) - 1, count_freq=10_000_000)

39

40 while True:

41 for i in range(256):
42 pwm.set(i ** 2)
43 sleep(0.01)

3.8.6. USing pioasm

As well as writing PIO code inline in your MicroPython script you can use the pioasm tool from the C/C++ SDK to generate a
Python file.

$ pioasm -o python input (output)

|
3.8. PIO Support 20

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/pio_pwm.py#L1-L43

Pico Python SDK
]

For more information on pioasm see the Pico C/C++ SDK book which talks about the C/C++ SDK.

|
3.8. PIO Support 21

https://pico.raspberrypi.org/files/pico_sdk.pdf

Pico Python SDK

Chapter 4. Using an Integrated
Development Environment (IDE)

The MicroPython port to Raspberry Pi Pico and other RP2040-based boards works with commonly used development
environments.

4.1. Using Thonny

The current status of Thonny

Version 3.3.0 with the thonny-pico backend installed is ready for launch, except for module stubs for code
completion. See the Github issue for details.

TO DO: Remove ahead of launch

Packages are available for Linux, MS Windows, and macOS. After installation, using the Thonny development environment
is the same across all three platforms. The latest release (version 3.3.0) of Thonny can be downloaded from Github at
https://github.com/thonny/thonny/releases/tag/v3.3.0.

© NoTE

After the launch date Thonny should be downloaded from thonny.org

Alternatively if you are working on a Raspberry Pi you should install Thonny using apt from the command line,

$ sudo apt install thonny

this will add a Thonny icon to the Raspberry Pi desktop menu. Go ahead and select Raspberry Pi — Programming —
Thonny Python IDE to open the development environment.

© NoTE

When opening Thonny for the first time select "Standard Mode." For some versions this choice will be made via a
popup when you first open Thonny. However for the Raspberry Pi release you should click on the text in the top right of
the window to switch to "Regular Mode."

Download the Pico backend wheel from Github, https://github.com/raspberrypi/thonny-pico/releases/download/v0.1-
post/thonny_rpi_pico-0.1-py3-none-any.whl. This wheel file can be installed into an existing Thonny installation (version
3.3.0b6 or later)

Start Thonny and navigate to "Tools — Manage plug-ins" and click on the link to "Install from local file" in the right hand
panel, and select the Pico backend wheel (see Figure 3). Hit the "Close" button to finish. Afterwards you should quit and
restart Thonny.

]
4.1. Using Thonny 22

https://github.com/raspberrypi/micropython/issues/20
https://github.com/thonny/thonny/releases/tag/v3.3.0
http://thonny.org
https://github.com/raspberrypi/thonny-pico/releases/download/v0.1-post/thonny_rpi_pico-0.1-py3-none-any.whl
https://github.com/raspberrypi/thonny-pico/releases/download/v0.1-post/thonny_rpi_pico-0.1-py3-none-any.whl

Pico Python SDK
]

Figure 3. Installing the
Raspberry Pi Pico
Wheel file.

2 Thonny - <untitled> @ 1: 1

DEH O% 232 @

[XOX) Thonny plug-ins.

| | Search on PyPI

<INSTALL> Install from PyPI

astroid If you don't know where to get the package from, then most likely you'll want to search the Python
asttokens Package Index. Start by entering the name of the package in the search box above and pressing ENTER.
berypt

bitstring Install from requirements file

certifi Click here to locate requirements.txt file and install the packages specified in it.

cffi

cryptography Install from local file

docutils Click hetk to locate and install the package file (usually with whl, .tar.gz or .zip extension).

ecdsa

esptool Upgrade or uninstall

isort Start by selecting the package from the left.

jedi .

keras-applications Target: user site packages 5 . 5

keras-preprocessing This dialog lists all available pa but allows and lling only p: from

| . Users/aa/Library/Python/3.7/lib/python/site-packages. New packages will be also installed into this
lazy-object-proxy < - A

meccabe directory. Other locations must be managed by alternative means.

mock

mypy

mypy-extensions

jisied Close |
paramiko.

TO DO: Rewrite this section ahead of launch

4.1.1. Connecting to the Raspberry Pi Pico from Thonny

Connect your computer and the Raspberry Pi Pico together, see Chapter 2. Then open up the Run menu and select Run —
Select Interpreter, picking "MicroPython (Raspberry Pi Pico)" from the drop down, see Figure 4.

