
© 2006 Cimetrics Inc.

EasyBAC API v1.0

Manual v1.0

(EasyBAC Development Kit)

TM

P/N: 010-002-00037

Introduction
Thank you for your interest !

by Bob Ofenstein, V.P. Products Group

Thank you for either purchasing or evaluating our products.

We take great pride in providing solutions that offer state-of-the-art
features that help you make money.

Please stay in touch because we are CONSTANTLY adding new
products and features that make your life easier.

Table of Contents

Part I Introduction 3

... 31 The EasyBAC concept

... 42 EasyBAC API overview

... 43 EasyBAC development

... 64 EasyBAC example products

... 65 License Terms and Conditions

Part II EasyBAC serial - overview 9

... 91 Baud rates / error checking

... 102 Message exchanges

... 113 Frame format

Part III EasyBAC serial - messages 12

... 121 (0) FB: EasyBAC Started

... 122 (1) not used

... 123 (2) TB: Get All

... 134 (3) FB: Get All Complete

... 135 (4) TB: Input Property

... 146 (5) FB: Output Property

... 157 (6) FB: Indicate Property

Part IV EasyBAC serial - options 15

... 151 Option - Priority

... 162 Option - Status Flags

... 163 Option - Out-of-Service

Part V EasyBAC serial - references 17

... 171 Data types

... 172 Integer behavior

... 193 Object ID's

... 194 Property ID's

Part VI BACnet/IP - Object types 19

... 191 BACnet Object overview

... 212 Device Object

... 213 Analog Input Object

IContents

I

© 2006 Cimetrics Inc.

... 224 Analog Output Object

... 225 Analog Value Object

... 236 Binary Input Object

... 237 Binary Output Object

... 248 Binary Value Object

... 249 Multi-state Input Object

... 2510 Multi-state Output Object

... 2511 Multi-state Value Object

Part VII BACnet/IP - Services & Behavior 25

... 251 Services supported

... 272 BACnet BIBBs supported

... 273 Command priorities

... 274 Reliability property handling

Part VIII General Information 28

... 281 Links to BACnet Resources

Part IX Cimetrics Information 28

... 281 Cimetrics Software Products

... 302 Cimetrics Hardware Products

... 323 Contact Us - Support

... 334 Ordering

EasyBAC APIII

© 2006 Cimetrics Inc.

Introduction 3

© 2006 Cimetrics Inc.

1 Introduction

1.1 The EasyBAC concept

The Cimetrics EasyBAC API (Application Program Interface) is a protocol specification that
let's you exchange data with a BACnet network using relatively simple commands.

The EasyBAC interface (and module) contains a microprocessor system with an Ethernet port
communicating with the standard BACnet/IP protocol, and a serial port communicating using the
EasyBAC protocol. Inside the EasyBAC interface (and module) are "Virtual Objects" which
represent the properties of your product to the BACnet network.

You configure a "Virtual Objects" file that represents your products features using our Virtual
Object Creator software and you download this file to the EasyBAC interface (or module). You do
not add any your code to this module ! This product is a closed gateway component.

The idea here is that you need to write a program inside your product (NOT inside the
EasyBAC product) which communicates using the EasyBAC serial protocol.

Look at the block diagrams below to understand this:

Application #1: You have an existing product and you just want to add the EasyBAC interface
by connecting an RS232 cable to the Cimetrics box. You need to program your existing product to
use the EasyBAC communications API and the interface presents "virtual objects" representing your
product on the BACnet/IP network.

Application #2: You want to create a new product which speaks BACnet/IP to the outside
world. The small EasyBAC module can be mounted inside your product and performs the same
function as an integral system. We supply you with all design information and the parts as a
standard manufacturing component.

EasyBAC API4

© 2006 Cimetrics Inc.

1.2 EasyBAC API overview

An EasyBAC interface (or module) provides a set of BACnet "Virtual Objects" which represent the
functionality of your product.

The main EasyBAC functions are:

· Maintain the BACnet "Virtual Objects" exposed to the BACnet network.
· Execute and initiate BACnet service requests.
· Provide a link between your product and properties in the BACnet Object Database that

represent physical values (typically inputs or outputs).

