
BACstac/Win v7.6

User’s Guide
Document Version: 1.0

Cimetrics, Inc.

BOSTON, MASSACHUSETTS
USA

TELEPHONE: +1 (617) 350-7550
FAX: +1 (617) 350-7552

E-MAIL: products@cimetrics.com (sales), support@cimetrics.com (tech. support)
WEB: http://www.cimetrics.com

BACstac/Win v7.6User’s Guide
by Cimetrics, Inc.
Document Version: 1.0 Edition
Copyright © 1999-2022 Cimetrics, Inc.

BACstac and BACstac/32 are trademarks of Cimetrics Inc. BACnet is a registered trademark of the American Society of Heating, Refrigeration

and Air-Conditioning Engineers, Inc. (ASHRAE). LonTalk is a trademark of Echelon Corp. All other trademarks are owned by their respective

companies.

Table of Contents
1. Introduction...1

About BACnet ...1
Technical Support..2

2. BACstac Data Types..3
Access Routines ..3
Address..4
Device..5
Object ..7
Property ...8
Property Contents ..9
Simple Data Types...10
Enumerations...11
Bit Strings..12
Sequences ..13
Choices ..14
Arrays ..14

3. Creating a Client Application ..16
Device and Object Images...16
Initialization of the BACstac Client ..16
Finding Remote BACnet Devices ...17
Finding Objects ...17
Creating Object Images...17
Reading Properties ..18
Reading Multiple Properties..19
Writing to Properties ...20

4. Creating a Server Application ...21
Defining Objects in a Device Template...21
Initialization of the BACstac Server..21
Changing property attributes and values ...22
Synchronization of data access ...23
Creating a Local Object...24
Deleting a Local Object...25
Generating an I-Am Broadcast..25
Generating an I-Have Broadcast ...25
Generating a Local Read-Property Request ..26
Generating a Local Write-Property Request ...26
Generating a Remote Read-Property Request...27
Generating a Remote Write-Property Request..27
Registering Callbacks..28
How to Use Callbacks ...29

5. Creating a Gateway Application ...31
How Is a Gateway Different from a Server? ...31
BACnet Virtual Networks ...31
Initialization of the BACstac Gateway ..32
Creating a Device Using a Device Template...32
Deleting a Device ..33

iii

6. Resolving Device ID ..34
Synchronous Device ID resolution..34
Asynchronous Device ID resolution ...34
Ahead-of-time Device ID resolution...35

7. BACstac Hooks..36
Default Actions and Building Blocks..36
Registering and Using Hooks..37
Hooks and Transaction Completion Routines...39
Synchronous/asynchronous Request Handling ...43
Hooks in Gateway Application ...44

8. Bypassing BACstac Object Database ..45
Low-Level API Programming Tools ...45
Creating Client Applications Using “Raw” API ...46
Asynchronous Callback Routines ...48
APDU Parameters ...50
Transaction Life Cycle ..52

9. Notifications ...54
COV Notifications ...54
Event Notifications ..54

10. Receiving Notifications ...55
Registering a Local Process ID ...55
Subscribing for COV Notifications ...55
Cancelling a COV Notification Subscription ..57
Receiving COV Notifications with a Hook ...57
Subscribing for Event Notifications ..58
Subscribing to a Notification Class Object ...58
Cancelling a Notification Class Subscription..60
Subscribing to an Event Enrollment Object ..60
Requesting Alarm and Enrollment Summaries ...60

11. Sending Notifications ..62
Handling COV Subscriptions with a Hook ...62
Detecting COV Events ..63
Generating COV Notifications ..63
Detecting Intrinsic Events ...64
Generating Intrinsic Event Notifications...65

Check the Time and Date: ...65
Check the Event Type: ...66
Issue Confirmed Notifications: ..66
Recipient Address:...67
Process ID:...67
Time Stamp:...67
Notification Class: ...68
Priority: ..68
Event Type: ..68
Notify Type:...69
Acknowledge Required: ..69
From-State, To-State:...69
Event Values: ...69

iv

Send the Event notification:...71
Detecting Algorithmic Events ...72

General:..72
Differences in Generating Events Between Algorithmic and Intrinsic Reporting:72
Detecting a New Event State and Implementing the Transition:...73

Generating Algorithmic Event Notifications...74
Issue Confirmed Notifications: ..74
Recipient Address:...74
Process ID:...74
Time Stamp:...75
Notification Class: ...75
Priority: ..75
Event Type: ..75
Notify Type:...75
Acknowledge Required: ..75
From-State, To-State:...75
Event Values: ...75

Handling Event Acknowledgments with a Hook ..78
Handling Summary Requests with a Hook ...79

12. Transferring Files..82
Handling File Transfer Request in a Server ..82
Transferring Files to a Client...83

v

Chapter 1. Introduction
Thank you for your interest in Cimetrics’ BACstac software. The BACstac Software provides you with the ability
to create client and server application programs which use the protocol for communication. Certain versions of the
BACstac Software also allow you to create gateway application programs that make a collection of non-BACnet
devices appear as a virtual BACnet network containing multiple BACnet devices.

This document describes how to construct applications using the Cimetrics’ BACstac software. It also gives a descrip-
tion of BACstac data types and the basics of using them in applications.

For a description of how to install the BACstac software, please refer to the BACstac Installation Guide. For a more
detailed description of the data types and API routines available in the BACstac software, please refer to the BACstac
Programmers’ Reference.

About BACnet
BACnet is an ISO, ANSI, and ASHRAE standard network protocol for building automation. BACnet was developed
by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), and it was originally
approved as an ASHRAE standard in 1995. The BACnet standard is maintained by ASHRAE committee SSPC 135.

BACnet was originally developed in order to improve interoperability between building automation equipment, but its
data definitions and flexible architecture make it usable in a wide range of distributed control applications.

BACnet is an object-oriented protocol. BACnet Objects are used to represent network-accessible control equipment.
BACnet defines several standard object types, including the following: Accumulator, Analog Input/Output/Value,
Averaging, Binary Input/Output/Value, Calendar, Command, Device, File, Life Safety Point, Life Safety Zone,
Loop, Multi-state Input/Output/Value, Notification Class, Event Notification, Program, Pulse Converter, Schedule and
Trend-Log. Each Object contains a list of Properties, whose values indicate the current state of the control equipment.
The BACnet standard specifies mandatory and optional Properties for the standard Objects, as well as mandatory
behavior associated with some Properties.

A BACnet Server maintains a collection of Objects, including one Device Object which describes the BACnet capa-
bilities of the Server. A Server will respond to BACnet service requests to read and manipulate its Objects. A BACnet
Client generates service requests to monitor and control BACnet Servers. Some service requests that Servers will com-
monly respond to are Who-Is, Read-Property and Write-Property. Servers can also generate service requests, such as
I-Am and the service requests used to report events and alarms. Many BACnet controllers and workstations have both
Client and Server functionality.

For transmission of packets, BACnet makes use of three popular LAN technologies: Ethernet™, ARCNET™, and
LONtalk™. BACnet devices may also be directly connected to IP networks. BACnet includes an RS-485 master/slave
data link layer and a point-to-point data link layer that were specially developed for BACnet. A BACnet internetwork
can be formed from several BACnet LANs employing similar or different LAN technologies using BACnet-compliant
routers.

Any user of the BACstac software will need to learn more about BACnet. The main references for BACnet are:

• ANSI/ASHRAE Standard 135-2016 or later “BACnet” (ISSN 1041-2336). The standard is available in book form
or as an electronic document from ASHRAE (http://www.ashrae.org/).

• Direct Digital Control of Building Systems, by H. Michael Newman (ISBN 0-471-51696-1). This book, which was
published in 1994, contains one chapter on data communications and one chapter describing BACnet prior to its
approval as a standard.

1

Chapter 1. Introduction

• BACnet Gebäude-Automation 1.4, by Hans R. Kranz (ISBN 3-922420-02-8). This German-language book was
published in 2005.

• Various articles about BACnet have been published in the ASHRAE Journal and elsewhere. The BACnet bibliog-
raphy (http://www.bacnet.org/Bibliography/) contains references for many of these articles.

Technical Support
You may contact us by any of the following means (e-mail is preferred):

Telephone: +1 617-350-7550 (9 a.m. to 5 p.m. EST)

Fax: +1 617-350-7552

E-mail: support@cimetrics.com (mailto:support@cimetrics.com)

2

Chapter 2. BACstac Data Types
The BACnet protocol represents control equipment as a collection of Devices containing Objects. The Objects contain
Properties that describe the current state of the control equipment. The BACnet protocol defines various services that
the Devices can be asked to perform, including inspecting and changing the values of these Properties.

The binary encoding for BACnet service requests is described using Abstract Syntax Notation One (ASN.1) in Clause
21 of the BACnet standard. The BACstac software hides many of the details of this binary encoding, and allows
applications to manipulate BACnet service parameters and Properties by defining corresponding C data types. The
BACstac data types correspond closely to the BACnet application and base data types defined in Clause 21.

The BACstac data types are defined in the header file BACTYPES.H. This file is included automatically by each
BACstac application header file (BACCLI.H, BACSRV.H or BACGTW.H). Each of the BACstac data types is described in
the BACstac Programmers’ Reference. The BACstac data types are available in BACstac Client, Server and Gateway
applications. This chapter describes some of the most common data types.

Access Routines
The BACstac software provides access routines for manipulating the BACstac data types. These access routines are
intended to improve the readability, and maintainability of BACstac applications by hiding the implementation details
of the BACstac data types. Using the access routines is recommended to protect your BACstac applications from
future changes to the implementation of the data types. To use the access routines, your application must also link to
BACACC.LIB.

The BACstac can store the images of all the devices and objects being in work, making manipulating with them easy
but determined enough and somehow limited. In this case some of the BACstac data types are “hidden” inside the
BACstac API. For these data types, (such as Devices, and Objects) the actual data is maintained by the BACstac
Object Database. Then the BACstac applications use handles to refer to the instances of these data types. Access
routines must be used to manipulate data types represented by handles. Later in this document the alternative way
of programming will be introduced (see the Section called Low-Level API Programming Tools in Chapter 8 of this
Guide). Thus far while we describe “handle-based” methods we mean using the BACstac Object Database.

The names of access routines have the BACstac prefix, and are lower case with the first letter of words capitalized,
like the BACstac API routines that generate service requests. The names of access routines are constructed using the
patterns:

BACstacVerbName
BACstacVerbNameAttribute

The BACstac Access Routines created for all purposes are described in detail in the BACstac Programmers’ Reference.

Access routines typically take a pointer to an instance of the data type as their first argument. For a data type containing
multiple attributes, the access routines include methods for reading and writing each of the attributes. If the attribute
is in turn represented by a simple data type, the attribute can be passed directly as an argument (of a BACstacSet-
NameAttr() routine) or as a return value (of a BACstacGetNameAttr() routine). If the attribute is a complex data type,
a pointer to the attribute is passed (to a BACstacCopyNameAttr() routine) or returned (by a BACstacGetNameAttrPtr()
routine).

For example, the following code fragment manipulates a Real value that is contained in a Priority Array Item data
type that is contained in a Property Contents data type. The resulting Priority Array Item is then copied into another
Property Contents data type. The Real value is manipulated directly with Get/Set access routines, while the more
complex Priority Array Item is manipulated with GetPtr/Copy access routines.

3

Chapter 2. BACstac Data Types

BACSTAC_REAL X;
BACSTAC_PRI_ARRAY_ITEM *pPriItem;
BACSTAC_PROPERTY_CONTENTS ContentsWithOldItem; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS ContentsWithNewItem; /* initialized elsewhere,*/

/* but we will overwrite it*/
pPriItem = BACstacGetContentsPriItemPtr(&ContentsWithOldItem);
BACstacCopyContentsPriItem(&ContentsWithNewItem,pPriItem);
X = BACstacGetPriArrayItemReal(pPriItem);
BACstacSetPriArrayItemReal(pPriItem,X*0.95);

The BACstac software also provides access routines to initialize instances of a data type (typically named BAC-
stacInitName()). An initialization routine must be provided with values for some of attributes of the data type. Other
attributes will be set to default values by the initialization routines. For example, an Object Identifier variable can be
initialized by providing an Object type and Object instance number:

BACSTAC_INST_NUMBER InstNum = 1967;
BACSTAC_OBJECT_TYPE ObjType = OBJ_ANALOG_INPUT;
BACSTAC_OBJECT_ID ObjID;
BACstacInitObjectID(&ObjID,ObjType,InstNum);

An initialization routine usually provides the same result as using a series of Set/Copy access routines on an instance
of a data type. However, by using an initialization routine, an application programmer is relieved of the burden of
remembering which attributes are required, which are optional and which can take default values.

Address
A BACnet Address is a destination for a BACnet service request or reply. It describes the network address of a BACnet
Device or Client, or it describes a BACnet network.

A BACnet Address can contain a MAC address (1 byte for ARCNET, 6 bytes for Ethernet) for a particular Device or
it can indicate that a broadcast is desired. A BACnet Address can be defined on the local BACnet network or a remote
BACnet network, in which case it includes the BACnet network number of the remote BACnet network. A BACnet
Address can also indicate that a global broadcast on the entire BACnet inter-network is desired.

The BACnet protocol requires that only one BACnet Device appear at an address (known as a MAC address) on a
local area network (LAN). BACnet routers can be used to connect multiple BACnet LANs, in which case each LAN
must be assigned a unique BACnet network number. This means that each Device on a BACnet inter-network can be
identified by a BACnet network number and a MAC address. In case of a local Device the network number is set to 0.

Some BACnet messages can be sent to every computer on a BACnet network (known as a local or remote broadcast)
or broadcast over the entire BACnet inter-network (known as a global broadcast). Broadcasts are used by BACnet
systems to discover or publicize the existence of BACnet Devices using the Who-Is, I-Am, Who-Has, and I-Have
services.

Client applications can have a BACnet Address without acting like a BACnet Device and maintaining Objects. That
is, they can receive replies and broadcasts but they do not respond to most BACnet requests. Such a Client will listen
for all broadcasts on the local BACnet network. BACnet Devices will be able to direct a reply to such a Client, because
the Client’s Address is included in any requests that it sends to the Devices.

For example, a Client can send a Who-Is query to all the Devices on the entire BACnet inter-network by setting up an
instance of the BACstac Address data type to indicate a global broadcast as the destination for the service request.

BACSTAC_ADDRESS Address;

4

Chapter 2. BACstac Data Types

/* Set up the Address to indicate all Devices
on the BACnet inter-network */

BACstacInitAddrGlobalBroadcast(&Address);
/* Use the Address to send the Who-Is query */
BACstacWhoIs(&Address,BACSTAC_NO_FILTER,BACSTAC_NO_FILTER);
...

A BACstac Client sends some service requests to Devices by using handles to refer to the Devices. Other service
requests are sent directly to Objects within Devices by using handles to refer to the Objects. The BACstac software
keeps track of the appropriate Address to use when sending service requests. When the Client obtains Object and
Device handles, the Device Address can be supplied explicitly to the BACstac by the Client application or the Device
Address can be discovered by using a Who-Is or Who-Has query.

A Client can use an Address data type to obtain a handle for the Device. The following Client example uses access
routines to construct an Address for a known Device, which can then be used to obtain the desired Device and Object
handles.

BACSTAC_ADDRESS Address;
BACSTAC_BYTE *pMAC;
/* Set up the Address to indicate a particular Device

on the local ARCNET network */
pMAC[0] = 0xAA; /* set the MAC bytes - Ethernet would have 6 */
BACstacInitAddrLocal(&Address,pMAC,BACSTAC_MAC_ARCNET_LENGTH);
/* Now we can obtain the handles

see the examples in the Object section */

The BACstac software allows Server and Gateway applications to override the default service handling behavior by
using application-supplied subroutines called hooks (discussed in Chapter 7 of this manual). A hook that is handling
a service request will be given the Address of the source of the service request as one of its parameters. The Server
application could discover information about the source of the request from this Address. In the following example
the Server extracts the BACnet network number of the request source using a Get access routine:

MyHook(...,BACSTAC_ADDRESS *pSourceAddress, ...)
{

BACSTAC_UI16 NetNumber;
...
if(BACstacIsAddrRemote(pSourceAddress))
{
NetNumber = BACstacGetAddrNetworkNumber(pSourceAddress);
}
else
{
/* The Network number for local devices must be 0 */
NetNumber = 0;
}
...

}

Device
A BACnet Device is control equipment connected to a BACnet network; the Device is capable of responding to
BACnet service requests. A Device represents the control equipment by maintaining a collection of BACnet Objects.

5

Chapter 2. BACstac Data Types

The Objects contain Properties that can be manipulated using the BACnet Read-Property and Write-Property service
requests. The Objects within any Device are uniquely identified by an Object type and by an instance number (together
these data make up an Object Identifier).

Each Device must contain one Device Object to represent the BACnet capabilities of the Device. Each Device on a
BACnet inter-network must have a unique Device Object instance number and, consequently, a unique Device Object
identifier. Devices can be contacted directly if their BACnet Address is known, or they can be discovered using the
Who-Is and Who-Has broadcasts.

A Device is represented in BACstac applications based on BACstac Object Database by a Device handle. The BACstac
maintains internally the Device information such as the BACnet Address of the Device, or the list of Device’s Objects.
The BACstac uses this information when it generates service requests or responds to.

To extend the example in the previous section, consider a Client that can retrieve a list of Device handles for Devices
that responded to a Who-Is request. These Device handles could be used to discover the Addresses of the Devices or
to access the Objects in the Device. The following example discovers the Device Object instance numbers of all the
responding Devices on the BACnet inter-network:

BACSTAC_HDEVICE hDevices[NDEVMAX];
BACSTAC_DEVICE_COUNT nDevCount,nDev;
BACSTAC_INST_NUMBER InstNum;
BACSTAC_ADDRESS Address;
/* Set up the Address to indicate all Devices
on the BACnet inter-network */
BACstacInitAddrGlobalBroadcast(&Address);
/* Use the Address to send the Who-Is query */
BACstacWhoIs(&Address,BACSTAC_NO_FILTER,BACSTAC_NO_FILTER);
OSLSleep(2*1000); /* delay for 2 seconds to allow devices to respond */
BACstacGetDeviceList(hDevices,NDEVMAX,&nDevCount);
for(nDev=0;nDev<nDevCount;nDev++)
{

BACstacGetDeviceInstNum(hDevices[nDev],&InstNum);
...

}

When a Device’s Address and Device Object instance number are known, a BACstac Client can generate a new Device
handle using BACstacCreateDeviceImage():

BACSTAC_HDEVICE hDev;
BACSTAC_ADDRESS Address;
/* set up Address, as in the previous “Address” section */
/* Now create a handle for the Device */
/* its Device Object instance number is known to be 1967 */
BACstacCreateDeviceImage(&Address,1967,&hDev);

A BACstac Client application can destroy a Device handle by using the BACstacDeleteDeviceImage() routine. A
BACstac Client application can look up an existing Device handle using its unique Device Object instance number or
Address:

hDev = BACstacDeviceAddressToHandle(&Address);
hDev = BACstacDeviceInstNumToHandle(InstNum);

BACstac Server and Gateway applications can obtain the Device handles of their local Devices. A Server would need
to use its local Device handle to obtain Object handles for the local Objects. The Device handle of a local Device can

6

Chapter 2. BACstac Data Types

also be used to obtain other information about the Device, such as its Address. For example a Server could discover
its MAC address by using the local Device handle:

BACSTAC_HDEVICE hDev;
BACSTAC_ADDRESS Address;
BACSTAC_BYTE *pMAC;
hDev = BACstacGetLocalDeviceHandle();
BACstacGetDeviceAddress(hDev,&Address);
pMAC = BACstacGetAddrMACPtr(&Address);
...

A BACstac Server maintains only a single Device, which is created when the application invokes the BACstac-
ServerInit() routine. The local Device in a Server cannot be deleted. A Gateway maintains a list of local Devices.
The Gateway acts like a BACnet router and makes each local Device appear to exist at a unique MAC Address on a
virtual BACnet network. The following example illustrates how a Gateway could review these Addresses:

BACSTAC_HDEVICE hDevices[NDEVMAX];
BACSTAC_DEVICE_COUNT nDevCount, nDev;
BACSTAC_ADDRESS Address;
BACSTAC_BYTE *pMAC;
BACstacGetDeviceList(hDevices,NDEVMAX,&nDevCount);
for(nDev=0;nDev<nDevCount;nDev++)
{

BACstacGetDeviceAddress(hDevices[nDev],&Address);
pMAC = BACstacGetAddrMACPtr(&Address);
...

}

BACstac Gateways can create and delete local Devices by using BACstacCreateDeviceFromTemplate() and BAC-
stacDeleteDevice(). These routines are described in Chapter 5.

Object
A BACnet Object makes visible one specific control function of a Device to other computers on a BACnet network. An
Object contains a list of Properties that describe its functionality. The BACnet standard defines mandatory Properties
and behaviors for standard types of Objects such as Analog Input, Analog Output, Schedule etc. Clause 12 of BACnet
standard, “MODELING CONTROL DEVICES AS A COLLECTION OF OBJECTS”, contains descriptions of the
Properties required to be present in standard Objects.

An Object in a BACnet Device is uniquely identified within the current Device by an Object Identifier, which consist
of an Object type and instance number. A Device must contain one Device Object, which has an instance number that
is unique within the BACnet inter-network. All other objects in the Device have not to be unique within the network.

Objects are represented in BACstac applications by an Object handle. The BACstac maintains information internally
about an Object, such as the list of Properties that it contains. An Object’s handle can be obtained by searching through
the list of Objects contained in a Device. An Object’s handle can also be obtained if its Object Identifier (type and
instance number) is known.

A BACstac application can obtain a list of Object Identifiers for all the Objects in a Device by using the BAC-
stacReadObjectList() routine (in case BACstac Object Database is used). Direct reading of the Object List property
of the Device through the use of BACstacReadProperty2() is also possible. In a Client application this routine sends
a Read-Property request to the Device Object to retrieve its object-list Property. This information is saved in the local

7

Chapter 2. BACstac Data Types

Device image for use in subsequent calls. Servers and Gateways can retrieve the list of Objects in a local Device
without generating a service request.

To obtain the number of Objects in the Device first, you may call BACstacReadObjectList() twice:

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_HOBJECT hObjs[MAX_OBJ_NUM];
BACSTAC_OBJECT_ID ObjectIDs[MAX_OBJ_NUM];
BACSTAC_OBJECT_COUNT nObjs;
BACSTAC_ERROR err;
/* supply zero arguments to obtain the number of Objects */
BACstacReadObjectList(hDev, NULL, 0, &nObjs, &err);
/* Read the list of nObjs elements */
BACstacReadObjectList(hDev, &objectIDs, nObjs, &nObjs, &err);

After having obtained the Object Identifier, a BACstac application can further obtain all existing Object handles by
using the BACstacFindObjectByID() routine in a loop:

int i;
/* Obtain handles for all Objects in the list */
for(i = 0; i < nObjs; i++)

hObjs[i] = BACstacFindObjectByID(hDev,ObjectIDs[i]);

A BACstac application can also obtain the Object handle for the Device Object directly, since each Device must have
one and only one Device Object (A Device handle is not the same as the Object handle for the Device Object. BACstac
API routines that take Object handles for arguments will not accept a Device handle).

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_HOBJECT hDevObj;
hDevObj = BACstacGetDeviceObjectHandle(hDev);

A BACstac Client can obtain a new handle for an Object with BACstacCreateObjectImage(). In a BACstac Server
or Gateway application, the list of local Objects in a Device can be changed using BACstacCreateDBObject() and
BACstacDestroyObject(). These routines are described in Chapter 4 of this Guide.

Property
A Property represents one attribute of a BACnet Object. A Property can be a number or a character string or an
enumeration or a complicated data type. The values of Properties in Objects in BACnet Devices can be manipulated
using the BACnet Read-Property and Write-Property service requests.