Figure 4. Selecting the
=) Thonny - <untitled> @ 1:1

correct MicroPython
interpreter inside the QEH 0% =20 @
Thonny environment. <untitled> ~

il o0@ Thonny options

Which interpreter or device should Thonny use for running your code?
MicroPython (Raspberry Pi Pico) |v
The same interpreter which runs Thonny (default)

Alternative Python 3 interpreter or virtual environment

Remote Python 3 (SSH)

MicroPython (local)

MicroPython (SSH)

MicroPython (BBC micro:bit)

MicroPython (Raspberry Pi Pico)

MicroPython (ESP32)

MicroPython (ESP8266)

MicroPython (generic)

CircuitPython (generic)

shell A special virtual environment (deprecated)
ell l l

Python 3
>>>

Install or update firmware

| oK | | Cancel |

S —"

Python 3.7.9

Hit "OK". If your Raspberry Pi Pico is plugged in and running MicroPython Thonny should automatically connect to the
REPL.

If this doesn't happen go to Tools — Options menu item, and select your serial port in the drop down on the "Interpreter”
tab. On the Raspberry Pi the serial port will be "Board in FS Mode — Board CDC (/dev/ttyACMO0)" this should automatically
connect you to the REPL of your Raspberry Pi Pico. Afterwards go to the "View" menu and select the "Variables" option to
open the variables panel.

]
41. Using Thonny 23

Pico Python SDK

Figure 5. Saying "Hello

Pico!" from the
MicroPython REPL
inside the Thonny
environment.

O NoTE

In the rare case where you can't connect to Raspberry Pi Pico you may have to reboot your Raspberry Pi.

You can now access the REPL from the Shell panel,

>>> print('Hello Pico!")
Hello Pico!

>>>

see Figure 5.

o0 e = Thonny - <untitled> @ 1:1
DEd O+ -7

<untitled> Variables -

1 Name | value

machine <module 'umachine'>
pico <module 'pico’>

Shell

Python 3.7.9 (bundled)
>>>

MicroPython v1.13-111-g20c4b0d3d on 2020-10-22; Raspberry Pi PICO with cortex-moplus
Type "help()" for more information.

>>> print('Hello Pico!')
Hello Pico!

>

MicroPython (Raspberry Pi Pico)

4.1.2. Blinking the LED from Thonny

You can use a timer to blink the on-board LED.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py Lines 1 - 9

1 from machine import Pin, Timer
2

3 led = Pin(25, Pin.OUT)

4 tim = Timer()

5 def tick(timer):

6 global led

7 led.toggle()

8

9 tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)

Enter the code in the main panel, then click on the green run button. Thonny will present you with a popup, click on
"MicroPython device" and enter "test.py" to save the code to the Raspberry Pi Pico, see Figure 6.

]
4.1. Using Thonny 24

https://github.com/raspberrypi/pico-micropython-examples/tree/master/blink/blink.py#L1-L9

Pico Python SDK
]

Figure 6. Saving code
to the Raspberry Pi
Pico inside the Thonny
environment.

Figure 7. Blinking an
LED using a timer from
the Thonny
environment.

. Thonny - <untitled> @ 8 : 55
DEd O+ @

<untitled> *

Variables - |

from machine import Pin, Timer
led = Pin(25, Pin.OUT)
tim = Timer()
def tick(timer):
global led
led. toggle()

®NOUI A WN

tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)|

o0 e Where to save to?

This computer

Shell ‘ MicroPython device

Python 3.7.9 (bundled)
>>>

Name | value
machine <module 'umachine’>
pico <module 'pico’>

icropy v1.13-11 on ; Raspberry Pi PICO with pl
Type "help()" for more information.

>>> print('Hello Pico!')
Hello Pico!

>>>

MicroPython (Raspberry Pi Pico) |

O NoTE

If you "save a file to the device" and give it the special name main.py, then MicroPython starts running that script as
soon as power is supplied to Raspberry Pi Pico in the future.