BACnet Object Database is created by using the EasyBAC Virtual Object Creator™ software (a
Windows XP program). This configuration file is downloaded in advance and saved to the EasyBAC
interface's (or modules) flash memory. This Virtual Object file is downloaded over Ethernet.

The EasyBAC interface (and module) has a built-in Web server so installation parameters (such
as IP address setup) can be done using a standard browser. This browser screen can also be
customized to include your company logo.

Communication between the EasyBAC and your product is performed using custom protocol over
an RS-232 link.

1.3 EasyBAC development

There are three main issues that need to be understood:

1) Add the module to your hardware (not required if you use the EasyBAC interface)
2) Create your Virtual Objects file and download it to the interface (or module).
3) Program your microprocessor to communicate via serial using our API

1) EasyBAC hardware: If you use the EasyBAC interface, then there is no hardware
development. If you would like to use the EasyBAC module then you will need to do traditional
design efforts with adding this component to a schematic and then creating a PCB layout for
assembly. Five signals need to be supplied by your circuit: 3.3VDC@270mA, ground, reset,
TTL level serial in, and TTL level serial out.

Introduction 5

© 2006 Cimetrics Inc.

2) Virtual Object Creator™: The EasyBAC interface (as well as the module) contains a full
microprocessor system with a Real Time Operating System and the Cimetrics BACstac® protocol
stack. The only software piece that is missing is a definition of the BACnet Objects needed for
your product. Therefore, we supply you with a Windows based configuration software that lets you
define what BACnet Objects are needed. When you complete this definition, downloaded this
configuration file into the EasyBAC hardware via Ethernet. This configuration only needs to be
done once.

NOTE: There is a separate HELP file for the Virtual Object Creator software.

3) Programming your product: The last part of the development process is to program your
microprocessor to communicate using the EasyBAC API via a serial connection. In general, the
format of the EasyBAC protocol is nothing more than sending an "Object number, data value"
every time something changes inside your product. This communications is two way, so if
something on the BACnet network changes a data value, the EasyBAC interface (or module) will

EasyBAC API6

© 2006 Cimetrics Inc.

write "Object number, data value" to your product. This communications API is easily implemented
by even the smallest of microprocessors.

serial API details are a separate HELP file the Virtual Object Creator software.

1.4 EasyBAC example products

EasyBAC supports functions that fit the BACnet profile called an "Application Specific Controller"
(B-ASC). Examples of B-ASC products are:

· Low Voltage Variable Frequency AC motor drive controller
· Programmable Logic Controller - VAV (Variable Air Volume) box
· Central Plant Controller
· Air Handling Unit Controller
· Fume Hood Controller
· Large Terminal Unit Controller
· Input Monitoring Devices
· Lighting Panel Controller
· Heat Pump Controller
· Multi-Speed Fan / Motor Controller
· Network Thermostats
· Fire Panel Controllers
· Gateways to other protocols
· Universal I/O Products (Digital I/O, Analog I/O, Multi-state I/O)
· Energy Management Systems
· Wireless Access Point Gateways
· HVAC or Lighting User Interface Devices
· Energy Management Controllers

1.5 License Terms and Conditions

EasyBAC™ and Virtual Object Creator Software Agreement

This agreement is between Cimetrics, Inc., a Delaware Corporation having offices at 125 Summer Street, 21st
Floor, Boston, Massachusetts 02110, hereinafter "CIMETRICS"; and the purchaser (or user/company installing
this software) of the Cimetrics technology hereinafter "Licensee".

Cimetrics is a) the owner of certain software known as EasyBAC and Virtual Object Creator, and b) a provider
of services in connection with the use of said products; and Licensee wishes to obtain rights to the use of these
Cimetrics products and associated tools and to receive the benefit of Cimetrics services in connection therewith,
all under the terms set forth herein.

THEREFORE, for good and valuable consideration, the receipt and sufficiency of which is acknowledged by the
parties, it is agreed:

Definitions: The following terms used throughout this Agreement shall have the meanings set forth below:

"EasyBAC and Virtual Object Creator" means ALL programs, technologies, and associated code
embodied in computer files supplied by CIMETRICS as part of, for use with, or for development of,
BACnet enabled products or the like. This includes any software products included in this package
which contain the Cimetrics BACstac

©
 Protocol Stack. Licensee may not copy or distribute this code,

except for a limited number of copies for backup or archival purposes.