A Property is uniquely identified within the current Object by a Property Identifier. An individual Property is identified
in a BACstac application by the combination of a Property Identifier and an Object handle. Clause 12 of the BACnet
standard defines the required and optional Properties for standard BACnet Objects.

BACstac applications represent the value of a Property by the Property Contents data type described in the next
section. A Property Contents is used when an application generates service requests and when a Server or Gateway
application manipulates local Property values.

A BACstac Server or Gateway application can control the way the BACstac default actions treat a Property when
processing a BACnet request. These options include whether to invoke a callback when accessing the Property and
the desired read/write permission for the Property. A BACstac Server or Gateway application also has direct access to
the current value of a Property in the BACstac Object Database.

8

Chapter 2. BACstac Data Types

The read/write permissions are manipulated using BACstacSetPropertyAccess() and GetPropertyAccess() to spec-
ify that a Property has BACSTAC_ACCESS_READ_ONLY or BACSTAC_ACCESS_READ_WRITE. The BACstac
default actions use these permissions when servicing Read-Property and Write-Property requests.

The BACstac default actions use application-supplied callbacks to access physical hardware. When a callback has
been registered for a service, a Server can manipulate a Boolean flag that indicates whether an individual Property is
to use the callback by using the routines BACstacSetCallbackAttachment() and BACstacGetCallbackAttachment().

The value of a local Property can be accessed by using BACstacRetrievePropertyInstance2() and BACstacStoreProp-
ertyInstance(). These routines use Property Contents data structures as arguments.

A Server or Gateway application can also provide a list of Property Instances containing this information when it uses
BACstacCreateDBObject().

Property Contents
Properties can contain any of the BACnet Application Types and most of the BACnet Base Types. The ASN.1 encoding
of these types is described in Clause 21 of the BACnet Standard.

The BACnet Standard also defines which of the types are permitted for particular Properties.

In BACstac applications, the value of a Property is represented by the Property Contents data type, which maintains a
data type tag and a buffer to store the actual data. The Property Contents data type can contain either a single item or
an array of the desired data type.

The Property Contents data type is used as an argument for routines that must be able to accept or return any of the
data types that can occur as a value of a Property. The tasks of providing storage for the value and providing the value
are split between the calling routine and called routine.

The calling routine must always provide the storage space for the value, either a variable of the appropriate type or a
buffer with enough space to contain the value. A calling routine can initialize a Property Contents by attaching it to
either 1) a variable of the appropriate type, 2) an array of the appropriate type, or 3) attaching to a buffer when the
type isn’t known. An application can use the BACstacInitContentsToXXX() access routines to accomplish this.

The called routine should exit indicating an error if there isn’t enough space in the Property Contents in which to
return a value.

A calling routine passing in a value or a called routine returning a value must ensure that the data type tag matches
the data. The data access routines for the Property Contents help maintain this consistency. The supported data types
are included in the BACSTAC_DATA_TYPE enumeration.

A Property Contents data is used as an argument to the API routines that generate Read-Property and Write-Property
service requests.

In Server and Gateway applications, a Property Contents is used by hooks and callbacks when servicing Read-Property
and Write-Property requests. Server and Gateway applications also use a Property Contents data type to access the
local Property values using the BACstacStorePropertyInstance() and BACstacRetrievePropertyInstance2() routines.

There are access routines for each of the data types that can be represented as Property Contents. Classes of these data
types are described in the following sections. There are also in-place access routines for initializing the data types
inside a Property Contents.

The following examples illustrate some of the typical uses of the Property Contents data type.

Example 1: Write a real value to a property in a remote device using the Write-Property service request.

BACSTAC_REAL X = 3.14159;

9

Chapter 2. BACstac Data Types

BACSTAC_PROPERTY_CONTENTS pc;
BACSTAC_HOBJECT hAnalogOutputObj; /* initialized elsewhere */
/* set up the Property Contents to use the variable X */
BACstacInitContentsToVar(&pc,DATA_TYPE_REAL,&X,sizeof(X));
/* write the value using an appropriate priority (8) */
BACstacWriteProperty(hAnalogOutputObj, PROP_PRESENT_VALUE,

BACSTAC_VOID_INDEX, BACSTAC_PRI_MANUAL_OPERATOR, &pc, NULL);

Example 2: Retrieve a real value from a local property.

BACSTAC_REAL X;
BACSTAC_PROPERTY_CONTENTS pc;
BACSTAC_HOBJECT hAnalogOutputObj; /* initialized elsewhere */
/* set up the Property Contents to use the variable X */
BACstacInitContentsToVar(&pc, DATA_TYPE_REAL, &X, sizeof (X));
/* retrieve the value from a local Object */
BACstacRetrievePropertyInstance2(hAnalogOutputObj, PROP_MAX_PRES_VALUE,

BACSTAC_VOID_INDEX, &pc, NULL);
printf("X = %e\n",X);

Example 3 : Return a Real in callback

MyReadCallback(...,BACSTAC_PROPERTY_CONTENTS *pValue)
{

BACSTAC_REAL X;
/* assume that we know which Object and Property is being read */
/* get the value from the hardware */
X = ReadMyDevice();
/* stuff the value into the Property Contents */
BACstacSetContentsReal(pValue,X);
return BACSTAC_CALLBACK_OK;

}

Example 4: Read a property using a buffer. We can discover the value’s type and actual size later.

BACSTAC_HOBJECT hObj; /* initialized elsewhere */
BACSTAC_PROPERTY_ID PropID; /* initialized elsewhere */
BACSTAC_DATA_TYPE Type;
BACSTAC_VALUE_SIZE Size;
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_UI32 mybuffer[BUFSIZE/sizeof(BACSTAC_UI32)];
/* initialize the Property Contents - don’t know the type yet */
BACstacInitContentsToBuf(&Value,mybuffer,sizeof(mybuffer));
/* read the property - we should also check for error codes here */
BACstacReadProperty2(hObj, PropID, BACSTAC_VOID_INDEX, &Value, NULL, NULL);
/* we can now inspect the property value at our leisure */
Type = BACstacGetContentsType(&Value);
Size = BACstacGetContentsSize(&Value);
if(Type==DATA_TYPE_REAL)
{

printf("Prop = %e\n",BACstacGetContentsReal(&Value));
}

10

Chapter 2. BACstac Data Types

Simple Data Types
The simple BACnet data types such as Real, Integer, Unsigned, Character String map easily onto C data types. The
examples in the preceding section illustrated the use of the Property Contents data type using a Real variable. The
numeric simple data types are represented by the C data types double and long, and can be manipulated directly using
the Get/Set access routines.

A BACnet Character String (using X3.4 encoding) is represented as a C string (a ‘\0’ terminated array of char). Since
the size of a string can vary, calling routines reading string values must provide an adequate buffer. Pointers are
used to manipulate strings, using the GetPtr/Copy access routines. Since the standard C library provides routines for
manipulating character strings, the BACstac software only provides a handful of access routines for using strings that
occur inside a Property Contents. More complicated data types have access routines for manipulating them when they
occur outside of a Property Contents (“bare” instances of the data types).

For example, a called routine could copy a string value into a Property Contents to provide a return value. A called
routine could also discover the pointer to a string inside a Property Contents to read it or to manipulate it in place.

void ReadStringValue(BACSTAC_PROPERTY_CONTENTS *pValue)
{

BACSTAC_CHAR *pStr;
pStr = ReadFromDeviceString();
BACstacCopyContentsString(pValue,pStr);
return;

}
void WriteStringValue(BACSTAC_PROPERTY_CONTENTS *pValue)
{

BACSTAC_CHAR *pStr;
if(DATA_TYPE_UTF_8_STRING==BACstacGetContentsType(pValue))
{

pStr = BACstacGetContentsStringPtr(pValue);
WriteToDeviceString(pStr);

}
return;

}

Enumerations
Many BACnet Properties are enumerations, i.e. data types that can take on a small number of known symbolic values.
These are each represented in BACstac applications by a C enum. A Property Contents containing enumeration has
type equal to DATA_TYPE_ENUM.

In general, an application needs to know an applicable Property Identifier and Object type to know the meaning of an
enumerated value. This information is not contained in a Property Contents data type, but is normally passed as other
arguments to routines that manipulate Property Contents. The BNETDEF.H header file defines the symbolic values for
BACnet enumerations.

For example, the present-value Property of a Binary Input Object is the data type BACSTAC_BINARY_PV, which can
take the values BACSTAC_BINARY_INACTIVE or BACSTAC_BINARY_ACTIVE. A BACstac Client workstation
could read the value and update its display:

BACSTAC_HOBJECT hBinInput; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_BINARY_PV MyBinInput;

11

Chapter 2. BACstac Data Types

/* attach the variable to the Property Contents */
BACstacInitContentsToVar(

&Value,
DATA_TYPE_ENUM,
&MyBinInput,
sizeof(MyBinInput));

/* read the present value property of a Binary Input Object*/
BACstacReadProperty2(

hBinInput,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL,
NULL);

/* update the console display */
if(MyBinInput==BACSTAC_BINARY_ACTIVE)
{

SetLightOnScreen(GREEN);
}
else
{

SetLightOnScreen(RED);
}

Bit Strings
Bit strings are used in BACnet Objects for Properties that answer collections of Yes/No questions. Most common
Properties represented by bit strings are status-flags in Input/Output Objects and protocol-object-types-supported and
protocol-services-supported in Device Objects.

Bit strings are represented in BACstac applications as packed byte arrays. The BACSTAC_BIT_STRING data type
uses a fixed size buffer into which an application can place a variable length bit string. The maximum length bit string
that can be represented in a BACstac application is (8 bits)*BACSTAC_MAX_BIT_STRING_BUF = 80 bits. Access
routines are provided for initializing a bit string data type (with zeroed bits, 0==FALSE) and for setting/reading a
particular bit.

The BNETDEF.H file defines symbolic values for the bits in the standard BACnet bit strings. These values are indices,
not masks, to be used with the bit string access routines.

For example, during startup a Server could construct a bit string to dynamically initialize the protocol-services-
supported Property of its Device Object:

#define N_SVC_BITS 35
BACSTAC_BIT_STRING MyServices;
BACSTAC_HOBJECT hDevObj; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS Value;
/* Describe some of the Server’s capabilities */
BACstacInitBitString(&MyServices,N_SVC_BITS); /* zeros all bits */
BACstacSetBitStringBit(&MyServices,SVC_READ_PROP, BACSTAC_TRUE);
BACstacSetBitStringBit(&MyServices,SVC_WRITE_PROP, BACSTAC_TRUE);
BACstacSetBitStringBit(&MyServices,SVC_I_AM, BACSTAC_TRUE);
BACstacSetBitStringBit(&MyServices,SVC_WHO_IS, BACSTAC_TRUE);
LookUpOtherCapabilities(&MyServices);

12

Chapter 2. BACstac Data Types

if(BACstacTestBitStringBit(&MyServices,SVC_ADD_LIST_ELEMENT)){
GetReadyForLists(); /* have to do some more work */

}
/* now set the value of the protocol-services-supported Property */
BACstacInitContentsToVar(
&Value,
DATA_TYPE_BIT_STRING,
&MyServices,
sizeof(MyServices));
BACstacStorePropertyInstance(
hDevObj,
PROP_PROT_SERVICES_SUPPORTED,
BACSTAC_VOID_INDEX,
&Value);

Sequences
Many of the more complicated BACnet data types are sequences of simpler data types (indicated in the ASN.1 de-
scription by the keyword SEQUENCE). Such data types are represented in BACstac applications by C data structures
containing multiple fields. Access routines are provided to Set/Get or Copy/GetPtr the contents of each field. Initial-
ization access routines are provided to set initial values for the fields.

The fields of a Date data type are the year, month, day-of-month and day-of-the-week. Set and Get routines can be
used to access the fields. Data types (such as BACSTAC_MONTH) are defined for many fields to hide implementation
details.

BACSTAC_DATE Date; /* initialized elsewhere */
BACSTAC_MONTH WorkMonth;
WorkMonth = BACstacGetDateMonth(&Date);
if(WorkMonth==MONTH_AUGUST)
{

/* everyone is on vacation in August */
WorkMonth = MONTH_SEPTEMBER;
BACstacSetDateMonth(&Date,WorkMonth);

}

All of the fields of the Date data type can be passed as parameters to the initialization routines, although the BACnet
standard allows the fields to take on special values such as YEAR_UNSPECIFIED. For example, a caller routine
could initialize a Date data type directly and attach it to Property Contents:

BACSTAC_DATE Date;
BACSTAC_PROPERTY_CONTENTS Value;
BACstacInitDate(&Date,1966,MONTH_OCTOBER,4);
BACstacInitContentsToVar(

&Value,
DATA_TYPE_DATE,
&Date,
sizeof(Date));

A called routine would use an in-buffer initialization routine to set up the Date, since it must ensure that the provided
buffer has enough space and that the data type tag gets set to match the data:

13

Chapter 2. BACstac Data Types

BACSTAC_BOOLEAN GetOldDate(BACSTAC_PROPERTY_CONTENTS *pValue)
{

BACSTAC_BOOLEAN OK;
OK = BACstacInitInContentsDate(

pValue,
1966,
MONTH_OCTOBER,
4);

if(!OK)
{

/* buffer could have been too small */
/* perform some cleanup actions? */

}
return OK;
}

Choices
Some BACnet data types (and some fields of BACnet SEQUENCE data types) are choices of simpler data types (in-
dicated in the ASN.1 description by the keyword CHOICE). Such data types are represented in BACstac applications
by C unions plus a tag field. The tag indicates which of the choices is represented by the current contents of the union.
Access routines are provided for the tag field and for the sub-fields in each choice in the union. Initialization access
routines are provided for each choice to set the initial values for the choice.

For example the Priority Array Item data type is used to manipulate the Priority-Array Property of commandable
Objects. An application can initialize the variable to contain Null (a common value indicating that no value is present
at a given priority level in the priority array of a commandable object), or set the variable to a Real or Unsigned or
Enumerated or Boolean or Integer or Double or Time or Character String or Octet String or Bit String or Date or
Object Identifier or Date Time value.

BACSTAC_PRI_ARRAY_ITEM PriItem;
/* The Priority Array Item will be set to Null */
BACstacInitPriArrayItem(&PriItem);
... /* do stuff */
/* now we may want to change it to a Real value */
if(IsPriArrayItemNull(&PriItem))
{

BACstacSetPriArrayItemReal(&PriItem,3.14159);
}

Arrays
Some BACnet Properties are defined as arrays of simpler data types (indicated by the ASN.1 keyword ARRAY).
Arrays are represented in BACstac applications by fixed size elements, stored sequentially in a C array. BACstac ap-
plications can access an entire array or one element of an array by supplying an index to the BACstac API routines
(Read/Write, Store/Retrieve). The index for BACnet arrays starts counting at 1. Supplying an index of 0 (correspond-
ing to the special value BACSTAC_ARRAY_COUNT) to an API routine will return the number of elements in the

14

Chapter 2. BACstac Data Types

array. Supplying the special value BACSTAC_ENTIRE_ARRAY as the index will return the entire array. An appli-
cation uses the special value BACSTAC_VOID_INDEX as an API routine argument to access Properties that aren’t
arrays.

When an entire array is being manipulated in a BACstac application, a Property Contents data type keeps a C ar-
ray in its buffer, and keeps track of the size of the array. The number of elements in the array can be queried with
the BACstacGetContentsElementsNum() access routine. A different initialization routine, BACstacInitContentsToAr-
ray(), must be used to attach an array variable to a Property Contents data type. Pointers to elements of the C array
can be passed to access routines for the element data type. The index for C arrays starts counting at 0.

In the following example, a Priority Array is initialized by setting all the elements to Null; then a real value is written
to one of priorities and the array is attached to a Property Contents data type.

BACSTAC_REAL ControlValue; /* initialized elsewhere */
BACSTAC_PRIORITY_ARRAY PriArray;
BACSTAC_PROPERTY_CONTENTS Value;
/* set all 16 elements of the array to NULL */
BACstacInitPriArray(&PriArray);
/* insert a control value at BACnet Priority 15 */
BACstacSetPriArrayItemReal(&(PriArray[14]),ControlValue);
/* attach the array to a Property Contents */
BACstacInitContentsToArray(

&Value,
DATA_TYPE_PRI_ARRAY_ITEM,
&PriArray,
sizeof(PriArray),
BACSTAC_MAX_PRI_ARRAY);

/* now we can write the array to the priority-array Property */

15

Chapter 3. Creating a Client Application
You can create a BACnet Client application by using BACstac Client API routines to assemble information about
remote Devices and Objects. In response to control logic or user input, your client application can read and write the
Properties of remote Objects. The routines used in the examples below are documented in the Client API section of
the BACstac Programmers’ Reference. BACnet Clients do not maintain local Devices, or respond to most BACnet
service requests. Workstations, test equipment and controllers could be implemented as BACstac Clients.

You can link the BACstac routines to your application by using the BACCLIx.LIB libraries. You must include the
BACstac Client application header file in your source code files:

#include <
baccli.h>

Device and Object Images
A BACstac Client application keeps local images of the remote Devices and Objects that it is manipulating. Your
client application uses handles to refer to these local images. When Device images are created, the Device Object is
always created automatically.

Initialization of the BACstac Client
You must initialize the BACstac client before your application can send any BACnet network requests. You do this
by calling the API routine BACstacClientInit(). Its arguments include size limits for the data structures describing the
local images of Objects in the application. If you do not supply the maximum number of Devices and Objects for
your application, default values will be set (32 for both in the current version). The maximum number of Device (and
Object) Images that you can specify is 64k. Device Objects are created automatically by the BACstac, so you may
provide a list of descriptions of properties to include in these images. If no description list is provided, the application
will initialize using a default list of properties.

An example of use of BACstacClientInit() in an application is:

#include <
baccli.h> /* define the client API */
#define N_DEV_PROP_MAX 20
#define N_DEVICES 10
#define N_OBJECTS 10
main()
{

BACSTAC_CLI_INIT init_data;
BACSTAC_PROPERTY_COUNT nDevPropDescBuf;
BACstacInitCliInit(&init_data,7,6); /* for BACstac 7.6 */
BACstacSetCliInitMaxDevices(&init_data,N_DEVICES);
BACstacSetCliInitMaxObjects(&init_data,N_OBJECTS);
BACstacClientInit(&init_data,NULL);
...

}

16

Chapter 3. Creating a Client Application

The Version numbers (Major and Minor) supplied by your application are checked by the BACstac initialization rou-
tine to ensure that your application is compatible with the version of the BACstac library with which your application
was built.

Finding Remote BACnet Devices
Your client application can discover remote Devices by broadcasting a BACnet Who-Is request. The BACstac client
will accumulate replies until the application asks for the list of Devices that have responded. This list is returned to
the application by the BACstacGetDeviceList() routine. A client application should wait for the I-Am replies for an
interval that is appropriate to the local BACnet network architecture. An example of discovering remote devices with
this technique is:

BACSTAC_ADDRESS Address;
BACSTAC_HDEVICE hDevBuf[N_DEVICES]
BACSTAC_DEVICE_COUNT nHDev;
BACstacInitAddrGlobalBroadcast(&Address);
BACstacWhoIs(&Address,BACSTAC_NO_FILTER,BACSTAC_NO_FILTER);
OSLSleep(2*1000); /* delay for 2 seconds to allow devices to respond */
BACstacGetDeviceList(hDevBuf,N_DEVICES,&nHDev);

The number of Device Handles returned by BACstacGetDeviceList() is limited by the size of the buffer that you
provide and by the limit set at initialization. The filter arguments can be used to narrow the range of Devices which
will respond to the Who-Is request. If you know the Address and Device Object Instance Number of a remote Device,
you can also create a Handle for that Device using BACstacCreateDeviceImage(). BACstacGetDeviceList() may also
be used to discover devices that have broadcast I-Am messages to the BACnet network. The I-Am messages can be
broadcast automatically by Devices, or can be responses to a Who-Is request by your Client application.

Finding Objects
Your application can read the list of Objects in a Device using BACstacReadObjectList(). This is done by sending a
Read-Property request for the object-list property of the Device Object. After the first use of the routine for a Device,
the information is cached in the local Device image. An example of discovering the objects in a device is:

BACSTAC_HDEVICE hDevice; /* initialized elsewhere */
BACSTAC_OBJECT_ID ObjBuf[N_OBJECTS];
BACSTAC_OBJECT_COUNT nObjAvail;
/* read the list of Object IDs */
BACstacReadObjectList(hDevice,ObjBuf,N_OBJECTS,&nObjAvail,NULL);

Your client application can also use the BACstacReadProperty2() routine with array indices to inspect the Object-List
contents one element at a time. This Property is contained in the Device Object, so you need to first obtain the Handle
for the Device Object:

BACSTAC_HDEVICE hDevice;
BACSTAC_HOBJECT hDevObject;
hDevObject = BACstacGetDeviceObjectHandle(hDevice);

17

Chapter 3. Creating a Client Application

Creating Object Images
A client application to obtain a handle to a remote device should create its image in the local database. This image
contains properties of a remote object. There is no need to store in this cache any properties except that are intended
to be used in the read-once. Therefore, the default property list, which includes only property-identifier, is normally
what you want.

The client application provides the Device Handle and Object ID and the routine returns a handle to the remote Object.

BACSTAC_HDEVICE hDevice; /* initialized elsewhere */
BACSTAC_OBJECT_ID ObjID;
BACSTAC_HOBJECT hAnalogIn1;
/* set up the Object ID */
BACstacInitObjectID(&ObjID,OBJ_ANALOG_INPUT,1);
/* create the local object image using the default set of Properties */
BACstacCreateObjectImage(hDevice,&ObjID,&hAnalogIn1);

If you want to re-create an Object Image completely, you should first destroy the old Object Image:

BACstacDeleteObjectImage(hAnalogIn1);

Reading Properties
The values of Properties are manipulated using a Property Contents data type. See the Property Contents section of
the BACstac Programmers’ Reference for a description of the access routines for manipulating Property Contents.
The data type provides a mechanism for manipulating properties of varying types. The contents of a property value
are stored in a variable or buffer that you provide. Your application must also provide information about the available
buffer size.

Querying the value of a Property has two steps: setting up the Property Contents data type, and then reading the value
into the space provided by the data type. An example of reading a property value is:

BACSTAC_HOBJECT hAnalogInput1; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_REAL Temperature;
/* attach the Temperature variable to the Property Contents */
BACstacInitContentsToVar(

&Value,
DATA_TYPE_REAL,
&Temperature,
sizeof(Temperature));

/* Read the value into Temperature */
BACstacReadProperty2(

hAnalogInput1,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL,
NULL);

18

Chapter 3. Creating a Client Application

If a Property is an array, then you can specify an array index when making a Write-Property request to access one
element of the array. The index value BACSTAC_ENTIRE_ARRAY can be used to access the entire array with one
request. The index value BACSTAC_VOID_INDEX should be used for non-array Properties.

BACstacReadProperty2() will change the type and number of elements of the Property Contents argument to match
the received data. Thus when the expected data type is not known, before calling BACstacReadProperty2(), you may
use the BACstacInitContentsToBuf(). In the above example, instead of BACstacInitContentsToVar(), you might call

BACstacInitContentsToBuf(
&Value,
&Temperature,
sizeof(Temperature));

Reading Multiple Properties
When you have a need to read more than one Property of the same Object at a time, or to read many properties of
different Objects, it is convenient to use the BACnet ReadPropertyMultiple service.

