PiFinger : Fingerprint HAT for Raspberry Pi
PiFinger Instruction Manual

Contents

PiFinger User Manual ... 1
 Introduction .. 3
 Features ... 4
 Specification of Board ... 5
 Specification of Sensor ... 6
 Hardware ... 7-8
 Installation Process .. 9-11
 Testing ... 11-13
 GUI Features ... 13
 LED Explanation ... 14
PiFinger For Raspberry Pi

Introduction

PiFinger HAT for Raspberry Pi Comprise of onboard Nuvoton MCU with an on-chip crypto-accelerator, Cortex-M23 TrustZone, and XOM facilities. A user can use the communication protocol to the PiFinger with commands over the UART protocol with the Baud rate 115200 bps or USB 2.0 full speed.

Pinout

<table>
<thead>
<tr>
<th>PiFinger Peripheral</th>
<th>Raspberry Pi Pin (BCM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fingerprint TX</td>
<td>GPIO15 (RXD)</td>
</tr>
<tr>
<td>Fingerprint RX</td>
<td>GPIO14 (TXD)</td>
</tr>
<tr>
<td>OLED SDA</td>
<td>GPIO2 (SDA)</td>
</tr>
<tr>
<td>OLED SCL</td>
<td>GPIO3 (SCL)</td>
</tr>
<tr>
<td>BUZZER</td>
<td>GPIO13</td>
</tr>
</tbody>
</table>

Note: First registered fingerprint will act as an administrator Fingerprint. A user needs to confirm the admin fingerprint before running the registration command or else PiFinger will stay in compare mode.
Features

- Capacitive Contact Technology
- On Chip-Crypto Accelerator
- High-Speed UART Interface
- Register up to 24 Fingerprints
- Nuvoton MCU
- Cortex-M23 Trust zone
Specification of Board

- Sensor - Capacitive Chip Sensor
- Active sensing area - 8.8 x 8.8 mm
- Scanning speed - 25 Frame/sec
- Image resolution - 508dpi
- Gray level - 8 bits/pixel, max 256 grayscale
- Image ratio to width - 1:1
- Interface - UART / USB
- Power - DC 3V±10%(Standby:45mA, Matching duration: 470 mA)
- Operating Temperature - (20 ~ 60 °C)
- Operating humidity - 0 ~ 90% Non-Condense
- Matching Mode - 1:1; 1:N
- Matching speed - < 0.3 sec
- Enrollment time - < 0.2 sec
- FRR(False Rejection Rate) - <0.1% (Security Level, 3)
- FAR(False Acceptance Rate) - < 0.001%(Security level, 3)
- Sensor Coating surface color - Black Matte
- Sensor Coating RCA @175 g - >700 cycles
Specification of Sensor

- Dimensions - 13.75 x 12.65 x 1.95 mm
- Dimensions (sensor) - 9.6 x 9.4 mm
- ESD (IEC 61000-4-2, level X, air discharge) - ±15 kV
- Operating temperature - (-20 ~ 80 °C)
- Extended humidity range < 90%
- Operating voltage range - 2.7~3.3 V
- IO pin voltage range - 1.8~3.3 V
- Normal mode current - 2 mA
- Stand-by mode current - 20 uA
- Interface SPI
- 2D capacitive Fingerprint area sensor
- High-performance fingerprint algorithm
- Register at most 24 fingerprints
- High comparison speed
- Matching mode 1:1; 1:N
Hardware
Installation Process

Enable I2C and Serial Interface for Raspberry Pi

Open a terminal or GUI and run the following commands to enable I2C and Serial:

- `sudo raspi-config`

Choose Interfacing Options -> I2C -> yes

- GUI Method to enable i2c and Serial

![GUI Method to enable i2c and Serial](image)
Terminal method to enable i2c and serial can be followed as:

- `sudo raspi-config`

Choose Interfacing Options -> Serial -> No -> Yes
Testing

- Connect PiFinger on top of 40 pins stackable GPIO header of Raspberry Pi.
- Now Clone/Download PiFinger Repository by running below command or directly download from github

```bash
git clone https://github.com/sbcshop/PiFinger.git
```

- Open cloned/downloaded folder and choose your environment folder (i.e.: Raspberry Pi or Windows)

Source code Link: https://github.com/sbcshop/PiFinger

For Raspberry Pi

- Run PiFinger GUI by running the below command:

```python
python3 PiFinger_GUI.py or using any python3 supported ide.
```

- Select **COM port** and Baud Rate (default is 9600) from the above GUI ("/dev/ttyS0" in case of default connection), and click on connect button to start communication with a fingerprint sensor.
For Windows

- Run PiFinger GUI by running "PiFinger_GUI.py" file with any python3 supported ide.

- Select **COM port** and Baud Rate (default is 9600) from above GUI ("COM7 " (check com port from device manager) in case of default connection), and click on connect button to start communication with a fingerprint sensor.
GUI Features

1. Compare Fingerprint - Option to compare registered Fingerprint.
2. Adds Fingerprint - Add New Fingerprint, will assign an ID for each successful registration.
3. Remove Fingerprint (By ID) - Remove registered Fingerprint for a specific ID.
4. Remove All Fingerprint (Registered) - Remove all fingerprints in a single click.
LED display explanation

The LED light of the PiFinger shows the current working status. If the LED1 and the LED2 flash, in turn, it means that the PiFinger is in operation mode. If the LED1 or the LED2 is blinking alone, it means that the PiFinger is in demo mode.

The PiFinger will be in the demo mode after powered on or reset. Send any command to it will make it leave demo mode and enter operation mode immediately, and it will process the received command. When the PiFinger is in operation mode, only power on or resets it can make it back to demo mode.

Communication Protocol :
https://github.com/sbcshop/PiFinger/wiki/Communication-Protocol