"Documentation" means user manuals, or help files, and principles of operation, which relate to the use
or understanding of the Licensed Material. Licensee may only copy and distribute such portions of the
Documentation as may be necessary to enable a End User to use the Product.

Introduction 7

© 2006 Cimetrics Inc.

"End User" means a purchaser of Licensee's Products.

"Licensed Materials" means the software supplied by CIMETRICS, in human- or machine-readable form,
and related documentation, as well as hardware and firmware, owned by CIMETRICS and licensed to
Licensee.

"Library component" means a collection of Source Members and Object Members supplied to Licensee
by CIMETRICS for use in implementing the BACnet Protocol, whether in machine readable or human
readable form. Licensee may not copy or distribute any Library, except for a limited number of copies
for backup or archival purposes.

"Merged Code" means a program developed by Licensee into which one or more Library components
have been incorporated through compilation, assembly or linking. Licensee is prohibited from making
this type of Code and is not licensed to distribute the EasyBAC and Virtual Object Creator and
Associated Code.

"Object Member" means machine code which can be directly executed on a computer (i.e. is not in a
human-readable higher-level language), whether the member is a complete program or a piece of code
intended to be linked with or incorporated into a larger program. Licensee may not distribute, reverse
engineer or disassemble any Object Members.

"Primary Supplier" means the company who sold the EasyBAC and Virtual Object Creator and
Associated code to Licensee.

"Product" means software and/or hardware, and systems manufactured, designed, or marketed by
Licensee which incorporates the Licensed Materials in any form.

"Protocol" means a method of interconnecting a network of embedded controllers and hosts.

"Protocol Stack" means the BACstac libraries, service applications, and device drivers necessary to run
the Protocol (contained within the EasyBAC module).

"Seat" means a single computer used by a single software developer.

"Software" means instructions intended for use with computers, including Protocol Specifications,
Libraries, Test programs, and Associated Code developed by, and/or trademarked, and/or copyrighted
by CIMETRICS, and Merged Code incorporating any such software.

"Software Development Kit (SDK)" means the EasyBAC and Virtual Object Creator software package,
including all components of the EasyBAC and Virtual Object Creator code, Protocol Specifications, test
software, simulators and other code supplied with the package.

"Source Member" means computer code written in a higher-level language, whether the member is a
complete program or a piece of code intended for inclusion into a larger program. Licensee may not
distribute any Source Members.

Article I – Licensing - General Issues

1.1 Copyright Law: Each copy of the Licensed Materials is protected by United States and international
copyright laws, international treaty, and other applicable laws, and all copyrights therein are owned by
Cimetrics. Licensee shall handle and treat the Licensed Materials like any other copyrighted material in
accordance with all applicable law. Licensee shall not permit of suffer any copy to be made of any of
the Licensed Materials, except as provided for herein.
1.2 No Copying: Licensee may not make or permit any copy or distribute any portions of the EasyBAC
and Virtual Object Creator) and Associated Code under any circumstances.
1.3 Backups: Licensee may make a copy of the EasyBAC and Virtual Object Creator) SDK for backup
purposes in connection with Licensee's Internal use.
1.4 Prohibited Uses: Licensee shall not use the Licensed Materials or any other form of Cimetrics
Intellectual Property in whole or in part for any purpose except as expressly provided for in this
Agreement. Prohibited uses include, without limitation: a) use, transfer, license, grant, lease, copy,
disclosure, or other execution, to or for the benefit of any persons, entities, or organizations other than
Licensee; and b) Permitting or suffering access to any of the Licensed Materials or Cimetrics
Intellectual Property by any person other than Licensee. Cimetrics shall not be subject to any
limitation on any of its rights to conduct any form of business with any form of its Intellectual Property
as a result of this Agreement.
1.5 Ownership of Licensed Materials: No title or ownership of any of the Licensed Materials, any

EasyBAC API8

© 2006 Cimetrics Inc.