Suppose your application needs to know Notification Class values used by all the intrinsic alarming objects of a
specified Device. Suppose further you have already obtained the Object handles of all the IO Objects in that Device
(see 2.4) and these handles are stored in hObjs buffer, their number being stored in nObjs. In the following example,
through the reading of the Notification Class property, an application discovers which IO Objects support intrinsic
alarming:

#define MAX_PROP_NUM 1
BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_HOBJECT hObjs[MAX_OBJ_NUM]; /* initialized elsewhere */
BACSTAC_OBJECT_COUNT nObjs; /* initialized elsewhere */
BACSTAC_READ_LIST readList[MAX_OBJ_NUM];
BACSTAC_READ_RESULT_LIST resList[MAX_OBJ_NUM];
BACSTAC_READ_RESULT_ITEM resItems[MAX_OBJ_NUM][MAX_PROP_NUM];
BACSTAC_OBJECT_TYPE objType[MAX_OBJ_NUM];
BACSTAC_UNSIGNED notClass[MAX_OBJ_NUM];
int i;
/* Specify properties to read */
BACSTAC_PROP_REF propRef[MAX_PROP_NUM]=
{

{PROP_NOTIFICATION_CLASS, BACSTAC_VOID_INDEX}
};
/* For every Object in the list of Object handles */
for(i = 0; i < nObjs; i++)
{

/* Initialize readList with an Object and its Properties */
BACstacInitRPMAccessList(

readList,
hNCObjs[i],
propRef,
MAX_PROP_NUM);

/* Initialize resItems with buffers for specified Properties */
notClass[i] = 0;
BACstacInitRPMResultItem (

19

Chapter 3. Creating a Client Application

&resItems[i][0],
¬Class[i],
sizeof(BACSTAC_UNSIGNED));

/* Initialize resList element with a buffer for Result Items */
BACstacInitRPMResultList (&resList[i], resItems[i], PROP_NUM);

}
/* Read the both specified Properties of all Objects in the list */
BACstacReadPropertyMultiple2 (hDev, readList, &resList, nObjs, NULL, NULL);

The notification class values will be placed in the notClass array. The result list indicates whether each property was
successfully read — so the result list can also be used to flag those objects supporting intrinsic alarming.

BACSTAC_BOOLEAN isIntrinsicAlarmingObject[MAX_OBJ_NUM];
/* For every Object in the list of Object handles */
for(i = 0; i < nObjs; i++)
{

isIntrinsicAlarmingObject[i] =
BACstacGetRPMResultItemStatus(&resItems[i][NC]);

}

Writing to Properties
Setting the value of a Property has two steps. As with querying a value, your application needs to set up a Property
Value data type and then write the value to the remote Object. When writing the Present-Value property, a BACnet
Write-Property request will be sent to the remote Device. An example of writing a value to a remote Property is:

BACSTAC_HOBJECT hBinaryValue2; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_BINARY_PV PowerStatus;
/* attach PowerStatus to the Property Contents data type */
PowerStatus = BACSTAC_BINARY_ACTIVE;
BACstacInitContentsToVar(

&Value,
DATA_TYPE_ENUM,
&PowerStatus,
sizeof(PowerStatus));

BACstacWriteProperty(
hBinaryValue2,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
BACSTAC_PRI_MANUAL_OPERATOR,
&Value,
NULL);

If a Property is an array, then you can specify an array index when making a Write-Property request to access one
element of the array. The index value BACSTAC_ENTIRE_ARRAY can be used to access the entire array with one
request. The index value BACSTAC_VOID_INDEX should be used for non-array Properties.

If a Property is commandable (see Clause 19 of the BACnet Standard for a description of this concept), you can
specify a priority when making a Write-Property request. The priority BACSTAC_VOID_PRI should be used for
non-commandable Properties.

20

Chapter 4. Creating a Server Application
You can create a BACstac Server application by defining the Objects to be maintained by the BACstac Server and
by providing hooks and callbacks to interact with your physical device (see Chapter 7 of this Guide for the detailed
info on hooks). The Objects will be manipulated by BACnet requests and your application can also manipulate the
Objects directly. The routines used in the examples below are documented in the Server API section of the BACstac
Programmers’ Reference. You can link the BACstac routines to your application by using the BACSRVx.LIB libraries.
You must include the BACstac Server application header file in your source code files:

#include <
bacsrv.h>

Defining Objects in a Device Template
You define the Objects maintained by your Server application by creating a Device template with a .TPI file. A .TPI
file contains a text BACnet Protocol Implementation Conformance Statement (Text PICS) description of the Objects.
The easiest way to create a .TPI file for an application is to modify an existing .TPI file with a text editor. See Appendix
B - .TPI File Format in the Programmers’ Reference for a description of the syntax of the .TPI file. A .TPI file must
contain a Device Object. Other Objects may be created in the Device dynamically.

A compiler (CBNOBJ.EXE) is used to convert this description into a C source file which defines the static data struc-
tures representing the Objects. A pointer to the top-level data type is then passed into the BACstac server initialization
routine. The name of the top-level data type is set by a command line argument for the Object Compiler.

The Cimetrics Compiler of BACnet Objects (CBNOBJ) is a tool which can be run separately from the Server appli-
cation. It takes three arguments: the source file name, the output file name, and the name of the top-level data type.
See Appendix A - CNBOBJ.EXE in the Programmers’ Reference for a description of usage of this utility, including
the error messages it generates. For example, to compile the Objects for the Temperature Sensor example application,
you would execute:

cbnobj tempobj.tpi tempobj.c tempDevice

You would then link the resulting file to your application, as demonstrated in the next section.

Initialization of the BACstac Server
Your application must initialize the BACstac server before it will respond to BACnet network requests. You do this by
calling the API routine BACstacServerInit(). Its arguments include a pointer to the data structures describing the local
Objects in the application and the BACnet Device Object Instance Number that the application will use to uniquely
identify itself on the BACnet inter-network. An example of use of BACstacServerInit() in an application is:

#include <
bacsrv.h> /* define the server API */
/* top level device data structure in tempobj.c */
extern const struct DEVICE_TEMPLATE tempDevice;
main()
{

BACSTAC_SRV_INIT init_data;
/* for compiling with BACstac version 7.6, Instance Number 1966 */
BACstacInitSrvInit(&init_data,7,6,&tempDevice,1966);

21

Chapter 4. Creating a Server Application

BACstacSetSrvInitMaxObjects(&init_data,10);
BACstacServerInit(&init_data,NULL);
...
BACstacUnlockData();
...

}

The maximum number of Objects set by BACstacSetSrvInitMaxObjects() must not exceed 64k.

If you do not call BACstacSetSrvInitMaxObjects(), this number will be set to a default value (32 for the current
version).

The Version numbers (Major and Minor) supplied by your application are checked by the BACstac initialization rou-
tine to ensure that your application is compatible with the version of the BACstac library with which your application
was built.

When the BACstac Server is initialized, the object database is locked, allowing you to modify their values and pre-
venting other threads as well as the default BACstac action from reading or modifying their values while data may be
still an inconsistent state. When the initialization is complete you must call to the BACstacUnlockData() routine to
unlock the database from exactly the same thread that called BACstacServerInit(). Failing to do so will leave the stack
in an unworkable state.

Changing property attributes and values
The BACstac represents Objects and Devices by using handles. In a server application there is a unique handle for
the local Device. Your application obtains handles for objects in the local device by specifying its BACnet Object ID
(type and instance number). Your application can then manipulate any property in the object using its handle and the
Property Identifier.

Your application can change the Access attribute of properties to prevent them from being modified by a BACnet
Write-Property Write-Property-Multiple request. Note: this attribute does not affect ability to change this property
from your program using BACstacStorePropertyInstance, but only the default action performed for this service. The
example below shows how to obtain all relevant handles and modifying the access attribute of a Property.

BACSTAC_HDEVICE hDevice;
BACSTAC_HOBJECT hAnalogValue1;
BACSTAC_OBJECT_ID ObjID;
/*
* receiving the object handle; this can be done

* once and the handle can be reused later

*/
hDevice = BACstacGetLocalDeviceHandle();
BACstacInitObjectID(&ObjID,OBJ_ANALOG_VALUE,1);
hAnalogValue1 = BACstacFindObjectByID(hDevice, ObjID);
/*
* Change property access to read-only

*/
BACstacSetPropertyAccess(

hAnalogValue1,
PROP_PRESENT_VALUE,
BACSTAC_ACCESS_READ_ONLY);

22

Chapter 4. Creating a Server Application

A BACstac Server application can register callback routines for the default BACstac actions to use to access physical
hardware when servicing Read-Property and Write-Property requests. Any Property of any Object can be flagged as
attached to a callback. For an attached property, the callback is called instead of reading or writing the value from the
database. This is useful for properties that represents a value supplied by a physical device or any other sources that
changes often.

BACSTAC_HOBJECT hAnalogValue1; /* initialized elsewhere */
/* mark the present-value Property of an analog-value Object */
/* to use the Read-Property callback */
BACstacSetCallbackAttachment(

CB_READ,
hAnalogValue1,
PROP_PRESENT_VALUE,
BACSTAC_TRUE);

A BACstac Server application can read or write the values of properties directly without generating a Read-Property
or Write-Property service request. For that purpose BACstacStorePropertyInstance() and BACstacRetrieveProper-
tyInstance2() routines, which takes as parameters the object handle, property ID, optional index (if the property is an
array), and a pointer to a Property Contents data type. The direct access routines do not invoke any default actions or
call hooks or callbacks. For example, a server application could update the present-value property in an analog-input
object in the following way:

BACSTAC_HOBJECT hAnalogInput; /* initialized elsewhere */
BACSTAC_REAL X;
BACSTAC_PROPERTY_CONTENTS Value;
/* connect X with the Property Contents data type */
BACstacInitContentsToVar(

&Value,
DATA_TYPE_REAL,
&X,
sizeof(X));

/* read the current Present Value into X */
BACstacRetrievePropertyInstance2(

hAnalogInput,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL);

X = X*0.95; /* modify X */
/* update the Present Value */
BACstacStorePropertyInstance(

hAnalogInput,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value);

Unfortunately, this example does not take into account one important factor – the value of property can be modified
concurrently from the network using a Write-Property request. So if this property is writable and the operation needs
to be atomically, the application should lock the database as it is shown in the next section.

23

Chapter 4. Creating a Server Application

Synchronization of data access
Your application can use multiple threads to read and write properties from database’s objects as it was shown in
the previous section. Each of reading or writing operation is atomic, and there is no need to use any additional
synchronization for that. However, it may be necessary to perform a sequence of operation atomically, so there was no
interference from other threads including the BACstac default action, which operates on an internal BACstac thread.
For that purpose BACstacLockData() and BACstacUnlockData() routines are used.

The BACstacLockData() routine locks the database from any modification from other threads. If the database is
already locked then this routine will wait till the thread that locked database unlocks it. Therefore it is very important
to call BACstacUnlockData() for every call to BACstacLockData() from the same thread, otherwise the database will
remain locked forever and all other BACstac routines that have access to the database will not work properly including
BACstacClose().

As an example, let’s consider reducing the value of the present-value of an analog-input object as in the previous
section, but this time we will make this change atomically, so if another device trying to write to it concurrently, the
result will be still correct.

BACSTAC_HOBJECT hAnalogInput; /* initialized elsewhere */
BACSTAC_REAL X;
BACSTAC_PROPERTY_CONTENTS Value;
/* connect X with the Property Contents data type */
BACstacInitContentsToVar(

&Value,
DATA_TYPE_REAL,
&X,
sizeof(X));

/* now, it is time to lock the database */
BACstacLockData();
/* read the current Present Value into X */
BACstacRetrievePropertyInstance2(

hAnalogInput,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL);

X = X*0.95; /* modify X */
/* update the Present Value */
BACstacStorePropertyInstance(

hAnalogInput,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value);

/* Don’t forget to unlock! */
BACstacUnlockData();

Creating a Local Object
A BACstac Server application can create new local Objects, within the maximum Object number limits set at initial-
ization. The application must provide a description of all the properties to appear in the Object. For each property,
the Property Instance description contains the Property ID, wh ether the Property access permission is read-only or

24

Chapter 4. Creating a Server Application

read-write , whether read and write callbacks are attached, and a Property Contents data type containing an initial
value for the Property.

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_HOBJECT hNewAnalogInput;
BACSTAC_OBJECT_ID objID;
BACSTAC_DB_PROPERTY propList[N_MAX_PROPS];
BACSTAC_DB_OBJECT dbObject;
BACSTAC_PROPERTY_COUNT nPropCount;
BACSTAC_PROPERTY_COUNT firstFailed;
/* the new Object will be an analog-input with instance number 7 */
BACstacInitObjectID(&objID,OBJ_ANALOG_INPUT,7);
/* an application routine to set up the propList */
nPropCount = BuildAnalogInputPropList(&objID, propList, N_MAX_PROPS);
BACstacInitDbObject(&dbObject, propList, nPropCount);
/* create the new Object */
BACstacCreateDBObject(hDev, &dbObject, &hNewAnalogInput, &firstFailed);

Deleting a Local Object
A BACstac Server can delete a local Object (created by BACstacCreateDBObject() or created at initialization from a
.TPI file template) by using the BACstacDestroyObject() routine:

BACSTAC_HOBJECT hOldObj; /* initialized elsewhere */
BACstacDestroyObject(hOldObj);

Generating an I-Am Broadcast
Your server application can broadcast a I-Am message to inform client applications of its presence on the BACnet.
It is suggested that your application broadcast an I-Am message at least once after initialization. The BACstac server
will also respond automatically to Who-Is requests with the I-Am message. An example of broadcasting an I-Am
message is:

BACSTAC_HDEVICE hDevice; /* Initialized previously */
BACSTAC_ADDRESS Address;
BACstacInitAddrGlobalBroadcast(&Address);
BACstacIAm(hDevice,&Address);

Generating an I-Have Broadcast
Your server application can broadcast an I-Have message to inform client applications about the existence of the
given object. The BACstac server will also automatically respond to Who-Has requests with an I-Have message. An
example of broadcasting an I-Have message is:

BACSTAC_HOBJECT hObject;
BACSTAC_ADDRESS Address;
/* hDevice and hObject are initialized previously */

25

Chapter 4. Creating a Server Application

BACstacInitAddrGlobalBroadcast(&Address);
BACstacIHave(NULL, hObject, &Address);

This message is also automatically sent by the BACnet server in response to a BACnet Who-Has request if the Who-
Has service application hook is not registered.

Generating a Local Read-Property Request
Your application can read a property value as described in the Section called Changing property attributes and values.
However, if the application needs to emulate receiving a Read-Property request from the network, it can send a local
Read Property request to itself. This request will indistinguishable from one received from another device in all respect
except having exactly the same source and destination address.

Generating a local Read-Property request has two steps: setting up the Property Value data type, and then reading the
value into the space provided by the data type. When reading a Property, a hook or callback may be invoked to read
from the physical device. An example of reading a local Property value is:

BACSTAC_HOBJECT hAnalogInput1; /* initialized previously */
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_REAL Temperature;
BACstacInitContentsToVar(

&Value,
DATA_TYPE_REAL,
&Temperature,
sizeof(Temperature));

BACstacReadProperty2(
hAnalogInput1,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL,
NULL);

/* Now the value has been copied into Temperature */

Generating a Local Write-Property Request
Your application can write a property value as described in the Section called Changing property attributes and values.
However, if the application needs to emulate receiving a Write-Property request from the network, it can send a local
Write-Property request to itself. This request will indistinguishable from one received from another device in all
respect except having exactly the same source and destination address.

Your application also uses two steps to generate a local Write-Property request. As with querying a value, you need
to set up a Property Contents and then write the value into the BACstac Server. When writing to a Property, a hook or
callback may be invoked to write the value to the physical device. An example of writing a value to a local Property
is:

BACSTAC_HOBJECT hBinaryValue2; /* initialized previously */
BACSTAC_PROPERTY_CONTENTS Value;
BACSTAC_ENUM PowerStatus;
PowerStatus = BACSTAC_BINARY_ACTIVE;

26

Chapter 4. Creating a Server Application

BACstacInitContentsToVar(
&Value,
DATA_TYPE_ENUM,
&PowerStatus,
sizeof(PowerStatus));

BACstacWriteProperty(
hBinaryValue2,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
&Value,
NULL);

Generating a Remote Read-Property Request
Generating a remote Read-Property request has three steps: setting up the property contents for the given type, ini-
tialization read property information, and reading the value into the space provided by the data type. The following
example demonstrates how to read the present value of an analog-input object of the given device.

BACSTAC_ADDRESS *pDestDevice; /* initialized elsewhere */
BACSTAC_PROPERTY_CONTENTS value;
BACSTAC_REAL temperature;
BACSTAC_READ_INFO readInfo;
/* attach powerStatus to the property contents */
BACstacInitContentsToVar(

&value,
DATA_TYPE_REAL,
&temperature,
sizeof(temperature));

/* Initialize read information, which consists of

* an object identifier, and property ID.

*/
BACstacInitObjectID(&ObjID,OBJ_ANALOG_INPUT,1);
BACstacInitReadInfo(

&readInfo,
&objectID,
PROP_PRESENT_VALUE);

/* Send a Read-Property request and wait for a response */
BACstacReadPropertyEx2(

NULL,
pDestDevice,
&readInfo,
NULL, NULL, NULL,
&value,
NULL, NULL);

If a read property is an array, and the application needs to read one element of it then the BACstacSetReadInfoIndex()
routine can be used to specify the desired index in the read information.

27

Chapter 4. Creating a Server Application

Generating a Remote Write-Property Request
Your application uses three steps to generate a remote Write-Property request. First the application should set the
property contents to the value to be written. Second, to initialize the write information. Third, to send a Write-Property
request and waits for a response. The following example demonstrates how to write to the present value of an binary-
output object of the given device.

BACSTAC_ADDRESS *pDestDevice; /* initialized elsewhere */
BACSTAC_WRITE_INFO writeInfo;
BACSTAC_OBJECT_ID objectID;
BACSTAC_PROPERTY_CONTENTS value;
BACSTAC_ENUM powerStatus;
powerStatus = BACSTAC_BINARY_ACTIVE;
/* attach powerStatus to the Property Contents data type */
BACstacInitContentsToVar(

&value,
DATA_TYPE_ENUM,
&powerStatus,
sizeof(powerStatus));

/* Initialize write information, which consists of an

* object identifier, property ID, and pointer to the

* property contents with the value to be written.

*/
BACstacInitObjectID(&ObjID,OBJ_BINARY_OUTPUT,1);
BACstacInitWriteInfo(

&writeInfo,
&objectID,
PROP_PRESENT_VALUE,
&value);

/* Send a Write-Property request and wait for a response */
BACstacWritePropertyEx(

NULL,
pDestDevice,
&writeInfo,
NULL, NULL, NULL, NULL);

If a written property is an array, and the application needs to write one element of it then the BACstacSetWriteInfoIn-
dex() routine can be used to specify the desired index in the write information.

Registering Callbacks
When a Read-Property or Write-Property request for a property is being processed, the BACstac server can invoke
a callback routine that you provide to read values from or write values to the physical device. The write callback
is given a pointer to a Property Contents data type, and it can use the given value to update the physical device. A
Read-Property callback can store the new value into the database using BACstacStorePropertyInstance(), which will
be later used by BACstac to respond the Read Property request.

BACSTAC_CALLBACK_STATUS BACstac_callback ReadPropertyCallback(
BACSTAC_HOBJECT hObj,
BACSTAC_PROPERTY_ID PropertyID,
BACSTAC_ARRAY_INDEX Index);
BACstacSetReadCb(ReadPropertyCallback);

28

Chapter 4. Creating a Server Application

If a callback isn’t registered, or if a callback isn’t attached to a particular Property, the value of the Property in the
local Object will still be modified or read in response to BACnet requests.

For a commandable property, the commandable write callback will be invoked instead of the write callback if it is
installed. The commandable write callback allows to validate all values written to the commandable property and
not only the value having the highest priority now. This allows this callback to return an error if the given value is
out of range or cannot be accepted for any other reason. If the write commandable callback is not installed or the
write commandable callback returns CALLBACK_STATUS_DEFAULT then the write callback for the commandable
property will be invoked, but the write callback for a commandable property should not return an error (the returned
value by the write callback is ignored for commandable properties).

It is important to use the BACstac_callback modifier in callback definitions and prototypes, as in the above example.

It should be noted that the ReadPropertyMultiple and WritePropertyMultiple services are translated by the BACstac
default actions into simple ReadProperty and WriteProperty services. So an application provide support for both
ReadProperty and ReadPropertyMultiple with a single callback.

How to Use Callbacks
A callback is invoked when default actions to obtain the current value of this property or to pass a new value of the
property to application (typically to synchronize the value stored in the BACstac database and in the physical device).
However, not every invocation of a callback requires to access to physical device. In particular, when present-value
properties are read or written, the default actions may not need to access the physical device depending on the current
values of the out-of-service.

In the following example, a read callback provides update values for the present-value Property of an analog-input
Object and a binary-input Object.

/* include dbacc.h from examples to simplify get and set operations
for commonly use BACstac data types */

#include "dbacc.h"
BACSTAC_CALLBACK_STATUS BACstac_callback ReadPropertyCallback(

BACSTAC_HOBJECT hObj,
BACSTAC_PROPERTY_ID PropertyID,
BACSTAC_ARRAY_INDEX Index)

{
BACSTAC_BOOLEAN OutOfService;
BACSTAC_OBJECT_TYPE Type;
BACSTAC_REAL X;
BACSTAC_BINARY_PV BinPV;
BACSTAC_CALLBACK_STATUS Status;
/* The Present_Value property is decoupled from the physical input

and will not track changes to the physical input when the value
of Out_Of_Service is TRUE. */

GetBoolProperty (hObj, PROP_OUT_OF_SERVICE, &OutOfService);
if (OutOfService)

return CALLBACK_STATUS_DEFAULT;
/* This particular callback should only be invoked for

present-values. */
switch(Type)
{
case ANALOG_INPUT:

/* read the value */

29

Chapter 4. Creating a Server Application

X = ReadMyDevice();
/* store the new value into the database */
StoreRealProperty(hObj, PropertyID, X);
Status = CALLBACK_STATUS_OK;
break;

case BINARY_INPUT:
/* read the value */
BinPV = IsMyDeviceActive();
/* store the new value into the database */
StoreEnumProperty(hObj, PropertyID, BinPV);
Status = CALLBACK_STATUS_OK;
break;

default:
/* shouldn’t get here, but let default actions know */
/* that we didn’t read the physical device, so the */
/* previous value of the Property should be used */
Status = CALLBACK_STATUS_DEFAULT;
break;

}
return Status;

}

30

Chapter 5. Creating a Gateway Application
BACstac Routing Edition software includes Gateway library in addition to the Client and Server libraries of the
BACstac Standard Edition software.

A BACstac Server allows a control device to appear as a BACnet Device to the BACnet network. A BACstac Gateway
allows one or more control devices to appear as a set of BACnet Devices on a virtual BACnet network connected to the
real BACnet network by a router. The BACstac Gateway includes the capabilities of a BACnet router. The mechanism
of a BACnet Gateway is described in Annex H, sections H.1 and H.2 of the BACnet standard.

A BACstac Gateway application can be used to make devices on a proprietary network act as Servers to BACnet
requests. The BACstac Client library must be used to allow devices on a proprietary network to control BACnet
Devices.

The routines used in the examples below are documented in the Server API and Gateway API sections of the BAC-
stac Programmers’ Reference. You can link the BACstac routines to your application by using the BACGTWx.LIB
libraries. You must include the BACstac Gateway application header file in your source code files:

#include <
bacgtw.h>

How Is a Gateway Different from a Server?
A BACstac Gateway is different from a BACstac Server in three ways: it contains BACnet router functionality, it
maintains multiple local Devices, and it allows dynamic creation and deletion of local Devices.

The BACnet Standard includes a number of network layer messages, described in Clause 6. These messages are used
by the network layer of BACnet applications to discover paths to Devices on remote BACnet networks. BACnet routers
must be able to respond to these network layer service requests. A Gateway application acts like a router to a virtual
BACnet network, and must respond to these network layer service requests too. The BACstac Gateway performs these
functions transparently.