The program should uploaded to the Raspberry Pi Pico using the REPL, and automatically start running. You should see
the onboard LED start blinking, connected to GPIO pin 25, and the variables change in the Thonny variable window, see

Figure 7.
e e = Thonny - MicroPython device : ftest.py @ 8: 55
DZE Of @
[testpy] - Variables
1 from machine import Pin, Timer Name. | value
2 led = Pin(25, Pin.OUT) Pin <class Pin’>
3 tim = Tiner() Timer:
4 def tick(timer): ‘T‘:‘” ;C'a:; T"“:’fom
5 global led e in(25, mode=0UT)
6 Ted. toggle() machine <module ‘umachine’>
7 2 <module 'p2'>
4 tim.init(freg=2.5, mode=Timer.PERIODIC, callback=tick)| tick <function tick at 0x20003940>
tim Timer(mode=PERIODIC, period=400000, tick_hz=1000000)
shell -
Nicropython vl.13-140-g61074188d on 2020-11-14; Raspberry P Pico with RF2040
Type "help()" for more information.
>>> %Run —c $EDITOR_CONTENT
>

MicroPython (Raspberry Pi Pico)

4.2. USing rshell

The Remote Shell for MicroPython (rshell) is a simple shell which runs on the host and uses MicroPython’s REPL to send
python code to the Raspberry Pi Pico in order to get filesystem information, and to copy files to and from MicroPython’s

own filesystem.

You can install rshell using,

]
4.2. Using rshell

25

https://github.com/dhylands/rshell

Pico Python SDK
]

$ sudo apt install python3-pip
$ sudo pip3 install rshell

Assuming that the UART is connected to your Raspberry Pi, see Section 2.7, then you can connect to Raspberry Pi Pico
using,

$ rshell -p /dev/serial®
Connecting to /dev/serial@ (buffer-size 512)...
Trying to connect to REPL connected

Testing if sys.stdin.buffer exists ... N

Retrieving root directories ...

Setting time ... Aug 21, 2020 15:35:18

Evaluating board_name ... pyboard

Retrieving time epoch ... Jan 01, 2000

Welcome to rshell. Use Control-D (or the exit command) to exit rshell.
/home/pi>

Full documentation of rshell can be found on the project’s Github repository.

]
4.2. Using rshell 26

https://github.com/dhylands/rshell/blob/master/README.rst

Pico Python SDK

Figure 8. Wiring the
OLED to Pico using
12c

Appendix A: App Notes

Using a SSD1306-based OLED graphics display

Display an image and text on 12C driven SSD1306-based OLED graphics display.

Wiring information

See Figure 8 for wiring instructions.

. L28x32 I2C OLED *.

128x32 OLED

. U

(I B
flefle o o o
olefle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olofle o o o
olefle o o o

U I)

e e e

List of Files

A list of files with descriptions of their function;

i2c_13060led_using_defaults.py

The example code.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/13060led/i2c_13060led_using_defaults.py Lines 1 - 33

1 # Display Image & text on I2C driven ssd1306 OLED display

2 from machine import Pin, I2C

3 from ssd1306 import SSD1306_I2C

4 import framebuf

5

6 WIDTH = 128 # oled display width

7 HEIGHT = 32 # oled display height

8

9 i2c¢c = I2C(0) # Init I2C using I2C6 defaults,
SCL=Pin(GP9), SDA=Pin(GP8), freq=400000

10 print("I2C Address : "+hex(i2c.scan()[@]).upper()) # Display device address

11 print("I2C Configuration: "+str(i2c)) # Display I2C config

12

]
Using a SSD1306-based OLED graphics display

27

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306oled/i2c_1306oled_using_defaults.py#L1-L33

Pico Python SDK

13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

oled = SSD1306_I2C(WIDTH, HEIGHT, i2c) # Init oled display

Raspberry Pi logo as 32x32 bytearray

buffer = bytearray(b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xa0\x80\x00\x83\xc1\x00\x00C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x080\x9c\x11\x008\xB0\xbf\xfd\x80\x00\xe1\x87\x00\x01\xc1\x83\x80\x02A
\x82@\x02A\x82@\x02\xc1\xc2@\x02\xf6>\xcB\x01\xfc
=\x80\x081\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x00\x00\x0Bc \x00\x00\x083\xcB\x0B0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer(buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on it.
oled.fill(@)

Blit the image from the framebuffer to the oled display
oled.blit(fb, 96, 0)

Add some text
oled.text("Raspberry Pi",5,5)
oled.text("Pico",5,15)

Finally update the oled display so the image & text is displayed
oled.show()

i2c_13060led_with_freq.py

The example code, explicitly sets a frequency.