Software, nor any proprietary technology, is transferred under this Agreement to Licensee.
Notwithstanding any provision of this Agreement to the contrary Cimetrics owns and retains all title
and ownership of all Intellectual Property rights in the Licensed Materials (including all software, copies
and documentation). Cimetrics does not transfer any title or ownership, or any of the associated
goodwill, to Licensee, and this Agreement shall not be construed to grant Licensee any right or license,
whether by implication, estoppel or otherwise, except as expressly provided herein. Licensee agrees to
observe the proprietary nature of the Licensed Materials licensed under this Agreement. Licensee
agrees to take appropriate action by instruction or agreement with its employees, agents, and
contractors who are permitted access to the Licensed Materials to fulfill Licensee's obligations under
this Agreement, including but not limited to measures to secure and protect each Library contained
therein, Associated Code, and Documentation and copies thereof. Violation of any provision of this
Article shall be the basis for immediate termination of this License Agreement.

Article II – License Fees

2.1 SDK - Per Seat Licensing: The EasyBAC and Virtual Object Creator Software Development Kit (SDK) are
sold on a per-computer basis. Every engineer who is using the SDK materials to create an application must
purchase an EasyBAC SDK. The License Fee is contained in the purchase price of this product.
2.2 Run-Time Licensing: Licensee may only use the EasyBAC and Virtual Object Creator technologies
when used together with an EasyBAC interface (or module) purchased from Cimetrics or a legally
authorized representative of Cimetrics. Run-time licensing fees are included in the purchase price of
these products.

Article III – Support

3.1 Scope – All technical support is for understanding specific EasyBAC and Virtual Object Creator
software functions and technical integration with Licensee software's core functionality. This support
does NOT cover basic education concerning the BACnet standard and/or Licensee application issues.
3.2 Initial Support – The initial support period is 90 days from the time of purchase. During this time,
the Primary Supplier must be the main contact when requesting support. Cimetrics will work together
with the Primary Supplier to provide unlimited e-mail support and occasional phone support for one
designated individual per purchase.
3.3 Ongoing Support - After the initial support period, Licensee may purchase a yearly support agreement for
$1,000 per year per seat.. This includes unlimited email and reasonable phone support as well as software
maintenance updates. Cimetrics will offer this option for a minimum of two (2) years after Licensee's original
purchase.

Article IV – Confidentiality

4.1 Confidentiality: The Licensed Materials are proprietary to CIMETRICS and title thereto remains in
CIMETRICS. All applicable rights to patents, copyrights, trademarks and trade secrets in the Licensed Materials
or any modifications to the Licensed Materials (whether or not made at Licensee's request) are and shall remain
in CIMETRICS. Licensee agrees to secure and protect each Library and all Source Members contained therein,
Associated Code, and Documentation and copies thereof, in a manner consistent with the maintenance of
CIMETRICS' rights therein and to take appropriate action by instruction or agreement with its employees or
consultants who are permitted access to such material to satisfy its obligations hereunder.

4.2 Warranty and Disclaimer: CIMETRICS MAKES AND LICENSEE RECEIVES NO WARRANTY EXPRESS OR
IMPLIED AND THERE ARE EXPRESSLY EXCLUDED ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. CIMETRICS SHALL HAVE NO LIABILITY WITH RESPECT TO ITS OBLIGATIONS UNDER
THIS AGREEMENT FOR CONSEQUENTIAL, EXEMPLARY, OR INCIDENTAL DAMAGES EVEN IF IT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Cimetrics products are not designed, intended, or
authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the product could create a
situation where personal injury or death could occur. Should Licensee use any Cimetrics product for such a use,
or incorporate any Cimetrics product into any product or system intended or used for such a use, Licensee will
indemnify and hold Cimetrics and its officers, employees, subsidiaries, affiliates and distributors harmless
against all claims, costs, damages and expenses (including reasonable attorneys' fees) arising, directly or
indirectly, out of any claim of personal injury or death associated with such unauthorized use, even if such claim
alleges that Cimetrics was negligent or that Cimetrics knew, or should have known, of such use of the product.

Article V – Cimetrics' Termination Rights

5.1. Termination: Cimetrics shall have the right to terminate the license granted herein if the Licensee is in
breach of their obligations under this Agreement. In particular, confidentiality and prohibited uses are
obligations which Cimetrics considers particularly important. If the Licensee is in breach of their obligations,

Introduction 9

© 2006 Cimetrics Inc.

Cimetrics will notify the Licensee that a violation has occurred and that corrective action is required.