A Gateway maintains multiple local Devices, whereas a Server has a single local Device. As a result, the mechanism
for discovering local Device handles is somewhat different in a Gateway than in a Server. Once a Device handle is
obtained, both Server and Gateway applications can manipulate the Device (obtain information about the device or
obtain Object handles) in the same manner. If a Gateway uses hooks to override the default actions for a service, the
hooks must do a bit more work than their counterparts in a Server. Hooks are given source and destination Addresses
as arguments. A Server can assume that the destination Address refers to the single local Object, but a Gateway must
use the destination Address to find the corresponding local Device handle.

In a Server, the single local Device is created during initialization of the BACstac using a Device template created
from a .TPI file with the CBNOBJ utility program. In a Gateway, Devices can be created and deleted at any time.

BACnet Virtual Networks
A BACnet system can contain multiple BACnet local networks, connected by BACnet routers. The mechanism for
achieving this is described in Clause 6 of the BACnet Standard. Each BACnet local network is identified by a BACnet
network number. The BACnet routers connecting the networks maintain the BACnet network number information.

31

Chapter 5. Creating a Gateway Application

When a BACstac Gateway application is initialized, the application must provide two BACnet network numbers: the
BACnet network number of the real BACnet network to which the Gateway is attached, and the BACnet network
number of the virtual BACnet network maintained by the Gateway.

A BACstac Gateway maintains a router table to allow BACnet requests to reach the correct Device in the Gateway
and to allow Gateway replies and broadcasts to reach the correct BACnet network. A BACstac Gateway supports
the following network layer messages: Who-Is-Router-To-Network, I-Am-Router-To-Network, and Initialize-Routing
Table (query only).

The handling of the router table and network layer messages occurs transparently to a Gateway application.

When a BACstac Gateway creates a Device, it must ensure that the new Device has a unique (within the Gateway)
virtual MAC address and a unique (over the entire BACnet inter-network) Device Object instance number. The BAC-
stac checks for uniqueness on the local Gateway, but the BACnet standard requires Device Object instance numbers
be unique over entire BACnet inter-network.

Initialization of the BACstac Gateway
Your application must initialize the BACstac Gateway before it will respond to BACnet network requests. You do this
by calling the API routine BACstacGatewayInit(). Its argument includes configuration parameters for the application
and the port identifier (taken from the routing table) corresponding to the virtual network you choose.

The following example initializes a Gateway application:

#include <
bacgtw.h>
#define MY_PORT_IDENTIFIER 5
main()
{

BACSTAC_GTW_INIT InitData;
BACstacInitGtwInit(&InitData,7,6,MY_PORT_IDENTIFIER); /* for BACstac v7.6 */
BACstacSetGtwInitMaxDevices(&InitData,30);
BACstacGatewayInit(&InitData);
...
BACstacUnlockData();
...

}

The maximum number of Devices set by BACstacSetGtwInitMaxDevices() must not exceed 64k.

If you do not call BACstacSetGtwInitMaxDevices(), this number will be set to a default value (32 for the current
version).

The Version numbers (Major and Minor) supplied by your application are checked by the BACstac initialization rou-
tine to ensure that your application is compatible with the version of the BACstac library with which your application
was built.

The call of BACstacUnlockData() unlocks BACstac object database after initialization, which is necessary for sub-
sequent service processing. BACstacGatewayInit() procedure (and BACstacServerInit() — see the Section called Ini-
tialization of the BACstac Server in Chapter 4) locks the BACstac database to prevent the data. Therefore you should
watch your code to call the unlocking procedure within every thread that calls BACstacGatewayInit() procedure.

32

Chapter 5. Creating a Gateway Application

Creating a Device Using a Device Template
A Gateway can create Devices on its virtual BACnet network at any time. The maximum number of Devices that a
Gateway can maintain is set when the Gateway is initialized.

When a Device is created, a Gateway application must provide a virtual MAC address for the Device, and a unique
Device Object instance number. A Device template, created from a .TPI file by the CBNOBJ utility program, is used
to describe the Objects and Properties in the

new Device. (see the Section called Defining Objects in a Device Template in Chapter 4). Information in the template
(including initial values for all the Properties) is copied into the new Device. A template can be used to create multiple
Devices. Once Devices have been created, Objects can be added to or removed from them,.

For instance, suppose that a .TPI file containing just a Device Object is called emptydev.tpi. A .C file containing
the Device template can be created with the CBNOBJ utility. The command line arguments of CBNOBJ are the source
file, destination file and external name for the template:

CBNOBJ emptydev.tpi emptydev.c emptyDevice

You can compile the .C file containing the Device template separately and link the resulting object file to your Gate-
way application. To create a Device, a Gateway application could use the BACstacCreateDeviceFromTemplate() API
routine, as in the following example:

#define NMAXOBJ 25
extern const struct DEVICE_TEMPLATE emptyDevice;
/* in EMPTYDEV.C created by CBNOBJ from EMPTYDEV.TPI */
/* make the virtual MAC address look like an Ethernet,

and choose some Address selection scheme */
BACSTAC_BYTE pMAC[] = {’\0’,’\0’,’\001’,’\004’,’\009’,’\002’};
BACSTAC_ADDRESS Address;
BACSTAC_INST_NUMBER InstNum = 1492;
BACSTAC_HDEVICE hDev;
/* initialize the MAC address for the Device */
BACstacInitAddrLocal(&Address,pMAC,BACSTAC_MAC_ETHERNET_LENGTH);
BACstacCreateDeviceFromTemplate(

&emptyDevice,
&Address,
InstNum,
NMAXOBJ,
&hDev);

A BACstac Gateway application can use multiple templates for creating Devices.

Deleting a Device
A BACstac Gateway application can delete a Device and the Objects that it contains by using the BACstacDeleteDe-
vice() API routine:

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACstacDeleteDevice(hDev);

33

Chapter 6. Resolving Device ID
BACstac includes a Device ID resolver that provides a convenient way to resolve required Device ID to address. The
resolver automatically caches the most recently used Device ID in the internal cache. If the requested Device ID is
unknown, it tries to resolve it using the Who-Is request and waiting for the I-Am indition. If the application has a hook
for I-Am, it should invoke the default action (by return HOOK_DEFAULT), so the resolver will receive that I-Am
indication.

This API is available for all types of applications (CLIENT, SERVER, GATEWAY). The size of the resolver cache
specified in the corresponding section of the APIL configuration. This API is intended to resolve individual Device
ID and not suitable to enumerate all devices existing on the BACnet internetwork.

When the specified Device ID is unknown, the resolver uses a global Who-Is request with the given Device ID as the
filter. If the application wants to limit the search to particular BACnet networks for all or some Device ID values, it
can provide its own Who-Is sender using BACstacSetResolverWhoIsSender().

A gateway application needs to know the source address that should be used to send a Who-Is request. The application
can either provide a fixed value of the source address using BACstacSetResolverSrcAddress for the default Who-Is
sender, or to install its own Who-Is sender as described above.

The resolver uses the default APDU Timeout and Retry Count when it searches the specified Device ID. Thus if the
specified Device ID cannot be located, it takes APDU_Timeout * (Retry_Count + 1) before the final timeout expires.

The resolver API provides a few ways to resolve Device ID, which are described below. The optimal choice depends
on application requirements. Simple application that deals with a small number of Device ID can use synchronous
search. However, the synchronous search can be blocked for a while, so it is not appropriate to deal with a large
number of devices. Asynchronous search allows to resolve multiple Device ID without blocking.

Synchronous Device ID resolution
The synchronous API is easy to use as it requires to call only one API function:

status = BACstacResolveDeviceID(deviceID, &address, &iAmInfo);

where deviceID is the device instance number that needs to be resolver. On successful return, the variable pointed
by ’address’ contains the BACnet address of the device and the variable pointed by ’iAmInfo’ contains additional
information received in I-Am. If I-Am information is not needed the last parameter may be NULL.

Asynchronous Device ID resolution
The asynchronous API allows to avoid being blocked while the resolver is trying to resolve Device ID. Therefore,
this API is more suitable when the application needs to resolve a large number of devices or it is undesirable for the
calling thread to be blocked for long time.

/* Define MY_RESOLVE_OPER, so we can pass additional parameters

* to the asynchronous callback routine. If you do not need any

* additional parameters then there is no need for it. */
typedef struct tagMY_RESOLVE_OPER
{

BACSTAC_RESOLVE_OPER base;
// ... additional application data

34

Chapter 6. Resolving Device ID

} MY_RESOLVE_OPER;
/*
* IMPORTANT: The ACR is invoked asynchronously on the BACstac internal thread!

* Make sure that access to any data uses proper synchronisation primitives!

*/
void BACstac_callback MyResolveAcr(

BACSTAC_STATUS status,
BACSTAC_I_AM_INFO *iAmInfo
BACSTAC_ADDRESS *deviceAddress,
BACSTAC_RESOLVE_OPER *operBase)

{
/* We rely on that BACSTAC_RESOLVE_OPER is the first field */
MY_RESOLVE_OPER *oper = (MY_RESOLVE_OPER*)operBase;
if (status == BACSTAC_STATUS_OK)
{

// Use obtained device address
}
else
{

// Report the error
}

}
MY_RESOLVE_OPER oper;
void Foo()
{

BACstacInitResolveOper(&oper.base);
// ... set other oper data if necessary
/* IMPORTANT: pointer to BACSTAC_RESOLVE_OPER must remain

* valid until the ACR callback is invoked. */
status = BACstacStartResolveOper(deviceID, &oper.base);
// ... verify status and report error if necessary

}

Ahead-of-time Device ID resolution
If an application knows ahead of time that it may need some Device ID to use later, it can ask the resolver to resolve
this address. It is similar to the asynchronous resolution but the application does not need any ACR to be invoked
when the device ID is resolved. So, the resolver operation parameter is NULL.

status = BACstacStartResolveOper(deviceID, NULL);
// ... verify status and report error if necessary

Later, the application can use a non-blocking call to obtain the device address from the resolver cache if it is ready:

status = BACstacGetDeviceAddressByID(deviceID, &address, &iAmInfo);

The above call will fail if the Device ID has not been resolved yet. So, this approach is not suitable everywhere, but
it can be useful when a device needs to send Event Notifications. In this case, the list of recipients is rarely changed,
so if ahead of time resolution started when a new device is added to the list, we can assume that there is enough time
to pass before the first notification. Moreover, delaying sending event notifications till the device ID is resolved may
result in sending obsolete notification, so it is not desirable anyway.

35

Chapter 7. BACstac Hooks
A hook is an application routine that allows your application to handle BACstac service requests. Defining hooks is
one of the most important features of low-level programming style. Still, you can use hooks in application using high
level API in general. In this case using hooks highly increases your application’s capability. To learn about BACstac
default method of handling requests see below (the Section called Default Actions and Building Blocks).

A hook is given all of the parameters that appear in the service request, and the hook has complete control over sending
a reply. A hook can choose to pass a service request back to BACstac to be handled with default method; the hook can
use helper routines to perform parts of the BACstac’s default actions itself or better to control the request handling
completely.

Default Actions and Building Blocks
BACstac has its own mechanism of processing service request. Thus, if you let the request processing to BACstac, it
performs its default actions. You can use BACstac default actions to handle service requests when programming with
high level API and BACstac Object Database.

If your application needs to perform some parts of these default actions such as parameters check-up, checking if a
property is writable or checking the BACstac Object Database for certain Objects and Properties existence you can
use the specific building block routines. Building blocks implement much of the logic of the default actions and help
you to assemble a simple hook when you use the Database. Please refer to the Programmers’ Reference for more
information.

However, the default actions of the BACstac may appear too general to handle service requests properly in the partic-
ular application. You may also need to define your own set of actions to perform. In such cases registering a hook to
handle the service request is preferable.

Actually, default actions for many services return a reject response with REJECT_UNRECOGNIZED_SERVICE
reason. Here are the services that can be effectively processed through default actions:

Who-Is, Who-Has, I-Am, I-Have, AddListElement, RemoveListElement, ReadProperty, WriteProperty, ReadPropertyMultiple, WritePropertyMultiple, GetAlarmSummary, DeviceCommunicationControl.

If you need to enable one of the other services (see Programmers’ Reference for the complete list of supported hooks)
in your application you should define hook for it (see below).

/* NOTE: This listing uses BACstacVerifyTSMCompletion() from examples */
BACSTAC_HOOK_STATUS BACstac_hook ReadHook(

BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_READ_INFO *pServiceInfo)

{
BACSTAC_STATUS statX;
const BACSTAC_OBJECT_ID *pObjId;
BACSTAC_INST_NUMBER deviceID, instNum;
BACSTAC_READ_INFO riBuf;
BACSTAC_HDEVICE hDev;
/* If it is a gateway then check that the destination address

* is for an existing device */
#ifdef BACSTAC_GATEWAY

hDev = BACstacDeviceAddressToHandle(pDestAddr);
if (hDev == BACSTAC_INVALID_HANDLE)

36

Chapter 7. BACstac Hooks

{
BACstacDestroyTSM(hTSM);
return HOOK_STATUS_OK;

}
#else

hDev = BACstacGetLocalDeviceHandle();
#endif

/* Check whether we are interested in the specified object type and

* property-identifier. If not, then return HOOK_STATUS_DEFAULT */
if (BACstacGetReadInfoPropID (pServiceInfo) != PROP_ACTIVE_COV_SUBSCRIPTIONS)

return HOOK_STATUS_DEFAULT;
pObjId = BACstacGetReadInfoObjectIDPtr (pServiceInfo);
if (BACstacGetObjectIDType (pObjId) != OBJ_DEVICE)

return HOOK_STATUS_DEFAULT;
/* Check that the specified object instance exists. If the object does not

* exist then send (OBJECT, UNKNOWN_OBJECT) error in response.

* For the device object, instance number 4194303 means any instance number,

* and we should send our actual instance number in response.

*/
/* Here were are dealing with the device object... */
BACstacGetDeviceInstNum (hDev, &deviceID); /* our actual instance number */
instNum = BACstacGetObjectIDInstNum (pObjId); /* requested instance number */
if (instNum == 4194303)
{

riBuf = *pServiceInfo;
BACstacSetObjectIDInstNum(BACstacGetReadInfoObjectIDPtr(&riBuf), deviceID);
pServiceInfo = &riBuf;

}
else if (instNum != deviceID)
{

statX = BACstacSrvcError (hTSM, ERR_CLASS_OBJECT, ERR_CODE_UNKNOWN_OBJECT);
/* Any response can fail, and we need to ensure that either some

* response is sent or, if it is not possible, the transaction is

* destroyed, so resources will not leak... */
BACstacVerifyTSMCompletion ("BACstacSrvcError()", statX, hTSM);
return HOOK_STATUS_OK;

}
/* Do our work here... */
....
/* Send the response */
statX = BACstacReadPropResponse (hTSM, pServiceInfo, &propContents);
/* ensure that the TSM will not leak.. */
BACstacVerifyTSMCompletion ("BACstacReadPropResponse()", statX, hTSM);
return HOOK_STATUS_OK;

}

Registering and Using Hooks
A hook is an application routine that can handle a BACnet service request. A hook can decline to handle a service
request by returning HOOK_STATUS_DEFAULT, in which case the BACstac default action will service the request.
If a hook is to handle the service request completely, the value HOOK_STATUS_OK should be returned as a result of
the hook.

37

Chapter 7. BACstac Hooks

All hook types supported by BACstac are listed below. These are included in the enumerated type BACSTAC_-
HOOK_TYPE.

HOOK_WHO_IS, HOOK_READ_PROP,

HOOK_READ_PROP_MULTIPLE, HOOK_WHO_HAS,

HOOK_WRITE_PROP, HOOK_WRITE_PROP_MULTIPLE,

HOOK_I_AM, HOOK_SUBSCRIBE_COV,

HOOK_ACK_ALARM, HOOK_I_HAVE,

HOOK_CONF_COV_NOTIFICATION, HOOK_GET_ALARM_SUMMARY,

HOOK_TIME_SYNC, HOOK_UNCONF_COV_NOTIFICATION,

HOOK_GET_ENROLLMENT_SUMMARY, HOOK_UTC_TIME_SYNC,

HOOK_CONF_EVENT_NOTIF, HOOK_DCC,

HOOK_ADD_ELEMENT, HOOK_UNCONF_EVENT_NOTIF,

HOOK_CREATE_OBJECT, HOOK_REMOVE_ELEMENT,

HOOK_CONF_PRIVATE_TRANSFER, HOOK_DELETE_OBJECT,

HOOK_READ_RANGE, HOOK_UNCONF_PRIVATE_TRANSFER,

HOOK_REINIT_DEV, HOOK_READ_FILE,

HOOK_CONF_TEXT_MESSAGE, HOOK_READ_PROP_CONDITIONAL

HOOK_WRITE_FILE, HOOK_UNCONF_TEXT_MESSAGE,

HOOK_GET_EVENT_INFO HOOK_SUBSCRIBE_COV_PROP

HOOK_LIFE_SAFETY_OPERATION

For the following hook type defined in a header file:

typedef BACSTAC_HOOK_STATUS (BACstac_hook *BACSTAC_READ_FILE_HOOK_PROC) (
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *sourceAddress,
BACSTAC_ADDRESS *destinationAddress,
const BACSTAC_READ_FILE_INFO *pServiceInfo

);

A hook instance declaration looks as follows:

BACSTAC_HOOK_STATUS BACstac_hook MyReadFileHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *sourceAddress,
BACSTAC_ADDRESS *destinationAddress,
const BACSTAC_READ_FILE_INFO *pServiceInfo);

All hooks have the same set of arguments, though the structure of the pServiceInfo argument depends on the service
type. It is important to use the BACstac_hook modifier in hook definitions and prototypes, as in the above example.

The TSM handle (hTransaction in the above example) serves as a unique identifier of the transaction in case of
confirmed service request hook. If your application defines an unconfirmed request hook (BACstac I-Am hook for
example) you will get NULL for this parameter. In this case your application would not deal with TSMs.

38

Chapter 7. BACstac Hooks

sourceAddress is a pointer to BACSTAC_ADDRESS variable containing the address of device which has sent the
request.

destinationAddress is a pointer to BACSTAC_ADDRESS variable containing the destination address as it was speci-
fied in the request.

The pointers passed into the hook can be used until corresponding transaction is completed so that you can use these
pointers even outside the hook until TSM completion. This is important when defining asynchronous hooks (more
about asynchronous hooks see in the Section called Synchronous/asynchronous Request Handling).

One of important hook’s tasks is checking the service request arguments. For example, a Read-Property hook is given
a pointer to a BACSTAC_READ_INFO data type variable that contains the fields ObjectID, ePropertyID, and nIndex.
It is a good idea to check (for example) if such a property exists in this object.

In case a hook has returned HOOK_STATUS_OK the application should care for TSM completion (for details on
TSM handling refer to the Section called Transaction Life Cycle in Chapter 8 of this Guide). The TSM should be
completed returning either positive or negative response. If any problem with the service executing or the transaction
completion appears (see 7.5) the TSM is completed via specialized routines. The choice of the concrete routine
depends on the service type (please refer to the Programmers’ Reference for details). Your application may complete
the corresponding TSM even outside the hook but the period of time to pass should not be too long to avoid the
transaction timeout.

A hook is registered using the BACstacSetHook() routine:

BACstacSetHook(HOOK_READ_PROP, (BACSTAC_HOOK_PROC) MyReadHook);

After this call all service requests of READ_PROPERTY type are executed using MyReadHook.

When a hook is registered by a Server application, the hook type argument may take any of the BACSTAC_HOOK_-
TYPE values.

On the contrary, Client application can register only several hooks to handle notifications and broadcasts. The hook
types that can be used are:

HOOK_CONF_COV_NOTIFICATION
HOOK_CONF_EVENT_NOTIF
HOOK_I_AM
HOOK_I_HAVE
HOOK_UNCONF_COV_NOTIFICATION
HOOK_UNCONF_EVENT_NOTIF

Hooks and Transaction Completion Routines
Completion routines are invoked only for confirmed requests. They are used to send a reply and free all internal
resources associated with the transaction. The transaction handle, which is passed in as the first argument of a hook,
is used as the first argument of any completion routine to identify the request to which the response is sent.

The other arguments of a service completion routine are the BACnet source and destination addresses and the service
specific information. Here is an example of a hook that uses a positive acknowledgment routine to send the response.
If the response cannot be sent, it destroys the transaction to free all internal resources associated with the transaction.

BACSTAC_HOOK_STATUS BACstac_hook ReadHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,

39

Chapter 7. BACstac Hooks

const BACSTAC_READ_INFO *pServiceInfo)
{

BACSTAC_PROPERTY_CONTENTS value;
BACSTAC_STATUS status;
BACSTAC_HDEVICE hDevice;
const BACSTAC_OBJECT_ID *objectID;
BACSTAC_HOBJECT hObject;
BACSTAC_PROPERTY_ID propID;
/* If it is a gateway then check that the destination address

* is for an existing device */
#ifdef BACSTAC_GATEWAY

hDevice = BACstacDeviceAddressToHandle(pDestAddr);
if (hDevice == BACSTAC_INVALID_HANDLE)
{

BACstacDestroyTSM(hTransaction);
return HOOK_STATUS_OK;

}
#else

hDevice = BACstacGetLocalDeviceHandle();
#endif

/* Obtain the object handle and check its existence */
objectID = BACstacGetReadInfoObjectIDPtr(pServiceInfo);
hObject = BACstacFindObjectByID(hDevice, *objectID);
if (hObject == BACSTAC_INVALID_HANDLE)
{

status = BACstacSrvcError(hTransaction,
ERR_CLASS_OBJECT, ERR_CODE_UNKNOWN_OBJECT);

}
else
{

/* Check property existence */
propID = BACstacGetReadInfoPropID(pServiceInfo)
if (!BACstacDoesPropertyExist(propID))
{

status = BACstacSrvcError(hTransaction,
ERR_CLASS_PROPERTY, ERR_CODE_UNKNOWN_PROPERTY);

}
else
{

/* Read from hardware if it is Present_Value */
if (propID == PROP_PRESENT_VALUE)
{

value = GetPropertyValueFromHardware(/*...*/);
status = BACstacReadPropResponse(hTransaction, pServiceInfo, &value);

}
else /* Invoke the default action for all other properties */

return HOOK_STATUS_DEFAULT;
}

}
/* Check status & destroy the transaction if the response can’t be sent */
if (status != BACSTAC_STATUS_OK)
{

status = BACstacDestroyTSM(hTransaction);
return HOOK_STATUS_OK;

}

40

Chapter 7. BACstac Hooks

}

The BACstacDestroyTSM() routine is used in the example to destroy a transaction. More detailed information about
destroying TSMs see in the Section called Transaction Life Cycle in Chapter 8 of this Guide.

The hook can use one of the four existing completion routines in case of negative reaction. Three of them correspond to
the three types of BACnet messages: Error, Abort and Reject. These messages are sent on the corresponding situations
discussed in AHSRAE standard. The fourth routine allows a Server application to ignore a service request by not
sending any response. This might be necessary if a Server pretends to be off-line. If one of negative acknowledgment
routines is used, the hook still returns HOOK_STATUS_OK since the service request is handled. For example, a
ReadProperty hook can check some of the service request arguments using a BACstac building block routine and use
an error completion routine if any arguments are incorrect.