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306o0led/i2c_13060led_with_freq.py Lines 1 - 33

10
11
12
13
14
15
16
17

18
19
20
21
22
23

Display Image & text on I2C driven ssd1306 OLED display

from machine import Pin, I2C

from ssd1306 import SSD1306_I2C

import framebuf

WIDTH = 128 # oled display width
HEIGHT = 32 # oled display height
i2c = I2C(@, scl=Pin(9), sda=Pin(8), freq=200000) # Init I2C using pins GP8 & GP9
(default I2CO pins)

print("I2C Address : "+hex(i2c.scan()[@]).upper()) # Display device address
print("I2C Configuration: "+str(i2c)) # Display I2C config
oled = SSD1306_I2C(WIDTH, HEIGHT, i2c) # Init oled display

Raspberry Pi logo as 32x32 bytearray

buffer = bytearray(b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00|?\x00\x01\x86
@\x80\x01\x01\x80\x80\x01\x11\x88\x80\x01\x05\xa0\x80\x00\x83\xc1\x00\x00C\xe3\x00\x00
~\xfc\x00\x00L ' \x00\x080\x9c\x11\x008\xB0\xbf\xfd\x80\x00\xe1\x87\x00\x01\xc1\x83\x80\x02A
\x82@\xB2A\x82@\x02\xc1\xc2@\x02\xf6>\xcO\x01\xfc
=\x80\x081\x18\x18\x80\x01\x88\x10\x80\x00\x8c!\x00\x00\x87\xf1\x00\x00\x7f\xf6\x00\x00
8\x1c\x008\x008\x0c \xB0\xB0\xB3\xcO\xB0\xB0\xB0\xB0\xB0\xB0\xB0\x80\xB0\x80\x80\xB0\x080")

Load the raspberry pi logo into the framebuffer (the image is 32x32)
fb = framebuf.FrameBuffer(buffer, 32, 32, framebuf.MONO_HLSB)

Clear the oled display in case it has junk on it.
oled.fill(@)

]
Using a SSD1306-based OLED graphics display 28

https://github.com/raspberrypi/pico-micropython-examples/tree/master/i2c/1306oled/i2c_1306oled_with_freq.py#L1-L33

Pico Python SDK
]

24

25 # Blit the image from the framebuffer to the oled display

26 oled.blit(fb, 96,)

27

28 # Add some text

29 oled.text("Raspberry Pi",5,5)

30 oled.text("Pico",5,15)

&l

32 # Finally update the oled display so the image & text is displayed
33 oled.show()

Bill of Materials

Table 4. A list of . .

materials required for Item Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
Monochrome 128x32 12C OLED 1 https://www.adafruit.com/product/
Display 931

Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)

Combination of the PIO WS2812 demo with the Adafruit 'essential' NeoPixel example code to show off color fills, chases
and of course a rainbow swirl on a 16-LED ring.

Wiring information

See Figure 9 for wiring instructions.

Figure 9. Wiring the
16-LED NeoPixel Ring
to Pico

List of Files

A list of files with descriptions of their function;

neopixel_ring.py

The example code.

]
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 29

http://raspberrypi.org/
https://www.adafruit.com/product/931
https://www.adafruit.com/product/931

Pico Python SDK
]

Pico MicroPython Examples: https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/neopixel_ring/neopixel_ring.py Lines 1 - 104

Example using PIO to drive a set of WS2812 LEDs.

1

2

3 import array, time

4 from machine import Pin
5 import rp2
6
7
8

Configure the number of WS2812 LEDs.
NUM_LEDS = 16

9 PIN_NUM = 6

10 brightness = 6.2

12 @rp2.asm_pio(sideset_init=rp2.PI0.0UT_LOW, out_shiftdir=rp2.PIO0.SHIFT_LEFT, autopull=True,
pull_thresh=24)
13 def ws2812():

14 T1 = 2

15 T2 =5

16 T3 =3

17 wrap_target()

18 label("bitloop")

19 out(x, 1) .side(0) [T3 - 1]
20 jmp(not_x, "“do_zero") .side(1) [T1 - 1]
21 jmp("bitloop") .side(1) [T2 - 1]
22 label("do_zero")

23 nop() .side(@) [T2 - 1]
24 wrap()

25

26

27 # Create the StateMachine with the ws2812 program, outputting on pin

28 sm = rp2.StateMachine(®, ws2812, freq=8_000_000, sideset_base=Pin(PIN_NUM))
29

30 # Start the StateMachine, it will wait for data on its FIFO.

31 sm.active(1)

32

33 # Display a pattern on the LEDs via an array of LED RGB values.