Cimetrics shall give written notice of the nature of the breach of this Agreement, and allow the Licensee not less
than thirty (30) days to cure the breach or breaches.

If the breach has not been corrected within this time period, Cimetrics shall notify the Licensee of its intent to
terminate their license and shall specify the proposed termination date. This notice shall be sufficient if sent by
registered or certified mail return-receipt requested addressed to the Licensee at his last known address.

Termination under this paragraph shall not relieve Licensee of any of its obligations under this Agreement.
Termination of this Agreement shall be in addition to and not in lieu of any other or further equitable remedies
available to Cimetrics for any breach by Licensee.

Article VII – General Provisions

7.1. General: Each party acknowledges that it has read this Agreement, understands it, and agrees to be
bound by its terms, and each further agrees that this Agreement is the complete and exclusive statement of the
agreement between the parties on the subject matter stated. This Agreement may not be modified or altered
except by written instrument duly executed by both parties. This Agreement may not be assigned by either
party without the prior written consent of the non-assigning party.

7.2. Governing Laws; Courts: This Agreement and performance hereunder shall be governed by the laws of
the Commonwealth of Massachusetts, and any action arising out of this License shall be brought in the courts of
the United States and/or the Commonwealth of Massachusetts in the County in which Cimetrics has its principal
office.

7.3. Severable Provisions: If any provision of this Agreement is determined to be invalid under any applicable
statute or rule of law, it is to that extent to be deemed omitted, and in such case the remainder of this
Agreement shall remain in full force and effect.

7.4. Costs of Enforcement: In the event that either party shall be required to seek enforcement of this
Agreement by any means, the prevailing party shall have the right to collect its reasonable costs and expenses
incurred in doing so, including a reasonable attorney's fee.

By installing this software, Licensee causes this Agreement
 to be executed and enforcable in a court of law.

2 EasyBAC serial - overview

2.1 Baud rates / error checking

Your microprocessor's UART must have the following capabilities:

· Asynchronous, CMOS
· Development-time configurable baud rate
· No flow control
· 8 data bits (least significant bit first), no parity bits, 1 stop bit (one)

Serial transmission baud rates and error checking choices are:

EasyBAC API10

© 2006 Cimetrics Inc.

NOTE: This screenshot above is from the Virtual Object Creator software that
configures the EasyBAC interface (or module). Your UART needs to
communicate with the EasyBAC module using the same settings.

When Error Check = None, the header checksum must be present (data is ignored) and the
payload checksum is not required.

When Error Check = 8-bit Sum, the header checksum must be present (calculated), and the
payload checksum is present (calculated) if the Payload Length is non-zero.

Header checksum: When calculating header checksum, three bytes are involved: 1-byte
message type and 2-byte payload length.

Payload checksum: When calculating payload checksum, all payload bytes (starting from the
byte immediately following the header checksum byte) are involved.

Calculations: To calculate a checksum use the following algorithm:

byte Calc8bitChecksum (byte data[], int count) {
int i;
byte s ;

s = 0;
for (i = 0; i < count; i++)

s += data[i];
s = ~s + 1;

return s;
}

Verification: When verifying a checksum, the same bytes that were involved in calculating the
checksum plus the checksum itself are involved in calculation. To verify a checksum use the
following algorithm:

bool Verify8bitChecksum (byte data[], int count) {
int i;
byte s ;

s = 0;
for (i = 0; i < count; i++)

s += data[i];

return s == 0;
}

2.2 Message exchanges

EasyBAC and your microprocessor exchange unconfirmed messages.

Every message assumes certain actions taken by the receiving side. In some cases this involves
responding with one or more messages. However, all messages are considered to be
independent and not "replies" to any other message. This means that neither EasyBAC nor
microprocessor needs to block waiting for a response/confirmation after having sent out a
message.

The messaging format is essentially...

EasyBAC serial - overview 11

© 2006 Cimetrics Inc.

1. Identify the Object - The Object ID parameter is encoded as 32-bit value.

2. Identify the Property - The Property ID parameter is encoded as 16-bit value
(matching the BACnetPropertyIdentifier enumeration)

3. Specify the Value - This value match the data from sensors or control elements within
your product or values received over the BACnet network directed to your device.

As a part of specifying the value, you need also need to specify what data type you are using and
what priority this value should be (optional). Read the section on Data types and Priority.