Some hooks may also use completion routines that cannot serve all hooks but are applied in particular cases. For exam-
ple the hooks for AddListElement and RemoveListElement services should use BACstacChangeListError() negative
acknowledgment completion routine if an element could not be added to/removed from the list:

BACSTAC_HOOK_STATUS BACstac_hook AddElementHook(
BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_CHANGE_LIST_INFO *pServiceInfo)

{
BACSTAC_UTIL_STATUS status;
BACSTAC_STATUS statX;
BACSTAC_ERROR_CLASS errClass;
BACSTAC_ERROR_CODE errCode;
BACSTAC_ELEMENT_COUNT firstFailed;
BACSTAC_HDEVICE hDevice;
BACSTAC_HOBJECT hObject;
/* define values of routine arguments */
hDevice = BACstacGetLocalDeviceHandle(); /* This is a Server */
hObject = BACstacFindObjectByID(

hDevice,

*BACstacGetReadInfoObjectIDPtr(pServiceInfo));
/* this application routine does all the error checking */
/* and changes the list of elements */
status = BACstacAddElement(

hObject,
BACstacGetReadInfoPropID(pServiceInfo),
BACstacGetReadInfoIndex(pServiceInfo),
BACstacGetARLEHookInfoElementsPtr(pServiceInfo),
&errClass,
&errCode,
&firstFailed);

switch(status)
{

case UTIL_STATUS_OK:
/* positive reply */

statX = BACstacSrvcResponse (hTSM);
/* Check status... */
...
return HOOK_STATUS_OK;

case UTIL_STATUS_BACNET_ERROR:
/* negative reply */

41

Chapter 7. BACstac Hooks

/* impossible to add element */
statX = BACstacChangeListError (

hTSM,
ErrClass,
errCode,
firstFailed);

/* Check status... */
...
return HOOK_STATUS_OK;

default:
/* invalid parameter or another technical error. */
/* let the default actions generate the error */

return HOOK_STATUS_DEFAULT;
}

}

If a hook handles an unconfirmed service request, it does not use any completion routine; all the operations on the
TSM are completed by BACstac. Here is an example of the hook for the UTCTimeSynchronization service:

BACSTAC_HOOK_STATUS BACstac_hook MyTimeHook(
BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_UTC_TIME_SYNC_INFO *pServiceInfo)

{
BACSTAC_HDEVICE hDev;
/* Define Device handle */
hDev = BACstacGetLocalDeviceHandle();
/* This routine can be only used in Server applications */
/* because they have (the only) local device */
/* This routine synchronizes date and time */
SyncCurrentDateTime(hDev,pServiceInfo);
/* no completion routine necessary for unconfirmed services */
return HOOK_STATUS_OK;

}

The Who-Has and Who-Is services are unconfirmed, but they are expected to generate an I-Have or I-Am unconfirmed
service as a response. For example:

BACSTAC_HOOK_STATUS BACstac_hook WhoHasHook(
BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestinationAddress,
const BACSTAC_WHO_HAS_HOOK_INFO *pServiceInfo)

{
BACSTAC_HOBJECT hObject;
BACSTAC_ADDRESS address;
BACSTAC_STATUS status;

status = IsRequestValid(pServiceInfo); /* error checking */
if (status == BACSTAC_STATUS_OK)
{

/* this routine fetches a local device and object handles */
GetObjHandle(pServiceInfo, &hObject);
BACstacInitAddrGlobalBroadcast(&address);

42

Chapter 7. BACstac Hooks

BACstacIHave(NULL, hObject, &address);
}
status = BACstacSrvcError(hTSM,errClass,errCode);
/* Check the status */ ...
return HOOK_STATUS_OK;

}

Synchronous/asynchronous Request Handling
There are two ways of handling service requests in a hook. They are synchronous and asynchronous ones. When
processing a request synchronously you perform all the needed actions inside the hook. In this case the other service
requests are queued until the current request process is completed. In case of synchronously processed request the
TSM completes inside the hook. In the other case all (or almost all) the work is performed outside the hook. What is
most important, the TSM completion is also performed somewhere else in the program.

The hook itself stores the needed information about the request, returns HOOK_STATUS_OK as soon as possible and
returns the control to the BACstac. Thus, the associated TSM and all the parameters that have been passed to the hook
remain intact. So, you can use the pointers you have passed there in other parts of your application code. Nevertheless,
you should care of completing the TSM in a short period of time because BACstac has a timer for each TSM. On the
expiry of this timeout the TSM will be aborted by BACstac (see the Section called Transaction Life Cycle in Chapter
8 for details).

It is important not to make the synchronously handled hook too long either, all the more that the synchronous hook
makes BACstac wait for the hook completion impeding other requests processing.

Consider an example of ReadFile request handling: a file which is sent as a result of this request can be large enough
to timeout all the requests in the queue while receiving this file. Therefore it is a good idea to handle the ReadFile
service request asynchronously:

BACSTAC_HOOK_STATUS AsyncReadFileHook (
BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_READ_FILE_INFO *pServiceInfo)

{
/* Store the parameters of the request for further processing */

EnterCriticalSection(&critSection);
/* Due to multithread work method all operations

are performed within the critical section */
MyAllocAndStoreRequestParameters(pServiceInfo);
LeaveCriticalSection(&critSection);

//...
return HOOK_STATUS_OK;

}

The file is sent during performing another part of the application program:

BACSTAC_BOOLEAN MyReadFileProcess (/*...*/)
{

EnterCriticalSection(&critSection);
LookUpRequestParameters(pServiceInfo);
LeaveCriticalSection(&critSection);
BACSTAC_READ_FILE_RESULT fileResult;

43

Chapter 7. BACstac Hooks

BACSTAC_STATUS status;
MyResultConstruct(pServiceInfo,&fileResult);
/* Transmit the file */
status = BACstacReadFileResponse(hTSM,&fileResult);

// Check status...
return BACSTAC_TRUE;

}

The storing of request parameters (in a hook) and the look-up (in the application program) are performed concurrently
from different threads. Therefore the synchronizing is needed. In the above example the Critical Section mechanism
is used for synchronizing means.

Hooks in Gateway Application
A hook in a Gateway application must do a bit more work than the corresponding hook in a Server application, since
a Gateway hook will receive service requests directed to the Gateway’s virtual network. When a Gateway hook is
invoked, it must use the destination address argument to look up the correct Device. A Server hook can only reference
to the Server’s single local Device. A Gateway hook must also behave correctly (which means ignoring the request
in the corresponding case) if a service request is sent to a nonexistent virtual network MAC address. The following
example illustrates how a Gateway hook could perform these tasks:

BACSTAC_HOOK_STATUS BACstac_hook MyReadHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *pSourceAddr,
BACSTAC_ADDRESS *pDestAddr,
BACSTAC_READ_INFO *pServiceInfo)

{
BACSTAC_HDEVICE hDev;
/* which Device is the request for? */
hDev = BACstacDeviceAddressToHandle(pDestAddr);
/* non-existant Devices don’t reply, eh? */
if(hDev == BACSTAC_INVALID_HANDLE)
{

BACstacDestroyTSM(hTransaction);
return HOOK_STATUS_OK;

}
... /* rest of the hook is the same as in a Server */

}

44

Chapter 8. Bypassing BACstac Object
Database
In this chapter we are going to describe a BACstac applications programming style different from the one reported in
other parts of this Guide. Mostly in the Guide we described the BACstac set of functions and techniques named high
level API (or API simply). Using this style of programming you make your applications work with BACstac Object
Database, its device/object images, handles and default actions.

However, BACstac supports an alternative way of programming with its own set of routines named low-level (“raw”)
API or BACstac APIx. It is developed for the cases you cannot or don’t want to use the database. Actually, every call
to the APIx functions is simply an appeal to the real BACnet service request instance.

When programming to BACstac low-level API you do not turn to device handles. The application uses device ad-
dress to communicate with a device. To handle one of a device’s objects APIx routines use the device address and
object identifier. You can bypass the Object Database completely using user-defined hooks, low-level routines and
Asynchronous Callback Routines (ACR) included in low-level API. Besides, “raw” API widens the capabilities of
your BACstac applications because there are several examples of BACnet services which don’t have a high level
implementation. Thus, the corresponding services are inaccessible from the high level API (consider the ReadProper-
tyConditional service for the instance — see Programmers’ Reference for details). In case you want to take advantage
of using such services you have to use APIx functions.

Low-Level API Programming Tools
Programming your applications without BACstac Object Database you use three function types. They are hooks, APIx
routines and ACRs. For the description of hooks see Chapter 7 of this Guide.

All the routines of BACstac APIx have “Ex” suffix in their names. Thus, instead of BACstacReadProperty2() routine,
you use BACstacReadPropertyEx2(), instead of BACstacSubscribeCOV(), use BACstacSubscribeCOVEx() etc (see
Programmers’ Reference for the detailed descriptions of concrete routines).

Using the “raw” API you can well enlarge your possibilities. When you work through BACstac database routines
you should follow limitations concerning the functionality of your devices. The possibilities of three applications
types — Servers, Clients and Gateways — are different. Using low-level API you can avoid a considerable part of
these limitations. APIx allows you to create servers with some client features and vice versa. There are still sev-
eral BACnet services which are accessible in server but always unavailable in client applications: ConfTextMessage,
UnconfTextMessage, ConfCOVNotification, UnconfCOVNotification, ConfEventNotification, UnconfEventNotifica-
tion, IAm, IHave. On the other side, the "raw" client routines are used in servers and gateways which want to exhibit
its capability as a client. For example, using low-level API an area controller will monitor smaller controls as a client
and perform calculations on their values and present the results as a server.

Besides, the BACstac Object Database has a number of its own limitations you should hold to. These limitations apply
to the number of devices (for Clients and Gateway), number of objects in devices, size of property values. It is also
important that the BACstac Object Database was not optimized for extremely large number of devices and objects
(tens of thousands). In this case the database interchange is too slow. Programming with low-level API allows you to
come out of this frame.

The low-level API allows your application sophisticated handling of BACnet transactions (see 7.5) and the possibility
to process server requests asynchronously (see the Section called Creating Client Applications Using “Raw” API of
this chapter).

Consider the BACstacReadPropertyEx2() routine as a raw API function example.

45

Chapter 8. Bypassing BACstac Object Database

BACSTAC_STATUS BACstacReadPropertyEx2(
const BACSTAC_ADDRESS *pSourceAddress,
const BACSTAC_ADDRESS *pDestinationAddress,
BACSTAC_READ_INFO *pReadInfo,
BACSTAC_READ_PROP_ACR_PROC pfACR,
const BACSTAC_APDU_PROPERTIES *pAPDUParams,
BACSTAC_HTSM *phTransaction,
BACSTAC_PROPERTY_CONTENTS *pContents,
BACSTAC_ERROR *pError);

In this case the value of pDestinationAddress is used to specify destination device instead of Object handle which
encapsulates the device address and object identifier. This is a regular BACSTAC_ADDRESS type input parameter
you should always feed to the routine.

The address in pSourceAddress is a conditional parameter of the same type you can use to indicate the device that
initiates the request. This parameter is used when a gateway application starts a request to specify a particular device
on its network. Therefore, the SourceAddress is mandatory when your application is of Gateway type. Otherwise (in
Server or Client device) the value of SourceAddress is not used. You can pass the real address to the routine or replace
it with NULL constant.

The value of read property falls in pContents. This parameter is mandatory too. The value of pReadInfo parameter
of BACSTAC_READ_INFO type contains the ReadProperty parameters (object identifier, property identifier and
property array index).

Other parameters are optional and you can replace them by NULL constant in your source code. One of them is
BACSTAC_ERROR *pError: you can pass the address where BACstac will put information of the error returned if
the request caused a negative acknowledgment (in this case status returned by the routine is BACSTAC_STATUS_-
BACNET_ERROR, BACSTAC_STATUS_BACNET_REJECT or BACSTAC_STATUS_BACNET_ABORT). Actu-
ally, this parameter serves here the same purpose it serves in other (high level API) functions.

The pfACR, APDU parameters and transaction handles will be considered in the corresponding sections below.

Creating Client Applications Using “Raw” API
Using low-level API you widen the possibilities of your applications. With “raw” API client applications get raw
power. To enable this power you should use low-level API routines and other “raw” style features described in chapters
7.3-7.5. A client application created with “raw” API keeps all the possibilities of gathering and storing information
about remote Devices and Objects that can be provided by the Object Database.

When you skip BACstac Object Database you have to invent your own method of storing the information about remote
devices and objects. This method can base on the BACstac example code or be created anew.

Consider a client application designed to collect I-Am responses and to print out the values of device object proper-
ties. When using BACstac Object Database the client application receives the information about remote device and
BACstac stores it in the Database and accesses it through device or object handles.

If your client application bypasses the Object Database you should create a hook for at least I-Am service (hooks
are described in Chapter 7 of this Guide). This hook processes service information and stores device parameters in a
user-defined form instead of BACstac Object Database. Your application might need I-Have hook as well.

Consider an example of a structure designed to keep the following information about remote device: its BACnet
address and device instance number.

46

Chapter 8. Bypassing BACstac Object Database

typedef struct tagBACSTAC_DEVICE_TAG{
BACSTAC_ADDRESS deviceAddr;
BACSTAC_INSTANCE_NUMBER deviceNum;

} BACSTAC_DEVICE_TAG;

Every time I-Am is received in your client application’s hook you store the information about sending device. Each
new device will be remembered with an instance of such a structure, which will serve as a “raw” equivalent of device
handle used by BACstac Object Database. You can order them in any way suitable to store; for example, you can
store them as a queue, a list or a stack. You can use an existing mechanism of storing a queue of arbitrary elements
developed in the BACstac examples set.

Consider an example of the client application that uses BACSTAC_DEVICE_TAG structure to store images of remote
devices. This client sends Who-Is request and receives a number of I-Am responses creating device tags using the
structure given above for each device, which has sent an I-Am. These device tags are stored for the further processing.
The client application prints out the properties of every tracked device and keeps the corresponding tag for the future
work.

//
..
CriticalSection myCriticalSection;
BACSTAC_HOOK_STATUS MyIAMHook (

BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_I_AM_INFO *pServiceInfo)

{
BACSTAC_INST_NUMBER instNum;
BACSTAC_DEVICE_TAG *curDevice;
instNum = BACstacGetIAmInfoDeviceNumber(pServiceInfo);
curDevice = AllocAndInitDeviceTag(pSourceAddress, instNum);
EnterCriticalSection(&myCriticalSection);
MyStoreDeviceTag(curDevice);
LeaveCriticalSection(&myCriticalSection);
return HOOK_STATUS_OK;

}
//...
void MyPrintDevice (BACSTAC_INSTANCE_NUMBER myInstNum)
{

BACSTAC_DEVICE_TAG *deviceToPrint;
//...
//... Look up the needed device tag

EnterCriticalSection (&myCriticalSection);
deviceToPrint = LookUpDeviceDetails(myInstNum);
LeaveCriticalSection (&myCriticalSection);

//...
PrintDeviceProperties(deviceToPrint);

//...
}

// ...
}

Since both the hook and MyPrintDevice() procedure access the application’s set of device tags (which is to replace
BACstac object database) and their calls are executed concurrently from multiple threads the application needs a
synchronizing mechanism. Therefore the operations with the device tag set are performed within the critical section.

47

Chapter 8. Bypassing BACstac Object Database

The same mechanism is discussed in the chapter describing ACR calls (see detailed description in the Section called
Asynchronous Callback Routines.

Asynchronous Callback Routines
In the example above the parameter pfACR of type BACSTAC_READ_PROP_ACR_PROC is used to specify a
pointer to the Asynchronous Callback Routine associated to the request. Asynchronous Callback Routine is an
application-supplied function called asynchronously by BACstac to notify application about the request completion.
This parameter is optional.

An ACR prototype for our ReadProperty example will look like the following:

typedef void (*BACSTAC_READ_PROP_ACR_PROC) (
BACSTAC_HTSM hTransaction,
const BACSTAC_ADDRESS *pSourceAddress,
const BACSTAC_ADDRESS *pDestinationAddress,
BACSTAC_STATUS status,
BACSTAC_READ_INFO *pRequestInfo,
BACSTAC_PROPERTY_CONTENTS *pContents,
BACSTAC_ERROR *pError

);

If pfACR parameter value is NULL than the BACstac request will be accomplished synchronously (see Programmers’
Reference for details). In the case the request was initiated successfully (in the other case the corresponding status
value is returned), BACstacReadPropertyEx2() will not return until the request is complete (i.e. acknowledgment is
received or final timeout expires). Upon that the control is returned to the caller so that the results can be processed. In
this case BACstac no longer uses any application-supplied pointers (pError, pContents and pReadInfo in our example)
so that the application can free them if it needs to. When raw API routine returns the transaction is destroyed, so the
phTransaction parameter is not used, and if passed in, gets the BACSTAC_INVALID_HANDLE value.

Otherwise we consider the asynchronous request. When a pointer is passed for pfACR the request is initiated likely
to the previous case but the routine will not wait for the request’s completion. It will return to the caller, instead, and
the return status will indicate success or failure of the request initiating. In case of success it will also return a handle
to the transaction created which serves as the unique identifier of the request in progress through its completion.

Note that the ACR can be called by the BACstac in a concurrent thread in any moment not depending on the routine’s
work state. Hence the ACR can be called before the APIx routine return.

The values of the parameters having "out" semantics (the ones pContents and pError point to in case of BACstacRead-
PropertyEx2() routine) cannot be considered valid until the ACR is called. When the request is actually completed,
the associated ACR is called. Final request’s completion status and original raw API routine call “out” parameters
(pContents and pError in our example) are passed in. From this point on these pointers are not used by the BACstac,
so if application needs to free them, it can do it safely within the ACR.

The ACR for BACstacReadPropertyEx2() is an exception: pReadInfo parameter, having "in" semantics, is also passed
to the ACR where it can be freed by the application if it needs to. In other cases the “in” parameters can be freed (if
needed) after they had been passed to the low-level API routine.

Source and destination address values passed into a raw API routine follow a different policy. Address values (not
pointers) are copied by the BACstac before the raw API routine returns. So, application can free these pointers as soon
as the raw API routine returns, but ACR will get different pointers, ones that belong to the BACstac, and must not be
freed by the application.

48

Chapter 8. Bypassing BACstac Object Database

There is an important aspect of the BACstac asynchronous request design which applications can count on. After
having initiated request, raw API routines do not compete with ACR-invocation mechanism for any resources, and are
not synchronized with them in any way. This means that applications can call raw API routines having locked same
mutex that is acquired in the ACR and release it afterwards without causing a deadlock.

Consider an application that issues arbitrary number of asynchronous ReadProperty requests simultaneously. Appar-
ently, it needs to keep track of pending requests so that when they complete application could match acknowledgments
with requests. To achieve this, application will typically maintain some data structure to store request contexts. When
a new request is issued, its context will be stored. When ACR is called, application will look up request context in its
storage, take whatever action is appropriate, and, most likely, remove request context from the storage. What follows
is an example of such processing:

//
..
CriticalSection requestContextLock;
MyStatus MyReadProperty (/*...*/)
{
//...
context = MyAllocAndInitContext (&readInfo);
EnterCriticalSection (&requestContextLock);
status = BACstacReadPropertyEx2 (

NULL, // source address is only used in gateways
&destAddress,
&readInfo,
MyReadPropertyAcr,
NULL, // use default APDU parameters
&hTransaction,
&propContents // out; will be passed into the ACR
&netError, // out, will be passed into the ACR
NULL // in, allocator

);
// Check status
// ...
MyStoreContext (context, hTransaction);
LeaveCriticalSection (&requestContextLock);
//...
}
void BACstac_callback MyReadPropertyAcr (

BACSTAC_HTSM hTransaction,
const BACSTAC_ADDRESS *pSourceAddress,
const BACSTAC_ADDRESS *pDestinationAddress,
BACSTAC_STATUS status,
BACSTAC_READ_INFO *pRequestInfo,
BACSTAC_PROPERTY_CONTENTS *pContents,
BACSTAC_ERROR *pError)

{
// Check status
//...
// Lookup request context

EnterCriticalSection (&requestContextLock);
context = MyLookupAndRemoveContext (hTransaction);
LeaveCriticalSection (&requestContextLock);

// Take whatever action we want to complete it
//...
// Clean up request context

49

Chapter 8. Bypassing BACstac Object Database

MyFreeContext (context);
// ...
}

hTransaction parameter passed in the ACR is the same handle that was returned by the original raw API routine call
and can be used for the original call context identification. The transaction handle is valid until the ACR returns.

In the variable pointed to by the hTransaction parameter BACstac will pass a handle to the TSM created. This handle
will identify the request until it is completed.

Since the request context storage is accessed from multiple threads (those that call BACstacReadPropertyEx2(),
and those that call ACR(s)), access to the storage is guarded with some synchronization means. Notice, that BAC-
stacReadPropertyEx2() is called within the critical section guarded by the lock: if the lock were acquired after the
BACstacReadPropertyEx2() call, it would be possible for the ACR to be called within the time interval before the En-
terCriticalSection () is called, and ACR would fail to find the match for the transaction it is passed in. Such application
design is possible because BACstac guarantees that deadlock will not occur.

APDU Parameters
BACstac Application Layer Protocol Data Unit Properties (pAPDUParams in the example in the beginning of the
chapter) value defines a set of transaction properties and limitations. The parameters included in the BACSTAC_-
APDU_PROPERTIES structure are the following:

• APDU maximum length;
• Segmentation support;
• Maximum number of segments;
• Segmentation window size;
• Segment timeout;
• APDU timeout;
• Number of APDU retries.

More detailed information on the parameters listed above see in the Programmers’ Reference.

The parameters in this set are used to control the transaction and are stored in the TSM (see 7.5). The APDU properties
value are invariable until the end of transaction. Generally speaking, every transaction can have its own set of APDU
parameters.

Your application’s possibility to control and alter APDU properties depends on the transaction type. If a client trans-
action (for the difference between client and server TSMs see 7.5) is created by your application with the help of
low-level API routines, you can configure the APDU properties structure yourself using specialized access routines.
Otherwise, the default values are involved. For the details on the APDU properties handling routines refer to the
Programmers’ Reference. In case the TSM is created via high level API the default values APDU properties are used.

Server TSMs are always created by the BACstac without application control; in this case BACstac uses default values
of the current application’s APDU properties. For APDU maximum length the smaller value of received request and
current application’s APDU properties is used. Analogous rule affects segmentation support (the weakest value used).

The default APDU parameters are taken by user application from Registry when the application starts. For the prop-
erties omitted in Registry default values are used (refer to the Installation Guide for details). After the application is
started use BACstacSetDefaultAPDUProperties() routine (see Programmers’ Reference) to alter the values of APDU

50

Chapter 8. Bypassing BACstac Object Database

parameters at any time. Such changes only affect current application, i.e. each application has its own copy of default
APDU properties. If another copy of application starts after the values in Registry have been changed, it will get
updated values.

The application passes currently determined values of APDU properties to TSMs it starts. If the user changes APDU
properties at runtime every TSM started afterwards will get new APDU property values.

Since the APDU parameters of the application can be altered, the values of the corresponding properties in the ap-
plication’s Device object should be adjusted to the current values enabled in the application. The BACstacSynchDe-
viceTSMParams() routine is used for this purpose (refer to the Programmers’ Reference for detailed information).
After the call to this routine, the values of the corresponding Device object properties are corrected in the BACstac
Object Database. This is connected to the high-level programming style only.

There is a limitation on the total size of the APDU which is the number of segments (in case segmentation is on;
or 1 in the other case) multiply by APDU maximum length. This limitation is dictated by BACstac IPC buffer size
which is determined in Registry. For details refer to the Installation Guide. If this product exceeds the limitation
BACstacSetDefaultAPDUProperties() returns BACSTAC_FALSE value. Analogous check is also performed during
BACstac application Init() procedure. If such an error occurs Init() returns BACSTAC_STATUS_BAD_CONFIG.