34 ar = array.array("I", [@ for _ in range(NUM_LEDS)])

35

36 HAHHHHHRHAA AU A A AR A A

37 def pixels_show():

38 dimmer_ar = array.array("I", [0 for _ in range(NUM_LEDS)])
39 for i,c in enumerate(ar):

40 r = int(((c >> 8) & BxFF) * brightness)
41 g = int(((c >> 16) & OxFF) * brightness)
42 b = int((c & OxFF) * brightness)

43 dimmer_ar[i] = (g<<16) + (r<<8) + b

44 sm.put(dimmer_ar, 8)

45 time.sleep_ms(10)

46

47 def pixels_set(i, color):

48 ar[i] = (color[1]<<16) + (color[0]<<8) + color[2]
49

50 def pixels_fill(color):

51 for i in range(len(ar)):

52 pixels_set(i, color)

53

54 def color_chase(color, wait):

55 for i in range(NUM_LEDS) :

56 pixels_set(i, color)

57 time.sleep(wait)

58 pixels_show()

59 time.sleep(0.2)

60

]
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 30

https://github.com/raspberrypi/pico-micropython-examples/tree/master/pio/neopixel_ring/neopixel_ring.py#L1-L104

Pico Python SDK
]

61 def wheel(pos):

62 # Input a value 0 to 255 to get a color value.
63 # The colours are a transition r - g - b - back to r.
64 if pos < @ or pos > 255:

65 return (@, 0, 0)

66 if pos < 85:

67 return (255 - pos * 3, pos * 3, 0)

68 if pos < 170:

69 pos -= 85

70 return (8, 255 - pos * 3, pos * 3)

71 pos -= 170

72 return (pos * 3, @, 255 - pos * 3)

73

74

75 def rainbow_cycle(wait):

76 for j in range(255):

77 for i in range(NUM_LEDS) :

78 rc_index = (i * 256 // NUM_LEDS) + j
79 pixels_set(i, wheel(rc_index & 255))
80 pixels_show()

81 time.sleep(wait)

82

83 BLACK = (0, 0, 90)

84 RED = (255, 0, 90)

85 YELLOW = (255, 150, 0)
86 GREEN = (@, 255, 0)

87 CYAN = (@, 255, 255)

88 BLUE = (@8, @, 255)

89 PURPLE = (186, @, 255)
90 WHITE = (255, 255, 255)
91 COLORS = (BLACK, RED, YELLOW, GREEN, CYAN, BLUE, PURPLE, WHITE)
92

93 print("fills")

94 for color in COLORS:

95 pixels_fill(color)
96 pixels_show()

97 time.sleep(0.2)

98

99 print("chases")

100 for color in COLORS:

101 color_chase(color, 0.01)
102

103 print("rainbow")

104 rainbow_cycle(0)

Bill of Materials

Table 5. A list of . .
materials required for ltem Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
NeoPixel Ring 1 https://www.adafruit.com/product/
1463

]
Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs) 31

http://raspberrypi.org/
https://www.adafruit.com/product/1463
https://www.adafruit.com/product/1463

@ Raspberry Pi

Raspberry Piis a trademark of the Raspberry Pi Foundation

Raspbenry Pi Trading Ltd

	Pico Python SDK
	Colophon
	Legal Disclaimer Notice
	Table of Contents

	Chapter 1. The MicroPython Environment
	1.1. Getting MicroPython for the RP2040
	1.2. Building MicroPython for the RP2040
	1.3. Installing MicroPython on the Raspberry Pi Pico

	Chapter 2. Connecting to the MicroPython REPL
	2.1. Connecting from a Raspberry Pi over USB
	2.2. Connecting from a Raspberry Pi using GPIO
	2.3. Connecting from a Mac using USB
	2.4. Saying "Hello World" from REPL

	Chapter 3. The RP2040 Port
	3.1. Blinking an LED in MicroPython
	3.2. UART
	3.3. Interrupts
	3.4. Multicore Support
	3.5. I2C
	3.6. SPI
	3.7. PWM
	3.8. PIO Support
	3.8.1. IRQ
	3.8.2. WS2812 LED (NeoPixel)
	3.8.3. UART TX
	3.8.4. SPI
	3.8.5. PWM
	3.8.6. Using pioasm

	Chapter 4. Using an Integrated Development Environment (IDE)
	4.1. Using Thonny
	4.1.1. Connecting to the Raspberry Pi Pico from Thonny
	4.1.2. Blinking the LED from Thonny

	4.2. Using rshell

	Appendix A: App Notes
	Using a SSD1306-based OLED graphics display
	Wiring information
	List of Files
	Bill of Materials

	Using PIO to drive a set of NeoPixel Ring (WS2812 LEDs)
	Wiring information
	List of Files
	Bill of Materials