NOTE: "microprocessor" refers to your product. See the Block diagram.

2.3 Frame format

Messages 0 thru 3 have the following frame format:

Messages 4,5, and 6 have this frame format:

The Message Type field is used to distinguish between different protocol messages:

EasyBAC API12

© 2006 Cimetrics Inc.

3 EasyBAC serial - messages

3.1 (0) FB: EasyBAC Started

Message Type: 0

Initiated by the EasyBAC interface (or module). EasyBAC sends this message to the
microprocessor every time it boots and is ready to communicate.

The FB: EasyBAC_Started message contains no fields.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.

3.2 (1) not used

Message Type: 1

This was used during EasyBAC beta testing but is not used in the production version.

3.3 (2) TB: Get All

Message Type: 2

Initiated by your microprocessor. Queries EasyBAC about current values of Present_Value and
Relinquish_Default properties of all Output and writeable Value objects.

Upon receipt of a TB: Get_All message, EasyBAC sends:

FB: Indicate_Property
FB: Indicate_Property
...etc... (for every relevant property)
FB: Indicate_Property
FB: Get_All_Complete

The FB: Get_All messages contains no fields.

NOTE:
1) "microprocessor" refers to your product

EasyBAC serial - messages 13

© 2006 Cimetrics Inc.

2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.
3) the header checksum is always present. If Error Checking = 8 bit Sum this is used, and if Error
Checking = none this is ignored.

3.4 (3) FB: Get All Complete

Message Type: 3

Initiated by the EasyBAC interface (or module). Notifies the microprocessor that all
Indicate_Property messages triggered by Get_All have been sent.

see an example here.

The Get_All_Complete message contains no fields.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.
3) the header checksum is always present. If Error Checking = 8 bit Sum this is used, and if Error
Checking = none this is ignored.

3.5 (4) TB: Input Property

Message Type: 4

Initiated by your microprocessor. This sends a new property value to EasyBAC. This will be
the new value represented on the BACnet network.

See Out-of-Service behavior for exceptions to the normal message processing.

The Input_Property message consists of the following fields:

EasyBAC API14

© 2006 Cimetrics Inc.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.
3) the header checksum is always present. If Error Checking = 8 bit Sum this is used, and if Error
Checking = none this is ignored.
4) The sample above does not show a payload checksum (which is set as an error checking option
in the Virtual Object Creator software)

3.6 (5) FB: Output Property

Message Type: 5

Initiated by the EasyBAC interface (or module). EasyBAC tells the microprocessor of changes
initiated from the BACnet network.

See Out_Of_Service handling for exceptions to the normal message processing.

The Output_Property message consists of the following fields:

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the

EasyBAC serial - messages 15

© 2006 Cimetrics Inc.

direction of the communications and is not a part of the command name.
3) the header checksum is always present. If Error Checking = 8 bit Sum this is used, and if Error
Checking = none this is ignored.

3.7 (6) FB: Indicate Property

Message Type: 6

Sent by EasyBAC on request from the microprocessor. This Indicates the current value of a
property.

The Indicate_Property message consists of the following fields:

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.
3) the header checksum is always present. If Error Checking = 8 bit Sum this is used, and if Error
Checking = none this is ignored.
4) The sample above does not show a payload checksum (which is set as an error checking option
in the Virtual Object Creator software)

4 EasyBAC serial - options

4.1 Option - Priority

IMPORTANT: Use of this function is optional, but you must specify a value of "0" in the
communications packet when you are not using this.

The Priority parameter specifies priority for writing a commandable property (range = 1 to 16). 1
is the highest and 16 is the lowest.

From the EasyBAC module, Priority has the value specified by the original WriteProperty BACnet
service request, or 0 if the property in question is not commandable.

EasyBAC API16

© 2006 Cimetrics Inc.

From your microprocessor, Priority can be any value within range. For non-commandable
properties Priority parameter is ignored.