Consider an example of client application that collects I-Am messages from remote devices and stores needed infor-
mation in a way described in 7.2; later this application initiates WriteFile service to send some data to one of these
remote devices. When initiating a WriteFile request this client uses stored information to adjust APDU properties of
the request (APDU maximum length and Segmentation support) to the values suitable for the particular remote device.

typedef struct tagBACSTAC_RD_DETAILS{
BACSTAC_ADDRESS deviceAddr;
BACSTAC_INSTANCE_NUMBER deviceNum;
BACSTAC_UNSIGNED deviceAPDU;
BACSTAC_SEGMENTATION deviceSegm;

} BACSTAC_RD_DETAILS;
BACSTAC_HOOK_STATUS MyCacheAPDUProp(// I-Am Hook

BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_I_AM_INFO *pServiceInfo)

{
BACSTAC_RD_DETAILS *pRemote;
//...
pRemote = AllocateAndInitDeviceDetails(

pSourceAddress,
BACstacGetIAmInfoDeviceNumber(pServiceInfo),
BACstacGetIAmInfoMaxAPDU(pServiceInfo),
BACstacGetIAmInfoSegmentation(pServiceInfo));

EnterCriticalSection(&critSection);
StoreDeviceDetails(pRemote);
LeaveCriticalSection(&critSection);
//...
return HOOK_STATUS_OK;

}
BACSTAC_BOOLEAN MyWriteFileProc(

BACSTAC_ADDRESS *pDestAddress,
BACSTAC_WRITE_FILE_INFO *pWriteInfo,
BACSTAC_WRITE_FILE_RESULT *pResult)

{
//...

51

Chapter 8. Bypassing BACstac Object Database

BACSTAC_APDU_PROPERTIES curAPDUParams;
BACSTAC_RD_DETAILS *curRemote;
BACSTAC_ERROR error;
BACSTAC_SEGMENTATION curSegm;
BACSTAC_UINT curMaxAPDU;
EnterCriticalSection(&critSection);
curRemote = LookUpDeviceDetails(pDestAddress);
LeaveCriticalSection(&critSection);
BACstacGetDefaultAPDUProperties(&curAPDUParams);
curSegm = BACstacGetAPDUPropSegmentation(&curAPDUParams);
curMaxAPDU = BACstacGetAPDUPropInt(&curAPDUParams);
curSegm = GetWeakerSegmentationValue(curRemote->deviceSegm,

curSegm);
curMaxAPDU = curMaxAPDU < curRemote->deviceAPDU ? curMaxAPDU:

curRemote->deviceAPDU;
BACstacSetAPDUPropInt(&curAPDUParams,

BACSTAC_APDU_MAX_LENGTH,
curMaxAPDU);

BACstacSetAPDUPropSegmentation(&curAPDUParams, curSegm);
status = BACstacWriteFileEx(

NULL, // Source address is not used
&curRemote->deviceAddr,
pWriteInfo
NULL, // Synchronous: no ACR used
&curAPDUParams,
NULL, // TSM handle is not used
pResult,
&error);

//... Check status...
return BACSTAC_TRUE;

}

Transaction Life Cycle
The Transaction State Machine (TSM) handle is used as an argument to the completion routines to identify the
transaction. The user can only access TSM via the “opaque” handle of BACSTAC_HTSM type.

Actually, a handle to TSM is used to identify a slot of TSM layer reserved for the concrete transaction. TSM maintains
the transaction state. At the same time BACstac initiates a transaction it picks a free slot to store the TSM for this
transaction. The number of slots available is determined by the application’s TSM pool size, which is read from the
Registry. If Registry doesn’t contain this value it is set to 150 by default (see Installation Guide for details).

In both cases either user’s application sends or receives a request BACstac needs to create a TSM. The two types of
TSM are distinguished: there are client TSMs and server TSMs.

Client TSM — if your application emits the request working so as a client

Server TSM — if your application replies to a request from a remote device working as a server

Accordingly, every application has two independent TSM pools: for server and client TSMs respectively. Both pools
are constructed when the application is started. Being structured in such way, these two types of TSM are independent
so that if your application has exhausted its limit of server TSMs it still can initiate transactions and vice versa. Sizes
of the Client and Server TSM pool are specified in the Registry independently. Still, if you change the pool size every
user application started later will follow these new specifications.

52

Chapter 8. Bypassing BACstac Object Database

If high-level API functions are used in the application, the transactions (and their TSMs) are processed by BACstac
entirely. In case of using “raw” API in your application, you are involved. When user application initiates a request
BACstac creates a transaction and associated TSM; when BACstac receives a request from another BACnet device a
TSM for this transaction is created.

The BACstac request can be synchronous or asynchronous (see ACRs description in 7.2). In both cases BACstac
initiates a transaction. When processing synchronous request the transaction is destroyed as soon as the raw API
routine’s returns so the user application can’t handle it (like in case of working with high level API). If a request is
handled asynchronously its TSM handle is passed to the ACR and serves as an identifier of request. The transaction
handle is valid until the ACR returns. After that, transaction is destroyed, and its TSM handle can be re-used by the
BACstac for other transactions. Thus, using a "stale" handle (see below) can cause erroneous results.

When executing a confirmed request in a hook you should watch the transaction to be destroyed in time. If the
transaction was completed normally, i.e. acknowledgment, either positive or negative, was sent, BACstac destroys it
and frees the corresponding TSM. If any problem with the transaction completion appears (caused by lack of resources
in BACstac, transaction timeout or some other reason) you should analyze the returned status to make a decision.
You can destroy the transaction by calling BACstacDestroyTSM() routine or take some steps to try to overcome the
problem.

When the server TSM is created BACstac sets up a timer. The default timeout value is 6 seconds. On this timeout expiry
BACstac forces the transaction completion by sending Abort APDU with “other” reason to the initiating BACnet
device, the TSM handle is marked as “aborted” and is not used or destroyed by BACstac. Application will discover this
when it eventually tries to complete the transaction: BACstac will return the BACSTAC_STATUS_TRANSACTION_-
ABORTED status code. In this case user application should call BACstacDestroyTSM() routine to destroy it.

Client TSM timer is also set on the TSM creation. There is some difference from server TSMs: client TSM timeout
behavior is controlled by the APDU-timeout and APDU-retries APDU properties (see 7.3 for details). If the client
TSM times out BACstac will return BACSTAC_STATUS_TIMEOUT status code.

You shouldn’t reuse the TSM handle value of the completed transaction. If this TSM is already used for another
transaction BACstac won’t recognize it and erroneous result may be caused.

If your server application processes the request in a hook, there is a choice of two hook return values. They are
HOOK_STATUS_DEFAULT and HOOK_STATUS_OK (see Chapter 7 of this Guide for the detailed description of
hooks usage). In case of HOOK_STATUS_DEFAULT return BACstac passes the control to the default procedures
for given request. So, BACstac processes transaction in the same way as while programming with BACstac object
database. In case when the return value is “HOOK_STATUS_OK” then BACstac manages the TSM itself too: after
request completed the transaction is destroyed and TSM handle is deleted. If the acknowledgment is not sent the
TSM’s timeout expires (see above). In this case the user should call BACstacDestroyTSM().

53

Chapter 9. Notifications
Notifications allow servers to send data to interested clients as soon as an event occurs. BACnet supports two types of
notifications, Events (or Alarms) and Change-Of-Value (COV). In addition, the notifications can be sent as confirmed
or unconfirmed messages. The rules governing this group of services are described in Clause 13 of the BACnet
standard.

COV Notifications
A COV Notification, either Confirmed or Unconfirmed, is sent when certain properties (usually present-value and
status-flags) in an object change by a specified amount, as described in Clause 13.1 of the BACnet Standard.

A COV Notification is sent to all BACnet clients that have previously subscribed using the SubscribeCOV service.
Subscriptions have lifetimes and can expire. Subscriptions indicate the Process ID to be used in the COV Notifications.
Subscriptions can request Confirmed or Unconfirmed Notifications. The current COV subscription list is not visible
in any object in the server (unlike Event subscriptions). For this reason, the source address of a subscription request is
used as the destination address for the COV Notifications, meaning that clients must subscribe for themselves.

A system using COV Notifications can provide user interfaces and databases with current data with less network traffic
than polling (using ReadProperty or ReadPropertyMultiple) at a fixed interval because messages are only sent when
data has changed significantly. By using Unconfirmed Notifications, traffic can be reduced even further since the data
is exchanged with one message, rather than two (a request and reply or notification and confirmation).

Event Notifications
An Event Notification, either Confirmed or Unconfirmed, is sent when an Event occurs, ie an important change in
the state of an object in a BACnet server. The criteria used to detect events may be listed as properties in the object
or in a related Event Enrollment object. The information on notification recipients may be recorded either in Event
Enrollment object or in Notification Class object. Clients subscribe for Event notifications by adding themselves to
the recipient-list property (using the AddListElement service) of the Notification Class object, or recipient property
of the Event Enrollment object.

There are two main types of Events in BACnet. Intrinsic, where an object detects an Event using its own properties,
and Algorithmic, where the Event is detected by comparing an object

to the properties in an Event Enrollment object. Both Confirmed and Unconfirmed Event Notification Services are used
for both these types of Events. Intrinsic Events are “lightweight”, since they can be generated based on properties in
the object itself. Algorithmic Events are more flexible and can be extended.

The Event Notification is sent to a specified process ID within the notification-client at a specified BACnet Address.

If the AckRequired parameter of Event Notification is set to BACSTAC_TRUE, then a secondary Event Notifica-
tion, ACK_NOTIFICATION, shall be issued when an acknowledgment is received from an operator or supervisory
application (in the form of an AcknowledgeAlarm service request).

Many parameters are included in the Event Notification Service using the BACSTAC_EVENT_NOTIF data structure.
Some of those fields are only used for EVENT and ALARM types of notifications. All attributes of the data structures
must be set according to the criteria described in Clause 13 of the BACnet Standard.

Confirmed and Unconfirmed Event notifications differ from one another only in that the former needs a confirmation
that the notification has been received by the client application.

54

Chapter 10. Receiving Notifications
A client must tell the server that it is interested in a particular notification by subscribing with the server. Notifications
are also identified by a Process ID, to allow notifications to be routed to multiple applications on a client system.
A BACstac client must register a set of Process IDs with the local BACstac protocol stack which will identify the
notifications that it wishes to receive.

Registering a Local Process ID
Prior to send any notification, the Process ID for which it is destined should be registered by the client application. The
application can modify the set of Process IDs assigned to it by the BACstac protocol stack (initially an empty list) us-
ing the routines BACstacRegisterProcessID(), BACstacRegisterUniqueProcessID(), BACstacUnregisterProcessID(),
BACstacGetProcessIDList(). The value 0 is reserved for future use for unconfirmed broadcasts.

A system could use a convention for assigning Process IDs, in which case a client application would be configured to
know its set of Process IDs, and the BACstacRegisterProcessID() routine would provide a natural way for registration.
Other applications may not care what value they use (say, for a short-term subscription), in which case they can request
a unique value from the BACstac protocol stack, making use of BACstacRegisterUniqueProcessID. This is also the
case of an application which cannot know the set of Process IDs of other applications running on the same host:

BACSTAC_UI32 processID;
/* register Process ID */
status = BACstacRegisterUniqueProcessID(&processID);
if (status != BACSTAC_STATUS_OK)
{

/* error actions */
}

Next, the client must communicate the selected Process Ids to the server application. For Change of Value reporting,
the SubscribeCOV service conveys the processID:

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_SUBSCRIBE_COV_INFO subsriber;
BACSTAC_ERROR error;
BACSTAC_UI32 processIDx
/* Assign the registered value to the corresponding argument */
subscriber.processID = processIDx
...
BACstacSubscribeCOV (hDev, &subscriber, &error);

In the case of intrinsic reporting, the client application should write the registered Process ID into the appropriate
Destination of the Recipient List of the Notification Class object used for reporting by the event-initiating object(s).
(see the Section called Subscribing for Event Notifications). In the case of algorithmic reporting, the application should
write the Process ID either into the Process

Identifier property of the Event Enrollment Object (when Notification Class object is not used) or into the appropriate
Destination of the Recipient List of the Notification Class object (see the Section called Subscribing to an Event
Enrollment Object).

55

Chapter 10. Receiving Notifications

Subscribing for COV Notifications
A client application must subscribe with a server to receive COV notifications. The subscription establishes a connec-
tion between the logical process within the COV Client which you want to be the notification recipient and the object
within the COV Server whose properties you want to be monitored. It also determines the specific characteristics of
the reporting mechanism established within the particular pair COV Client process - COV Server object. This sub-
scription is implemented with use of BACstacSubscribeCOV() routine corresponding to SubscribeCOV service (see
Clause 13.14 of the BACnet standard).

The set of properties whose values are reported by notifications depend on the type of the monitored object and is
given in Table 13-1 of the BACnet standard. The criteria used for determining that a change of value has occurred
depend solely on the Object type, while the parameters which may be required for applying these criteria are stored
in the corresponding object database and have nothing to do with the COV subscription.

The arguments needed for BACstacSubscribeCOV() are mostly stored in the BACTAC_COV_CONTEXT structure.
Prior to call BACstacSubscribeCOV(), you should initialize this structure or set its fields using the appropriate access
routines. You should also obtain a device handle for the device, which contains the monitored object.

The following example illustrates the use of BACstacSubscribeCOV() for subscribing a COV Client for Confirmed
notifications from all Analog-type objects of a device:

#include <
baccli.h>
#define MaxObjects 50
BACSTAC_HDEVICE hDev;
BACSTAC_UNSIGNED lifetime;
BACSTAC_UI32 processID;
BACSTAC_BOOLEAN issueConfNotif;
BACSTAC_STATUS status;
BACSTAC_OBJECT_ID objectID[MaxObjects];
BACSTAC_OBJECT_COUNT nObjects,n;
BACSTAC_ERROR err;
BACSTAC_OBJECT_TYPE objType;
BACSTAC_SUBSCRIBE_COV_INFO covContext;
/* previously registered the processID */
lifetime = 0; /* infinite lifetime */
issueConfNotif = BACSTAC_TRUE;
/* get object list from device hDev initialized elsewhere */
status = BACstacReadObjectList(

hDev,
objectID,
MaxObjects,
&nObjects,
&err);

if (status != BACSTAC_STATUS_OK)
{

/* error actions */
}
/* look up objects for subscription */
for (n=0; n<nObjects && n<MaxObjects; n++)
{

objType = BACstacGetObjectIDType(&objectID[n]);
if (objType == OBJ_ANALOG_INPUT ||

objType == OBJ_ANALOG_OUTPUT ||
objType == OBJ_ANALOG_VALUE ||)

56

Chapter 10. Receiving Notifications

{
BACstacInitCOVSubscription(

&covContext,
processID,
&objectID[n],
issueConfNotif,
lifetime);

/* Subscribe for Change Of Value */
status = BACstacSubscribeCOV(hDev,&covContext,&err);
if (status != BACSTAC_STATUS_OK)
{

/* error actions */
}

}
}

Cancelling a COV Notification Subscription
A COV subscription can be cancelled by sending a SubscribeCOV request with different arguments. This is done by
calling the same routine BACstacSubscribeCOV(), with the covContext structure initialized for cancellation. For that,
the BACstacInitCOVCancellation() access routine should be called. To continue the above example, the following
code may be provided for cancellation:

for (n=0; n<nObjects && n<MaxObjects; n++)
{

objType = BACstacGetObjectIDType(&objectID[n]);
BACstacInitCOVCancellation(

&covContext,
processID,
&objectID[n]);

/* Cancel COV Subscription */
status = BACstacSubscribeCOV(hDev,&covContext,&err);

}

If a client requests the cancellation of a nonexistent COV subscription, the server will respond positively, as if the
subscription had existed.

Receiving COV Notifications with a Hook
In general, the notification service requests may arrive as soon as the COV Client has subscribed for COV notifications.
This implies the necessity of registering hooks for COV notifications prior to the call of BACstacSubscribeCOV(), as
is the case in the above example, but after having initialized the Client:

BACSTAC_HOOK_STATUS BACstac_hook CovConfNotificationHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *sourceAddress,
BACSTAC_ADDRESS *destAddress,
BACSTAC_COV_NOTIF_INFO *pServiceInfo);

BACstacSetHook(
HOOK_CONF_COV_NOTIFICATION,

57

Chapter 10. Receiving Notifications

(BACSTAC_HOOK_PROC) CovConfNotificationHook);

or, for an unconfirmed notification,

BACSTAC_HOOK_STATUS BACstac_hook CovUnconfNotificationHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *sourceAddress,
BACSTAC_ADDRESS *destAddress,
BACSTAC_COV_NOTIF_INFO *pServiceInfo);

BACstacSetHook(
HOOK_UNCONF_COV_NOTIFICATION,
(BACSTAC_HOOK_PROC) UncovConfNotificationHook);

The two types of hooks correspond to the two types of COV notifications: HOOK_CONF_COV_NOTIFICATION
and HOOK_UNCONF_COV_NOTIFICATION. Both these types, however, are given the service parameters with use
of the same BACSTAC_COV_NOTIF_INFO structure.

No default actions are provided for either Confirmed or Unconfirmed Notification service requests. That means that
the COV notification hook cannot decline to handle the notification service request by returning HOOK_STATUS_-
DEFAULT.

In the case where a confirmed COV notification is received, the COV subscriber should indicate that the COV Notifica-
tion service has succeeded, and the appropriate completion routine should be called by the confirmed COV notification
hook. Typically, it will have the following structure:

BACSTAC_HOOK_STATUS BACstac_hook CovConfNotificationHook(
BACSTAC_HTSM hTransaction,
BACSTAC_ADDRESS *sourceAddress,
BACSTAC_ADDRESS *destAddress,
BACSTAC_COV_NOTIF_INFO *pServiceInfo)

{
/* user-provided actions */
BACstacSrvcResponse(hTransaction);
return HOOK_STATUS_OK;

}

For an Unconfirmed COV Notification hook, BACstacSrvcResponse() is not called.

Subscribing for Event Notifications
Unlike COV subscriptions, which expire and must be reinitiated by the client, Event Notification subscriptions are
stored in properties of Event Enrollment and Notification Class objects. The Event Notification subscriptions can
often be configured permanently at system installation. Some controls will also allow dynamic subscription to Event
Notifications.

In the case of intrinsic reporting, subscribing for event notifications reduces to adding an appropriate Destination to
the Recipient List property of the Notification Class object referred to by the object with which the subscription is
implemented.

In the case of algorithmic reporting, there are two ways of subscribing. The first is by writing the Client parameters
into the Recipient property of the Event Enrollment object which monitors the given Object. The second is by adding
a Destination to the Recipient List property of the Notification Class object referred to by the Event Enrollment object.

58

Chapter 10. Receiving Notifications

Subscribing to a Notification Class Object
To subscribe for Event Notifications in the case of intrinsic reporting:

• Discover the Notification Class of the event-initiating object
• Construct a subscription (the Destination data structure)
• Append your subscription to the Notification Class object’s recipient-list

The Notification Class of the event initiating object is found by reading the object’s notification-class property.

The subscription information includes the BACnet address or Device ID, and process ID of the application. It also
includes the time interval each day in which notifications can be sent to this application, the type of events to send, and
whether to use Confirmed or Unconfirmed Notifications. The Destination (see Table 12-24 of the BACnet Standard) is
formed with use of Destination Access routines and stored in a Property Contents. Suppose you want to form a single
Destination:

BACSTAC_DESTINATION destination;
BACSTAC_TIME fromTime, toTime;
BACSTAC_ADDRESS locAddress;
BACSTAC_UI32 processID; /* registered previously, */
BACSTAC_RECIPIENT locRecipient;
/* set time to any time of the day */
BACstacInitTime(&fromTime, 0, 0, 0, 0);
BACstacInitTime(&toTime, 23, 59, 59, 99);
/* initialize locRecipient with Address */
BACstacGetLocalAddress(&locAddress);
BACstacInitRecipientAddress(&locRecipient, &locAddress);

/* initialize destination with preset values, allowing confirmed
notifications */

BACstacInitDestination(
&destination,
&fromTime,
&toTime,
&locRecipient,
processID,
BACSTAC_TRUE);

/* set the flag Transitions for TO_OFFNORMAL */
BACstacSetBitStringBit(

&destination.transitions,
EVENT_TRANSITION_TO_OFFNORMAL,
BACSTAC_TRUE);

/* set up propContents to use destination */
BACstacInitContentsToVar(

&propContents,
DATA_TYPE_DESTINATION,
&destination,
sizeof(destination));

The Notification Class recipient-list property should be updated using the BACnet AddListElement service. Using
ReadProperty followed by WriteProperty is not recommended since another application could be trying to update the
property at the same time.

59

Chapter 10. Receiving Notifications

BACSTAC_ERROR err;
BACSTAC_ELEMENT_COUNT firstFailed;
BACstacAddListElement(

hObjNC,
PROP_RECIPIENT_LIST,
BACSTAC_VOID_INDEX,
&propContents,
&err,
&firstFailed);

Cancelling a Notification Class Subscription
An Event Subscription is cancelled by using the BACnet RemoveListElement service. The list element value in the
request is identical to the value in the initial AddListElement request.

BACSTAC_DESTINATION addList[MAX_DEST_NUM];
/* Initialize propContents so that it contains the second element

in addList */
BACstacInitContentsToVar(

&propContents,
DATA_TYPE_DESTINATION,
&addList[1],
sizeof(BACSTAC_DESTINATION));

/* Remove the element from hObjNC object */
BACstacRemoveListElement(

hObjNC,
PROP_RECIPIENT_LIST,
BACSTAC_VOID_INDEX,
&propContents,
&err,
&firstFailed);

Subscribing to an Event Enrollment Object
Normally an Event Enrollment object will use a Notification Class object to handle its subscriptions. It is also possible
for an Event Enrollment object to manage a single subscription by itself. The subscription information is contained in
a series of properties of the Event Enrollment object, which can be updated using the BACnet WriteProperty service.

If an Event Enrollment object is managing a single subscription, its recipient property (see 12.11.13 of the BACnet
Standard) will contain a Recipient (either a BACnet address or Device ID), otherwise it will be NULL.

An application can always try to write a value into the recipient property. The Event Enrollment object may choose
to disallow the request if it doesn’t want a previous subscription to be overwritten or if wants subscriptions to occur
only via the Notification Class object. In addition, the process-identifier, priority and issue-confirmed-notifications
properties must be set.

A direct subscription to an Event Enrollment object can be cancelled by writing NULL to the recipient property.

60

Chapter 10. Receiving Notifications

Requesting Alarm and Enrollment Summaries
The GetAlarmSummary() routine corresponds to the GetAlarmSummary service and is used by the Client application
to obtain a list of so-called active alarms (see Clause 13.10 of the BACnet standard).

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_ALARM_SUMMARY aSummaryBuffer[MAX_SUMMARIES];
BACSTAC_UINT nSummaryAvailable;
BACSTAC_ERROR err;
BACSTAC_STATUS status;
Status = GetAlarmSummary(

hDev,
aSummaryBuffer,
MAX_SUMMARIES,
&nSummaryAvailable,
&err);

The GetEnrollmentSummary service is a more general query. Before calling BACstacGetEnrollmentSummary(), it is
necessary to set up its filter argument. The simplest way to do that is to call BACstacInitEnrlFilter(). This routine will
set the only mandatory BACSTAC_ACK_FILTER argument to the indicated value, leaving all other filters inactive
(see 13.11.1.1.1 of the BACnet Standard).

BACSTAC_HDEVICE hDev; /* initialized elsewhere */
BACSTAC_ENROLLMENT_FILTER filter;
BACSTAC_ENROLLMENT_SUMMARY aSummaryBuffer[MAX_SUMMARIES];
BACSTAC_UINT nSummaryAvailable;
BACSTAC_ERROR err;
BACSTAC_STATUS status;
/* initialize the filter so that the returned summary contains

all event-initiating objects */
BACstacInitEnrlFilter(&filter, ACK_FILTER_ALL);

In actuality, the Summary of event-initiating Objects should be restricted to maximum degree. Among other reasons,
that will speed up the summary return. This purpose is served by access routines for the filter argument. Any of these
routines permits to restrict the Summary to such or such category of event-initiating Objects .

/* restrict the summary to objects whose Event State is not Normal */
BACstacSetEnrlFilterEventState(&filter, STATE_FILTER_ACTIVE);
status = BACstacGetEnrollmentSummary(

hDev,
&filter,
aSummaryBuffer,
MAX_SUMMARIES,
&nSummaryAvailable,
&err);

The returned Summary in that specific example represents a superset of a Summary that would have been obtained
through the use of the GetAlarmSummary() routine: it will include any event-initiating Object whose Event State
property is not NORMAL regardless of whether its Notify Type property is set to ALARM or not.

61

Chapter 11. Sending Notifications
A server must keep track of the list of interested clients (responding to subscription requests). A server must monitor its
objects to detect conditions when it needs to send notifications. When those conditions occur, a server must assemble
the data needed for the notification and generate the notifications.

Handling COV Subscriptions with a Hook
The list of current COV subscriptions is not visible in any object in the server, and is not maintained by the BACstac
library. Maintaining that list is the responsibility of the server application.

The SubscribeCOV service is used to create a list of subscribers and maintain it. An application using the COV
notification services must also register a hook of type BACSTAC_SUBSCRIBE_COV_HOOK_PROC:

main (void)
{

...
BACSTAC_STATUS status;
...
status = BACstacSetHook(HOOK_SUBSCRIBE_COV,
(BACSTAC_HOOK_PROC) SubscribeCOVHook);
...

}
BACSTAC_HOOK_STATUS BACstac_hook SubscribeCOVHook(

BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_SUBSCRIBE_COV_INFO *pServiceInfo)

{
...

The main purpose of such hook consists in adding new elements in the list of subscribers (these elements should
incorporate information stored mostly in a COV context variable) maintained for each monitored object and updating
the already existing elements. The basic actions you should take with that aim depend on whether the SubscribeCOV
request conveys subscription or cancellation and may include the following steps:

For the case of subscription, the hook should first check to see if the object is already being monitored. Second, the
list of subscribers for the given object should be searched for the subscriber with the BACnet address and processID
corresponding to the request source Address and processID. If no such subscriber is found, an element representing
information on the subscriber should be added to the subscriber list. If, on the contrary, the subscriber is already
present, then the request should be considered re-subscription and its COV context renewed.

For the case of cancellation, the steps are similar. If the object is already being monitored and a subscriber with
matching source Address and processID is found, this subscription should be cancelled. If no matching subscription
is found, no actions are taken. In both cases, however, the Result(+) must be returned (see BACnet standard, p.241).
This implies the necessity to call the completion routine BACstacSrvcResponse(). The end of the hook thus takes the
following form

...
status = BACstacSrvcResponse(hTSM);
return HOOK_STATUS_OK;

}

62

Chapter 11. Sending Notifications

Since no default actions are provided for that type of hook, HOOK_STATUS_OK

is the only value it may return.

Detecting COV Events
A COV Notification, either Confirmed or Unconfirmed, is sent when the present-value property of a local Object
changes by a predetermined amount, or the status-flags property changes. The COV Notification typically reports the
values of those two properties. The Object types, for which COV reporting is supported, the criteria for reporting and
the reported properties are enumerated in Table 13-1 of the BACnet standard.

In addition, COV Notifications are only sent to clients with current subscriptions. When a value changes, the server
should look at the subscriptions for that object. COV Notifications should be sent to permanent subscriptions. For
the case of temporary subscription, the new time remaining for the subscription expiry must be calculated, since it is
included in the Notification. If the subscription has expired, it can be removed from the subscription list.

Generating COV Notifications
The COV Notification is sent to a specified process ID within the notification-client at a specified BACnet Address. A
Confirmed COV notification differs from an Unconfirmed COV notification only in that it needs a confirmation that
the notification has been received by the client application.

You can send a COV Notification to a particular recipient by calling BACstacConfCOVNotification() or BACstacUn-
confCOVNotification(). To select the appropriate routine and set its arguments with appropriate values, you need the
information stored in the list of subscribers. Apart from COV context, this information should include a destination
BACnet address (passed by BACstac to the corresponding SubscribeCOV hook as a Source Address, see above) and,
unless the subscription is permanent, the time of subscription. The following example, assuming the Object to be of an
analog type, illustrates how you may set the BACstacConfCOVNotification() and BACstacUnconfCOVNotification()
arguments.

#include <
bacsrv.h>
BACSTAC_HDEVICE hLocDev;
BACSTAC_HOBJECT hObj; /* the object which changed */
/* this information is from the subscription list for the object */
BACSTAC_BOOLEAN issueConfirmedNotifications;
BACSTAC_UI32 processID
BACSTAC_UNSIGNED timeRemaining;
BACSTAC_ADDRESS destAddress;
/* these values are used to generate the notification */
#define NumPropValues 2 /* for objects of an analog type */
BACSTAC_PROPERTY_VALUE propValue[NumPropValues];
BACSTAC_PROPERTY_CONTENTS propContents[NumPropValues];
BACSTAC_BIT_STRING statusFlags;
BACSTAC_REAL realv;
BACSTAC_ERROR err;
BACSTAC_STATUS status;
BACSTAC_BOOLEAN boolStatus;
/* set propValue array with values to be reported */
/* set the first propValue element with Present_Value */
BACstacInitContentsToVar(

63

Chapter 11. Sending Notifications

propContents,
DATA_TYPE_REAL,
&realv,
sizeof(realv));

BACstacRetrievePropertyInstance2(
hObj,
PROP_PRESENT_VALUE,
BACSTAC_VOID_INDEX,
propContents,
NULL);

BACstacInitPropValue(
propValue,
PROP_PRESENT_VALUE,
propContents);

/* Similarly, set the second element with Status_Flags */
...
if (issueConfirmedNotifications)
{

/* send Confirmed... */
status = BACstacConfCOVNotification(

hLocDev,
hObj,
processID,
timeRemaining,
propValue,
NumPropValues,
&destAddress,
&err);

if (status != BACSTAC_STATUS_OK)
{

/* error actions */
}

}
else
{

/* ...or Unconfirmed notification */
status = BACstacUnconfCOVNotification(

hLocDev,
hObj,
processID,
timeRemaining,
propValue,
NumPropValues,
&destAddress);

if (status != BACSTAC_STATUS_OK)
{

/* error actions */
}

}

64

Chapter 11. Sending Notifications

Detecting Intrinsic Events
Intrinsic Events are detected by monitoring Objects for changes that would cause an event transition, as described in
Clause 13.2 of the BACnet Standard. A server should monitor the Present Value of all objects which support intrinsic
reporting. A record should be kept of the occurrence and time of changes which are to be reported (as stated in the
BACnet standard).

If the monitoring procedure discovers that the Present Value does not correspond to the Event State of the Object (for
instance, the Present Value of an Analog Object is no longer between Low Limit and High Limit of the given Object
while the Event State equals STATE_NORMAL value) and that such situation persists for more than the Time Delay
fixed for the event-initiating object, than the following steps should be taken:

• determine the new Event State in accordance with the new Present Value and the old Event State,
• determine from the Event Enable property whether that new Event State is to be generated and the transition to it

reported,
• only for Analog objects, determine from the Limit Enable property whether HighLimit or LowLimit offnor-

mal/normal events are to be generated and the transition to them reported.
• corresponding flag in the Event Enable property (and in Limit Enable, for Analog objects) enables the event transi-

tion to the given event, the following steps should be taken:
• change Event State of the object to that new value (see Subchapter 4.4, Property Instance),
• clear intrinsic context flags,
• change the IN_ALARM flag of the Status Flags property of the object in accordance with the new Event State,
• if the corresponding flag in the Ack Required property of the Notification Class object referenced by the given

object is set, clear the respective flag in objects’ Acked Transitions property corresponding to the new event to
indicate that an acknowledgment is expected, and vice versa,

• determine the Event Type in accordance with the Object type and with Table 13-2 of the BACnet Standard,
• generate the notification as described below.

Generating Intrinsic Event Notifications
Once an Intrinsic Event has been detected, the server will use information from the event-initiating object and a
Notification Class object to generate the notifications.

The corresponding Notification Class Object is identified by an unsigned notification-class property of the event-
initiating Object. A server application should have some way of finding the corresponding Notification Class object
from the unsigned value, like an index. The unsigned value may also correspond to the instance number appearing in
the object-identifier property, but this is not required.

The Notification Class Object contains the recipient-list (see p.207-209 of the BACnet Standard) to be used for the
notification. For each destination found in that list, the server must:

• Check whether the destination is interested in transitions to the new Event State at the current time and day of week,
• Get all the notification parameters (mostly read them from the event-initiating and Notification Class objects),
• Send the notification.

65

Chapter 11. Sending Notifications

Check the Time and Date:
For each destination, the validity of the current date and time should be checked versus the corresponding fields of
that destination.

#define MaxSizeDestinationList 100
BACSTAC_DESTINATION destinationList[MaxSizeDestinationList];
BACSTAC_ELEMENT_COUNT destNumber; /* num of el. in destination list */
BACSTAC_UNSIGNED n;
BACSTAC_TIME *pFromTime;
BACSTAC_TIME *pToTime;
BACSTAC_TIME timeNow;
for (n = 0; n < destNumber; n++)
{

/* read From Time and To Time in Destination */
pFromTime = BACstacGetDestinationFromTimePtr(&destinationList[n]);
pToTime = BACstacGetDestinationToTimePtr(&destinationList[n]);
GetCurrentTime(&timeNow);
/* compare timeNow with fromTime and toTime */

}

After the above step, both fromTime and toTime values should be compared to the current time timeNow. Analogously,
the current date should be got and tested against validDays in Destination.

Check the Event Type:
The bit in the Transitions field of the Destination corresponding to the new Event State is checked to see if the client
is interested in the event (there are three bits: EVENT_TRANSITION_TO_NORMAL, EVENT_TRANSITION_-
TO_OFFNORMAL, EVENT_TRANSITION_TO_FAULT):

BACSTAC_DESTINATION destination
BACSTAC_BIT_STRING *pTransitionBits;
BACSTAC_EVENT_TRANSITION_BITS eventTransitionBit;
/* set eventTransitionBit with the value corresponding to the new

Event State */
...
pTransitionBits = BACstacGetDestinationTransBitsPtr(&destination);
/* if the appropriate bit is cleared... */
if (BACstacTestBitStringBit(pTransitionBits, eventTransitionBit)

== BACSTAC_FALSE)
{

/* ...no notification required */
}

Issue Confirmed Notifications:
To choose the appropriate Notification service (Confirmed or Unconfirmed) for each recipient, you should obtain the
Destination IssueConfirmedNotification Parameter:

BACSTAC_DESTINATION destination;
BACSTAC_BOOLEAN issueConfNotif;
issueConfNotif = BACstacGetDestinationConfFlag(&destination);

66

Chapter 11. Sending Notifications

If issueConfNotif is TRUE, you should send the notification with use of BACstacConfEventNotification2() API rou-
tine, otherwise BACstacUnconfEventNotification2() is used. These routines have the same arguments except that
BACstacUnconfEventNotification2() receives no buffer for Error.

Recipient Address:
The address of the Recipient (i.e. the destination device to receive the notification) is obtained from the Destination:

BACSTAC_DESTINATION destination;
BACSTAC_RECIPIENT *pRecipient;
BACSTAC_RECIPIENT_TYPE recipientType;
pRecipient = BACstacGetDestinationRecipientPtr(&destination);
recipientType = BACstacGetRecipientTag(pRecipient);

Further actions depend on whether the Recipient field of Destination contains the Address or Object Identifier of the
Recipient:

BACSTAC_ADDRESS *pDestAddress;
BACSTAC_OBJECT_ID *pDeviceObjectID;
BACSTAC_INST_NUMBER recipientInstNumber;
/* if Recipient contains Address */
if (recipientType == RECIPIENT_ADDRESS)
{

pDestAddress = BACstacGetRecipientAddressPtr(pRecipient);
...

}
/* if Recipient contains Device Object Identifier */
if (recipientType == RECIPIENT_DEVICE)
{

pDeviceObjectID = BACstacGetRecipientDevicePtr(pRecipient);
recipientInstNumber = BACstacGetObjectIDInstNum(pDeviceObjectID);
/* get recipient Address by its Instance Number */
BACstacResolveDeviceID(recipientInstNumber, pDestAddress, NULL);
...

}

If the recipient contains a Device ID, the server needs to discover the destination device address. There are a few
different ways to do that. For the sake of simplicity, the above example uses synchronous resolution, so the calling
thread is blocked until BACstacResolveDeviceID returns. To learn more about different methods to resolve Device
ID, please refer to Chapter 6.

Process ID:
The handle of a process within the recipient device which will receive the notification is obtained from the corre-
sponding Destination:

BACstacSetEventNotifProcessID(&eventNotif,
BACstacGetDestinationProcessID(&destination);

67

Chapter 11. Sending Notifications

Time Stamp:
In the case where the device issuing the service request has no clock, a sequence number should be assigned to this
parameter (see Section 13.8.1.5 of the BACnet Standard):

BACSTAC_UNSIGNED seqNumberCurrent; /* initialized elsewhere */
BACstacInitTimeStampSeqNumber(

BACstacGetEventNotifTimeStampPtr(&eventNotif),
seqNumberCurrent);

seqNumberCurrent++;

If the device has a clock, the timeStamp parameter should be initialized with the current time:

BACSTAC_TIME timeNow;
BACstacGetCurrentTime(&timeNow); /* see Examples\Utils\bactime.h */
BACstacInitTimeStampTime(BACstacGetEventNotifTimeStampPtr(&eventNotif), &timeNow);

or, if you want to set timeStamp with DateTime:

BACSTAC_DATE_TIME dateTimeNow;
GetCurrentDateTime(&dateTimeNow);
BACstacInitTimeStampDateTime(

BACstacGetEventNotifTimeStampPtr(&eventNotif),
&dateTimeNow);

Notification Class:
By the time where you form a notification, the value for the eventNotif.notifClass parameter must be already read
from the Notification Class property of the event-initiating object (see above).

Priority:
The priority parameter should be got from the Priority property of the Notification Class object referenced to by the
event-initiating object. First, the Priority array

BACSTAC_UNSIGNED priorities[3];

should be read with use of BACstacInitContentsToArray() and BACstacRetrievePropertyInstance2() routines. Second,
the array element corresponding to the new Event State should be chosen: (alternatively, one can pass appropriate array
index to BACstacRetrievePropertyInstance2)

BACSTAC_EVENT_TRANSITION_BITS eventTransitionBit;
/* set to the appropriate Event State elsewhere */
BACstacSetEventNotifPriority(

&eventNotif,
(BACSTAC_UI8) priorities[eventTransitionBit]);

68

Chapter 11. Sending Notifications

Event Type:
By the time of forming the notification, the value for eventNotif.eventType is already determined (see above).

Notify Type:
This parameter may be simply read from the event-initiating object into a Property Contents pointing to eventNo-
tif.notifyType.

Acknowledge Required:
The ackRequired parameter should be obtained from the Ack_Required property of the Notification Class object
referenced to by the event-initiating object. After having read this property into the ackRequiredFlags buffer, you
should test its flag corresponding to the new Event State:

BACSTAC_BIT_STRING ackRequiredFlags;
BACSTAC_EVENT_TRANSITION_BITS eventTransitionBit;
/* set to the appropriate Event State elsewhere */
BACstacSetEventNotifAckRequired(

&eventNotif,
BACstacTestBitStringBit(

&ackRequiredFlags,
eventTransitionBit));

Depending on the result of this testing, the same flag in the Acked_Transitions property of the event-initiating ob-
ject should be cleared or set meaning that an acknowledgment is expected or not, respectively, in response to the
notification being formed:

BACSTAC_BIT_STRING ackedTransFlags;
/* read the Acked_Transitions property into ackedTransFlags buffer*/
...
/* change the flag corresponding to eventTransitionBit */
if (BACstacGetEventNotifAckRequired(&eventNotif) == BACSTAC_TRUE)
{

BACstacSetBitStringBit(&ackedTransFlags, eventTransitionBit, BACSTAC_FALSE);
}
else
{

BACstacSetBitStringBit(&ackedTransFlags, eventTransitionBit, BACSTAC_TRUE);
}
/* write the ackedTransFlags value into Acked_Transitions property*/
...

From-State, To-State:
The fromState field represents the previous Event State of the event-initiating object which is read by the monitoring
procedure at the very beginning. The toState field represents the new Event State of the event-initiating object.

69

Chapter 11. Sending Notifications

Event Values:
The eventValues field represents a set of Notification Parameters specific to the particular event type and are listed in
Table 13-3 of the BACnet Standard. These parameters are mostly read from the event-initiating object. Examples are
listed below for each type of event.

CHANGE_OF_STATE event type

Present Value corresponding to the new Event State is read previously (see above) by the monitoring procedure,
the Status Flags is changed in accordance with the new Event State.

The New State is set to Present Value differently for Binary and Multistate objects. For Binary Input and Binary
Value objects, whose Present Value is of type BinaryPV:

BACSTAC_PROPERTY_STATES newState;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_BINARY_PV binaryPresentValue;
...
BACstacSetPropStatesBinary(&newState, binaryPresentValue);

For Multistate Input objects, whose Present Value is of type Unsigned:

BACSTAC_UNSIGNED unsignedPresentValue;
...

BACstacSetPropStatesUnsigned(&newState, unsignedPresentValue);

For both:

BACstacInitNPCOState(
BACstacGetEventNotifEventValuesPtr(&eventNotif),
&newState,
&statusFlags);

OUT_OF_RANGE event type

Present Value, Deadband, and High/Low Limit (whichever is exceeded) are read previously (see above) by the
monitoring procedure, the Status Flags is changed in accordance with the new Event State.

BACSTAC_REAL presentValue;
BACSTAC_REAL deadband;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_REAL exceededLimit;
BACstacInitNPOutOfRange(

BACstacGetEventNotifEventValuesPtr(&eventNotif),
presentValue,
&statusFlags,
deadband,
exceededLimit);

COMMAND_FAILURE event type

Both the Command Value (ie. commandable Present Value) and Feedback Value are read previously by the
monitoring procedure, the Status Flags is changed in accordance with the new Event State. For both Binary and
Multistate Output objects these values should be passed to the initialization routine:

BACSTAC_PROPERTY_CONTENTS cmdValue;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_PROPERTY_CONTENTS feedbackValue;
BACstacInitNPCmdFailure(

BACstacGetEventNotifEventValuesPtr(&eventNotif),

70

Chapter 11. Sending Notifications

&cmdValue,
&statusFlags,
&feedbackValue);

FLOATING_LIMIT event type

Referenced Value, Setpoint Value, and Error Limit (ie Controlled Variable Value, Setpoint, and Error Limit
properties of the Loop object, respectively) are read previously by the monitoring procedure, the Status Flags
is changed in accordance with the new Event State. These arguments should be passed into the Notification
Parameters initialization routine:

BACSTAC_REAL refValue;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_REAL setpointValue;
BACSTAC_REAL errorLimit;
BACstacInitNPFloatingLimit(

BACstacGetEventNotifEventValuesPtr(&eventNotif),
refValue,
&statusFlags,
setpointValue,
errorLimit);

Send the Event notification:
After monitoring all the objects which support intrinsic reporting, obtaining parameters for all required notifications,
you may proceed to sending the notification.

To avoid blocking the server while sending the notifications, you may want to assemble and queue the notifications
before sending them. For any ALARM or EVENT notification, if an acknowledgment is required the transition, you
may want to keep track of some notification parameters. These parameters can be used for sending the acknowledg-
ment notification and will be used to identify the Acknowledge Alarm request whose receipt is notified by comparing
these parameters with the arguments passed into the hook which controls sending this notification (see SubChapter
8.8).

BACSTAC_HOBJECT hObj; /* initialized elsewhere */
BACSTAC_ERROR err; /* optional */
if (issueConfNotif)
{

/* Send Confirmed Notification */
status = BACstacConfEventNotification2(

hObj,
&eventNotif,
&destAddress,
&err);

}
else
{

/* Send Unconfirmed Notification */
status = BACstacUnconfEventNotification2(

hObj,
&eventNotif,
&destAddress);

}

71

Chapter 11. Sending Notifications

Detecting Algorithmic Events

General:
Algorithmic reporting differs from intrinsic reporting in that the reported event is not a simple change of value detected
for a certain time. Rather, it is defined with use of some predetermined algorithm specified by the Event Enrollment
Object which belongs to the same device as the event-initiating object. That Event Enrollment Object contains infor-
mation needed for sending notifications and in a sense keeps the same place as Notification Class object for intrinsic
reporting. In some cases, however, a part of this information may be also provided by Notification Class object which
thus complements the Event Enrollment Object (see Clause 13.3 of the BACnet Standard). Unlike Notification Class
Object which may be used by multiple objects of the same device, the Event Enrollment Object refers to the only
object which is identified by its Object Property Reference property.

Unlike intrinsic reporting, where an event consists in a change in Present Value property, the algorithmic reporting
may be related to various properties. For code examples, see Subchapter “Detecting Intrinsic Events”.

Differences in Generating Events Between Algorithmic and Intrinsic
Reporting:
Intrinsic and algorithmic reporting have much in common. The differences arise mostly from the mechanism by which
events are generated and from the structure of Event Enrollment and Notification Class objects. Below is the list of
differences in generating events between algorithmic and intrinsic reporting for various event types.

The event is generated under the following circumstances:

CHANGE_OF_STATE

intrinsic:

The Present Value changes to a new state

algorithmic:

The referenced property changes to one of the values contained in the List_of_Values parameter

OUT_OF_RANGE

intrinsic:

The Present_Value goes outside the range between Low_Limit and High_Limit or returns within the range be-
tween High_Limit - Deadband and Low_Limit + Deadband (see Table 13-2 of the BACnet Standard), where
High_Limit, Low_Limit, and Deadband are properties of the event-initiating object

algorithmic:

The referenced property goes outside the range between Low_Limit and High_Limit or returns within the range
between High_Limit - Deadband and Low_Limit + Deadband (see 13.3.6 of the BACnet Standard), where
High_Limit, Low_Limit, and Deadband are parameters of the Event Enrollment object.

COMMAND_FAILURE

intrinsic:

The commanded property differs from the Value indicated by the Feedback Value of the same object

algorithmic:

72

Chapter 11. Sending Notifications

The referenced property differs from the current Value of the property indicated by the
Feedback_Property_Reference parameter. That property may belong to an object differing from the Reference
Object

FLOATING_LIMIT

intrinsic:

|Setpoint - Controlled_Variable_Value| > Error_Limit. All quantities in this condition are properties of the Loop
object.

algorithmic:

|Setpoint_Reference - Object_Property_Reference| > High_Diff_Limit (Low_Diff_Limit).

Here Setpoint_Reference and High_Diff_Limit (Low_Diff_Limit) are Event Enrollment Object parameters, Ob-
ject_Property_Reference is a property of the same object.

Detecting a New Event State and Implementing the Transition:
First, the occurance of event transition must be detected; a procedure should monitor the referenced property. If there is
more than one such property in the device, then they should all be monitored, perhaps as a list of monitored properties.

It is generally desirable to store the information having relation to changes in some special data structure. In the first
place, such a structure should contain a BACSTAC_OBJ_PROP_REF variable referencing the monitored property.
This structure helps the application to detect a transition occurrence. This requires measuring the time elapsed since
the change of property. Also, flags may be included for particular event types (e.g., for the OUT_OF_RANGE event
type, a flag indicating which of two limits - low or high - is exceeded). A variable that would store the old value of the
changed property may also be useful as a component of this structure.

All monitored properties may be inserted in a queue of such structures. The criteria for event occurrences are described
in Clause 13.3 of the BACnet Standard. The transition may be implemented when the monitoring procedure discovers
the occurrence of one of the following conditions:

For all event types except CHANGE_OF_VALUE:

The referenced property does not correspond to the current value of the Event State property of the Event Enrollment
Object, or

For CHANGE_OF_VALUE event type, referenced property of type real

the new referenced property value differs from the old one by more than the Referenced_Property_Increment param-
eter - for the case of type real, or

For CHANGE_OF_VALUE event type, referenced property of type bitstring

(the new referenced property value) XOR (the old referenced property value) AND (Bitmask) parameter has at least
one bit not equal to zero.