4.2 Option - Status Flags

The Status Flags parameter of the Output_Property and Indicate_Property messages delivers the
current value of the object's Status_Flags BACnet property, which, according to BACnet,
"represents four Boolean flags that indicate the general "health" of an object". Of the four flags
constituting the Status_Flags property only two are currently relevant to EasyBAC:

FAULT and
OUT_OF_SERVICE

The Bit masks for these two flags that EasyBAC programmers should use are defined in the
easybac.h header file:

//
// Flags used in the Status Flags field. Other bits are reserved.
//
#define EASYBAC_FAULT (0x40)
#define EASYBAC_OUT_OF_SERVICE (0x10)

FAULT flag reflects the value of the Reliability BACnet property (writeable by both the network and
the micro). The meaning of this flag is "the point is OK" (flag cleared) or "the point is faulty" (flag
set).

OUT_OF_SERVICE reflects value of the Out_Of_Service BACnet property (writeable by both the
network and the micro). The meaning of this flag is whether the point is working normally (flag
cleared) or is turned off and is subject for the special standard-defined OUT-OF-SERVICE treatment
(flag set). I don't think we shall go into details of the OUT-OF-SERVICE algorithm but refer to the
Standard instead.

NOTE: Your microprocessor does not need to make use of these indicators as they are
handled transparently by the EasyBAC interface (or module). These are here to allow
microprocessor control if desired.

4.3 Option - Out-of-Service

The EasyBAC interface (or module) automatically handles this logic when a property is set to
"Out_Of_Service" from the BACnet network. Out_Of_Service can be changed by the TB:
Input_Property message or from the BACnet network. Either way, the following characteristics
take place:

When a property's Out_Of_Service changes from FALSE to TRUE:

· non-writeable properties become writeable (such as the Present_Value of an Input
object or read-only Value objects)

· Status_Flags are updated (OUT_OF_SERVICE flag is set)
· For Output and writeable Value objects: no data updates sent from EasyBAC
· For Input and all Value objects: no Present Value updates accepted by EasyBAC
· For Input and non-commandable Value objects: value sent by the microprocessor are

accepted by EasyBAC but are not network-visible until Out_Of_Service becomes FALSE.

NOTE: For commandable objects, Present_Value and Relinquish_Default values delivered
by TB: Input_Property serial messages while Out_Of_Service is TRUE are ignored.

EasyBAC serial - options 17

© 2006 Cimetrics Inc.

When a property's Out_Of_Service changes from TRUE to FALSE:

· non-writeable properties return to non-writeable (such as the Present_Value of an
Input object or read-only Value objects)

· Status_Flags property is updated (OUT_OF_SERVICE flag is cleared).
· For Output and commandable Value objects: EasyBAC sends two FB: Output_Property

messages - one with the current Present_Value and one with the current
Relinquish_Default value.

· For Input and read-only Value objects: EasyBAC now responds to the BACnet network
with Present_Value property

· For writeable but non-commandable Value objects: EasyBAC sends a FB:
Output_Property message with the current value.

· Normal processing of WriteProperty BACnet service requests and TB: Input_Property
serial messages is restored.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.

5 EasyBAC serial - references

5.1 Data types

The following data types are used:

5.2 Integer behavior

One of the powerful features that we have implemented in the EasyBAC concept is allowing analog
data values to be used between your microprocessor and the EasyBAC interface (or module) using
integers. What is so unusual about this is that this "simple data type" is not used in the BACnet
standard so the EasyBAC module must convert between Real numbers (Floating Point) on the
BACnet side to Integers (Fixed Point) on the serial side.

In the Virtual Object Creator software, every Analog object lets you choose the format for
exchanging the Present_Value property value between your microprocessor and the EasyBAC
interface (or module).

EasyBAC API18

© 2006 Cimetrics Inc.

By default, the Real datatype (Floating Point) is used - this is the same datatype used by the
BACnet standard.

If Fixed point data exchange is chosen, then communication between the EasyBAC interface (or
module) and your microprocessor it is calculated using the following equation:

EasyBAC_Integer_Value = scale x BACnet_Present_value + offset

where scale and offset are Real values you specify on the per-object basis. The result of evaluating
of the right side of the equation is rounded off (down for fractions less than 0.5 and up for fractions
greater or equal to 0.5).

Example#1:

You can simulate Integer objects (not normally supported by BACnet) with Analog objects
by selecting "Round only" as this sets the scale to 1.0 and offset to 0.0. So if your
microprocessor writes "254" then this will be represented to the BACnet network as a Real
datatype of value "254.0".