If the monitoring procedure reveals that such situation persists longer than the time indicated by the Time_Delay
parameter, the following steps should be taken:

• Determine the new Event State in accordance with the new Present Value and the Event Type property of the Event
Enrollement Object,

• Change Event State of the Event Enrollement Object to the determined value except for the CHANGE_OF_VALUE
event type,

• Clear necessary flags (flagNewState in our example) except maybe for the CHANGE_OF_VALUE event type,

73

Chapter 11. Sending Notifications

• Determine from the Event Enable property of the Event Enrollement Object whether the transition should be re-
ported.

Generating Algorithmic Event Notifications
(For code examples, see Subchapter 8.5 “Generating Intrinsic Event Notifications”).

If the transition is to be reported, the following steps should first be taken:

• if acknowledgment is required for the determined transition, clear the corresponding bit in Acked Transitions prop-
erty to indicate that an acknowledgment is expected. Whether acknowledgment is required or not is determined
from the AckRequired property of the Notification Class object. If Notification Class object is not used (see below),
it is up to user to decode whether acknowledgment is required or not.

• for CHANGE_OF_VALUE event type only, set the old referenced property value equal to the new referenced
property value,

The exact method used to create the event notification depends on whether or not the Notification Class property is
used.

If the Recipient property has a non-NULL value, meaning that the Notification Class property shall not be used (see
12.11.13 of the BACnet Standard), the recipient is to be obtained from the Recipient property.

If the Recipient property has a NULL value, meaning that the Notification Class property shall be u sed, then the
Notification Class object indicated by the Notification Class property should be found in the local device and the
following steps should be taken:

• read the recipient list of the obtained Notification Class object (see p.206-207 of the BACnet Standard),
• for each destination found in that list check whether the destination enables transitions to the new Event State at the

current time and day of week.

Generating algorithmic notifications is very similar to using intrinsic reporting. Some differences in obtaining notifi-
cation parameters arise, mostly from the use of Event Enrollment object.

Issue Confirmed Notifications:
This value, indicating whether Confirmed or Unconfirmed Notification service should be used, is obtained from the
Destination IssueConfirmedNotification Parameter

Recipient Address:
A pointer to the address of the destination device (the Recipient) should be obtained from the Destination.

74

Chapter 11. Sending Notifications

Process ID:
The handle of a process within the recipient device, which will receive the notification, is obtained from the corre-
sponding Destination.

Time Stamp:
In the case where the device issuing the service request has no clock, a sequence number should be assigned to this
parameter (see p.236 of the BACnet Standard). If, on the contrary, the device has a clock, the current time should be
obtained and the timeStamp parameter should be initialized with that time.

Notification Class:
By the time where the notification is being formed, the value for the eventNotif.notifClass parameter is already read
from the Notification Class property of the Event Enrollment object.

Priority:
The priority parameter should be read from the Priority property of the Notification Class object referenced by the
Event Enrollment object.

Event Type:
This parameter is read from the Event Type property of the Event Enrollment object.

Notify Type:
This parameter is read from the Notify Type property of the Event Enrollment object.

Acknowledge Required:
The ackRequired parameter is read from the Ack Required property of the Notification Class object referenced by the
Event Enrollment object. First, its flag corresponding to the new Event State should be tested. Then, depending on the
result of this test, the same flag in the Acked_Transitions property of the Event Enrollment object should be cleared
or set indicating that an acknowledgment is expected or not, respectively.

From-State, To-State:
Represents the previous and new Event States of the Event Enrollment object which was read by the monitoring
procedure at the very beginning.

75

Chapter 11. Sending Notifications

Event Values:
The eventValues field represents a set of Notification Parameters specific to particular event type and listed in Table
13-4 of the BACnet Standard. These parameters are read from the reference object.

CHANGE_OF_BITSTRING event type

The value of the bitstring property corresponding to the new Event State has been read previously by the monitor-
ing procedure (which is necessary for determining the transition occurence), the Status Flags has been changed
in accordance with the new Event State. These arguments should be passed into the Notification Parameters
initialization routine:

BACSTAC_BIT_STRING newBitString;
BACSTAC_BIT_STRING statusFlags;

...
/* Initialize a CHANGE OF BITSTRING set of values which will be

conveyed, as an Event Values parameter, by an Event Notification
Service. */

BACstacInitNPCOBitString(
BACstacGetEventNotifEventValuesPtr(&eventNotif),
&newBitString,
&statusFlags);

CHANGE_OF_STATE event type

Present Value corresponding to the new Event State has been read previously (see above) by the monitoring
procedure, the Status Flags has been changed in accordance with the new Event State.

The New State notification parameter is set to Present Value differently for Binary and Multistate objects. For
Binary Input and Binary Value objects, whose Present Value is of type BinaryPV:

BACSTAC_EVENT_NOTIF eventNotif;
BACSTAC_PROPERTY_STATES newState;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_BINARY_PV binaryPresentValue;
...
/* Set the New_State notification parameter for the

CHANGE OF STATE event type */
BACstacSetPropStatesBinary(&newState, binaryPresentValue);

For Multistate Input objects, whose Present Value is of type Unsigned:

BACSTAC_UNSIGNED unsignedPresentValue;
...
/* Set the New State notification parameter for the

CHANGE OF STATE event type */
BACstacSetPropStatesUnsigned(&newState, unsignedPresentValue);

For both:

/* Initialize a CHANGE OF STATE set of values which will be conveyed,
as an Event Values parameter, by an Event Notification Service. */

BACstacInitNPCOState(
BACstacGetEventNotifEventValuesPtr(&eventNotif),
&newState,
&statusFlags);

76

Chapter 11. Sending Notifications

CHANGE_OF_VALUE event type

The referenced property corresponding to the new Event State has been read previously by the monitoring proce-
dure, the Status Flags has been changed in accordance with the new Event State. Different initialization routines
are used to set the Notification Parameters to those arguments for the cases where the referenced property is of
bitstring or real type:

a) For real type:

BACSTAC_REAL newValue;
BACSTAC_BIT_STRING statusFlags;
/* Initialize a CHANGE OF VALUE set of values for real type */
BACstacInitNPCOVIncrement (

BACstacGetEventNotifEventValuesPtr(&eventNotif),
&newValue,
&statusFlags);

b) For bitstring type:

BACSTAC_BIT_STRING newBitString;
BACSTAC_BIT_STRING statusFlags;
/* Initialize a CHANGE OF STATE set of values for bitstring type */
BACstacInitNPCOVBitString (

BACstacGetEventNotifEventValuesPtr(&eventNotif),
&newBitString,
&statusFlags);

COMMAND_FAILURE event type

Both the Command Value (i.e commandable Present Value) and Feedback Value have been read previously by
the monitoring procedure, the Status Flags has been changed in accordance with the new Event State. For both
Binary and Multistate Output objects these values should be passed to the initialization routine:

BACSTAC_PROPERTY_CONTENTS cmdValue;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_PROPERTY_CONTENTS feedbackValue;
/* Initialize a COMMAND_FAILURE set of values */
BACstacInitNPCmdFailure(

BACstacGetEventNotifEventValuesPtr(&eventNotif),
&cmdValue,
&statusFlags,
&feedbackValue);

FLOATING_LIMIT event type

Referenced Value, Setpoint Value, and Error Limit (ie Controlled Variable Value, Setpoint, and Error Limit
properties of the Loop object, respectively) have been read previously by the monitoring procedure, the Status
Flags has been changed in accordance with the new Event State. These arguments should be passed into the
Notification Parameters initialization routine:

BACSTAC_REAL refValue;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_REAL setpointValue;
BACSTAC_REAL errorLimit;
/* Initialize a FLOATING_LIMIT set of values */
BACstacInitNPFloatingLimit(

BACstacGetEventNotifEventValuesPtr(&eventNotif),
refValue,
&statusFlags,

77

Chapter 11. Sending Notifications

setpointValue,
errorLimit);

OUT_OF_RANGE event type

Present Value, Deadband, and High/Low Limit (whichever is exceeded) have been read previously (see above)
by the monitoring procedure, the Status Flags has been changed in accordance with the new Event State.

BACSTAC_REAL presentValue;
BACSTAC_REAL deadband;
BACSTAC_BIT_STRING statusFlags;
BACSTAC_REAL exceededLimit;
/* Initialize an OUT_OF_RANGE set of values */
BACstacInitNPOutOfRange(

BACstacGetEventNotifEventValuesPtr(&eventNotif),
presentValue,
&statusFlags,
deadband,
exceededLimit);

Handling Event Acknowledgments with a Hook
In the case where an Acknowledgment is required (i.e. the flag of the corresponding event transition is set in the Ack-
Requiered property of the Notification Class object) and where that acknowledgment proves successful, in response
to that acknowledgment the Server application should issue a notification called Acknowledgment Notification. This
notification

has its Notify type parameter set to NOTIFY_TYPE_ACK_NOTIFICATION.

In order to control sending such notification, the Server application, after having initialized the Server, should register
a hook of type HOOK_ACK_ALARM:

BACSTAC_STATUS status;
status = BACstacSetHook(

HOOK_ACK_ALARM,
(BACSTAC_HOOK_PROC) AcknowledgeAlarmHook);

That hook should take the following actions:

First, compare the Service Information and Source Address arguments of the hook to the corresponding fields of
the previously stored ACK_NOTIFICATION_INFO structure (the Section called Generating Intrinsic Event Notifica-
tions)

Next, if Service Information and/or Source Address counterparts do not match ACK_NOTIFICATION_INFO struc-
ture, then generate Result(-):

BACSTAC_HTSM hTSM,
BACSTAC_ERROR_CLASS errClass,
BACSTAC_ERROR_CODE errCode
status = BACstacSrvcError(hTSM, errClass, errCode);
/* indicate that the hook job is completed successfully */
return HOOK_STATUS_OK;

78

Chapter 11. Sending Notifications

Then, optain the parameters for Ack Alarm notification to be put into event notification queue (the Section called
Generating Intrinsic Event Notifications):

• Process Identifier and Event Object Identifier: from Service Information argument of the BACSTAC_ACK_-
ALARM_HOOK_PROC hook;

• Notification Service Destination Address: from Source Address argument of the BACSTAC_ACK_ALARM_-
HOOK_PROC hook;

• issueConfNotif of ACK_NOTIFICATION_INFO structure was previously stored should be used to send Confirmed
or Unconfirmed notification;

• the Notify Type parameter should be set to NOTIFY_TYPE_ACK_NOTIFICATION;
• the timeStamp parameter should be initialized.

Set the Acked_Transitions flag corresponding to the new Event Stat, indicating that the acknowledgment is no longer
expected:

BACSTAC_EVENT_TRANSITION_BITS eventTransitionBit;
GetTransitionBitFromEventState(

pServiceInfo->eventState,
&eventTransitionBit);

/* set Acked_Transitions flag of the event-initiating object */
SetAckedTransitionsFlag(

pServiceInfo->eventObjectID,
eventTransitionBit);

To complete the hook indicate that the Acknowledgment Alarm service request has succeeded:

/* call the response completion routine generating Result(+) */
status = BACstacSrvcResponse(hTSM);
/* indicate that the hook job is completed successfully */
return HOOK_STATUS_OK;

Handling Summary Requests with a Hook
The task of the GetEnrollmentSummary hook falls into the following parts:

• Look up objects which: first, are event-initiating, second, fit the filter argument of the GetEnrollmentSummary
request (see 13.11 of the BACnet Standard).

• Form an Enrollment Summary List
• Generate the reply.

From the standpoint of technique of sending Notifications the event-initiating Objects fall into three categories:

1) Objects which support intrinsic reporting (see Clause 13.2 of the BACnet Standard).

These Objects are of one of the following types: Analog Input, Analog Output, Analog Value, Binary Input, Binary
Output, Binary Value, Loop, Multistate Input, Multistate Output. To send Notifications, these Objects always refer to
a Notification Class (NC) object. Here they are briefly referred to as input/output objects.

79

Chapter 11. Sending Notifications

2) Event Enrollment (EE) objects which monitor input/output Objects and use, for sending Notifications, a NC object
in just the same way as input/output Objects do.

3) The same Event Enrollment objects which, in contrast to 2), do not use any NC object. Rather, for sending Notifi-
cations they use the information contained in their own properties.

Both 2) and 3) support algorithmic reporting (see Clause 13.3 of the BACnet Standard).

To establish whether an Object is to be included in a Summary list, it should pass subsequently through a series of
filters, the first of them being destined to determine if that Object supports intrinsic/algorithmic reporting at all. Only
those Objects, which pass all the filters up to the end, are to be included in the Summary list.

The Summary formation and sending in itself is a simple matter. All you have to do to convey the Summary list is to
call a special completion routine.

The GetEnrollmentSummary hook should be registered (see 4.13) by your application:

main (void)
{ BACSTAC_STATUS status;

...
status = BACstacSetHook(HOOK_GET_ENROLLMENT_SUMMARY,
(BACSTAC_HOOK_PROC) GetEnrlSummaryHook);

...
};

Suppose you have to search a single Device for Objects to be included in the Summary List. You then have to obtain
a full list of Objects in that Device and test them in a loop.

In the loop your first obtain an Object handle for the given Object, and determine whether it supports intrinsic report-
ing. For that, find out whether it has a Property (Acked Transitions

in our example whose presence may serve as a criterion for supporting intrinsic reporting.

Retain only those objects which do have such a Property.

Determine which of the three categories does the object belong to. With that purpose, first determine the Object Type,
then, if it is an Event Enrollment Object, determine if its

Recipient property has a NULL value. If so, the Object does use a NC object for sending notifications (see 12.11.13
of the BACnet Standard).

Acknowledgment is the only mandatory filter component, so the filter mask should not be tested for Acknowledgment.
For all other filter components, check the corresponding bit in the filter mask (see BACstac Programmers’ Reference,
I, 3.5). If the bit is set, the property must be tested against the appropriate filter component pServiceInfo -> <Filter
Component>.

Table 1 presents Properties and Objects - their owners which are to be tested for each specific Filter component in
order to determine whether the Object is to be included in the set restricted by this Filter component.

Table 1. Properties to be tested for Object filtering

Filter Component Input/Output objects
(always use NC)

Event Enrollment
(objects using NC)

Event Enrollment
objects (NOT using NC)

80

Chapter 11. Sending Notifications

Acknowledgment Acked Transitions
Input/Output

Acked Transitions
Event Enrollment

Acked Transitions
Event Enrollment

Enrollment Recipient List
Notification Class

Recipient List
Notification Class

Recipient
Process Identifier

Event Enrollment

Event State Event State
Input/Output

Event State
Event Enrollment

Event State
Event Enrollment

Event Type Object Type
Input/Output

Event Type
Event Enrollment

Event Type
Event Enrollment

(Notification)
Priority

Priority
Notification Class

Priority
Notification Class

Priority
Event Enrollment

Notification Class Notification Class
Input/Output

Recipient
Notification Class

Event Enrollment

Recipient
Event Enrollment

For each Object which has passed through all filter components, a Summary should be created (see Table 13-11 of the
BACnet Standard). Last, the completion routine BACstacEnrollmentSummResponse() should be called to convey the
Summary list to the Client. If the list is empty, a NULL pointer should be passed in this routine.

81

Chapter 12. Transferring Files
Clause 14 of Standard defines the set of File Access Services used to access and manipulate files contained in BACnet
devices.

Every file that is accessible by these services shall have a corresponding File object in the BACnet device. This File
object is used to identify the particular file, and provide access to file parameters such as file’s total size, creation date,
and type.

The AtomicReadFile Service is used by a client BACnet-user to perform an open-read-close operation on the con-
tents of the specified file. The file may be accessed as records or as a stream of octets, depending of type of file
AccessMethod.

The AtomicWriteFile Service is used by a client BACnet-user to perform an open-write-close operation of an OCTET
STRING into a specified position or a List of OCTET STRINGs into a specified group of records in a file. The file
may be accessed as records or as a stream of octets, depending of type of file AccessMethod.

Typically, files will not be able to be transferred in a single BACnet request (the transfer size being limited by max-
segments * APDU-size). Client applications must break file transfers into a series of AtomicRead/WriteFile requests.
Client applications may also need to truncate a file by writing to the file length property of the File object. Server
applications must be prepared to handle requests on arbitrary blocks or records in its File object.

Handling File Transfer Request in a Server
A server application must provide Hook procedures to process the services and map BACnet requests to operations
on real files. The hooks will be invoked when a Client Application issues read or write request.

main (void)
{

BACSTAC_STATUS status;
...
status = BACstacSetHook(

HOOK_READ_FILE,
(BACSTAC_HOOK_PROC) ReadHook);

...
}
BACSTAC_HOOK_STATUS BACstac_hook ReadHook(

BACSTAC_HTSM hTSM,
BACSTAC_ADDRESS *pSourceAddress,
BACSTAC_ADDRESS *pDestAddress,
const BACSTAC_READ_FILE_INFO *pServiceInfo)

{
...

First two parameters are pointers to the BACnet Addresses of the request initiator and request destination. Last pa-
rameter is a pointer to structure, containing fileID (Object Type and Instance number), file access type (STREAM or
RECORD), and depending of access type defines start position and number of octets (or start of record position and
number of records) that subroutine must read or write.

If the requested start position is invalid, an error should be returned. If the requested octet or record count exceeds the
end of the file, the result is still returned with the End-Of-File flag set. If the requested octet or record count would
exceed the maximum possible reply size (limited by APDU-length * max-segments), the BACstacReadFileResponse()

82

Chapter 12. Transferring Files

routine will exit with an error. An application should anticipate this and check the request against the maximum
possible reply size before allocating buffers and reading files. The application should return then an error.

BACSTAC_INT start, count; /* initialized earlier, and checked for validity */
BACSTAC_READ_FILE_RESULT readFileResult;
BACSTAC_OCTET_STRING buffer;
BACSTAC_BYTE aBuffer[MAX_BLOCK_SIZE];
FILE *pFile; /* opened earlier */
count = fread(aBuffer, sizeof(BACSTAC_BYTE), count, pFile);
BACstacInitOctetString(&buffer,aBuffer,sizeof(aBuffer),count);
BACstacInitRFResultStream(&readFileResult,start,&buffer);
BACstacSetRFResultEOF(&readFileResult, feof(pFile));
BACstacReadFileResponse(hTSM,&readFileResult);

Transferring Files to a Client
The following example breaks a file download task into series of AtomicRead requests, so each response size will not
exceed the maximum size that can be sent by the server and be accepted by the client. The read file is written to a
local file using standard C library functions (fopen, fwrite, fclose).

#define BLOCKSIZE 2048
BACSTAC_INTEGER start = 0;
BACSTAC_VALUE_SIZE size;
BACSTAC_BYTE buffer[BLOCKSIZE];
BACSTAC_READ_FILE_SPEC readFileSpec;
BACSTAC_READ_FILE_RESULT readResult;
BACSTAC_ERROR error;
BACSTAC_STATUS status;
BACSTAC_HOBJECT hFile; /* initialized previously */
char *localFileName; /* initialized previously */
FILE *pFile;
pFile = fopen(localFileName, "wb"); /* binary mode to suppress ’\n’ */
if (pFile == NULL)
{

/* error handling */
}
BACstacInitRFResultStreamBuf(&readResult, buffer, BLOCKSIZE);
/* read blocks until the last block is read, which is determined by

* the EOF flag in the server response. */
do
{

/* read a block */
BACstacInitRFSpecStream(&readFileSpec, start, BLOCKSIZE);
status = BACstacReadFile2(

hFile,
&readFileSpec,
&readResult,
&error,
NULL);

if (status != BACSTAC_STATUS_OK) break;
/* write the block to the local file */
blockCount = BACstacGetRFResultStreamDataSize(&readResult);

83

Chapter 12. Transferring Files

if (size != fwrite(buffer, 1, size, pFile))
{

/* not enough disk space */
status = BACSTAC_STATUS_VAL_OUT_OF_SPACE;
break;

}
/* Advance the read position */
if (size > (BACSTAC_VALUE_SIZE)(BACSTAC_INTEGER_MAX - start))
{

/* file too long */
}
start += (BACSTAC_INTEGER)size;

} while (!BACstacGetRFResultEOF(&readResult));
fclose(pFile);

84

	
	BACstac/Win v7.6
	Table of Contents
	Chapter 1. Introduction
	About BACnet
	Technical Support

	Chapter 2. BACstac Data Types
	Access Routines
	Address
	Device
	Object
	Property
	Property Contents
	Simple Data Types
	Enumerations
	Bit Strings
	Sequences
	Choices
	Arrays

	Chapter 3. Creating a Client Application
	Device and Object Images
	Initialization of the BACstac Client
	Finding Remote BACnet Devices
	Finding Objects
	Creating Object Images
	Reading Properties
	Reading Multiple Properties
	Writing to Properties

	Chapter 4. Creating a Server Application
	Defining Objects in a Device Template
	Initialization of the BACstac Server
	Changing property attributes and values
	Synchronization of data access
	Creating a Local Object
	Deleting a Local Object
	Generating an IAm Broadcast
	Generating an IHave Broadcast
	Generating a Local ReadProperty Request
	Generating a Local WriteProperty Request
	Generating a Remote ReadProperty Request
	Generating a Remote WriteProperty Request
	Registering Callbacks
	How to Use Callbacks

	Chapter 5. Creating a Gateway Application
	How Is a Gateway Different from a Server?
	BACnet Virtual Networks
	Initialization of the BACstac Gateway
	Creating a Device Using a Device Template
	Deleting a Device

	Chapter 6. Resolving Device ID
	Synchronous Device ID resolution
	Asynchronous Device ID resolution
	Aheadoftime Device ID resolution

	Chapter 7. BACstac Hooks
	Default Actions and Building Blocks
	Registering and Using Hooks
	Hooks and Transaction Completion Routines
	Synchronous/asynchronous Request Handling
	Hooks in Gateway Application

	Chapter 8. Bypassing BACstac Object Database
	LowLevel API Programming Tools
	Creating Client Applications Using Raw API
	Asynchronous Callback Routines
	APDU Parameters
	Transaction Life Cycle

	Chapter 9. Notifications
	COV Notifications
	Event Notifications

	Chapter 10. Receiving Notifications
	Registering a Local Process ID
	Subscribing for COV Notifications
	Cancelling a COV Notification Subscription
	Receiving COV Notifications with a Hook
	Subscribing for Event Notifications
	Subscribing to a Notification Class Object
	Cancelling a Notification Class Subscription
	Subscribing to an Event Enrollment Object
	Requesting Alarm and Enrollment Summaries

	Chapter 11. Sending Notifications
	Handling COV Subscriptions with a Hook
	Detecting COV Events
	Generating COV Notifications
	Detecting Intrinsic Events
	Generating Intrinsic Event Notifications
	Check the Time and Date:
	Check the Event Type:
	Issue Confirmed Notifications:
	Recipient Address:
	Process ID:
	Time Stamp:
	Notification Class:
	Priority:
	Event Type:
	Notify Type:
	Acknowledge Required:
	FromState, ToState:
	Event Values:
	Send the Event notification:

	Detecting Algorithmic Events
	General:
	Differences in Generating Events Between Algorithmic and Intrinsic Reporting:
	Detecting a New Event State and Implementing the Transition:

	Generating Algorithmic Event Notifications
	Issue Confirmed Notifications:
	Recipient Address:
	Process ID:
	Time Stamp:
	Notification Class:
	Priority:
	Event Type:
	Notify Type:
	Acknowledge Required:
	FromState, ToState:
	Event Values:

	Handling Event Acknowledgments with a Hook
	Handling Summary Requests with a Hook

	Chapter 12. Transferring Files
	Handling File Transfer Request in a Server
	Transferring Files to a Client