Example#2:

If you selected "Round only", and the BACnet network wrote the value "22.3" to the
Present_Value of this object, EasyBAC would communicate the Integer value of "22".

Example#3:

If you selected "Round only", and the BACnet network wrote the value "16.6" to the
Present_Value of this object, EasyBAC would communicate the Integer value of "17".

Example#4:

If the scale value is 1.2, offset value is 3.4, and the Present_Value written from the BACnet
network is 2.72.

Then, EasyBAC will send the Fixed point (Int16) value of "7" to the microprocessor.

Example#5:

If the scale value is 1.2, offset value is 3.4, and your microprocessor sends the Int16 value
of "10" to the EasyBAC interface (or module).

EasyBAC serial - references 19

© 2006 Cimetrics Inc.

Then the value exposed to the BACnet network will be 5.50.

5.3 Object ID's

The Object ID numbers that you will need to read or write values to the EasyBAC interface (or
module) are the following:

NOTE: Hex values are used in the serial transmission.

5.4 Property ID's

The Property ID numbers that you will need to read or write values to the EasyBAC interface (or
module) are the following:

NOTE: Hex values are used in the serial transmission.

6 BACnet/IP - Object types

6.1 BACnet Object overview

There are ten BACnet Object types that are supported by the EasyBAC protocol. Nine of these
are selectable and the Device Object is added automatically (BACnet requires this).

EasyBAC API20

© 2006 Cimetrics Inc.

Within each of these Objects, the BACnet standard defines many required and optional properties.
The individual chapters for each Object gives details as to which properties are supported by the
EasyBAC protocol.

NOTE: All of the required properties for these Objects are supported (and some of the
optional).

Supported properties are presented in a per-object table where the Value column specifies source
for the property value:

· configured at install-time - these property value is specified in the field using the
browser based setup screen which is shown by the EasyBAC interface (or module)
These are set once by the installer and do not change during run-time

· download - these property values are specified in the Cimetrics Virtual Object
Creator software and downloaded as a complete configuration "set". These do not
change during run-time.

· a constant - property value is predefined and cannot be changed

· variable - property value is changed during run-time in response to BACnet service
requests and/or microprocessor serial messages

The Is Writeable column indicates whether this property appears writeable to the BACnet
network.

BACnet/IP - Object types 21

© 2006 Cimetrics Inc.

6.2 Device Object

The following optional properties are not present: Max_Segments_Accepted,
VT_Classes_Supported, Active_VT_Sessions, Local_Time, Local_Date, UTC_Offset,
Daylight_Savings_Status, APDU_Segment_Timeout, List_Of_Session_Keys,
Time_Synchronization_Recipients, Max_Master, Max_Info_Frames, Configuration_Files,
Last_Restore_Time, Backup_Failure_Timeout, Active_COV_Subscriptions, Slave_Proxy_Enable,
Manual_Slave_Address_Binding, Auto_Slave_Discovery, Slave_ Address_Binding, Profile_Name.

6.3 Analog Input Object

The following optional properties are not present: Update_Interval, COV_Increment,
Time_Delay, Notification_Class, High_Limit, Low_Limit, Deadband, Limit_Enable, Event_Enable,
Acked_Transitions, Notify_Type, Event_Time_Stamps, Profile_Name.

EasyBAC API22

© 2006 Cimetrics Inc.

6.4 Analog Output Object

The following optional properties are not present: COV_Increment, Time_Delay,
Notification_Class, High_Limit, Low_Limit, Deadband, Limit_Enable, Event_Enable,
Acked_Transitions, Notify_Type, Event_Time_Stamps, Profile_Name.

6.5 Analog Value Object

1) These properties are optional, they may be present if Present_Value property is writeable. Either
both are present or both are absent. If these properties are present, Present_Value is
commandable, otherwise it is not.

2) May be either read-only or writeable. Writeable Present_Value may or may not be
commandable.

The following optional properties are not present: COV_Increment, Time_Delay,
Notification_Class, High_Limit, Low_Limit, Deadband, Limit_Enable, Event_Enable,
Acked_Transitions, Notify_Type, Event_Time_Stamps, Profile_Name.

BACnet/IP - Object types 23

© 2006 Cimetrics Inc.

6.6 Binary Input Object

The following optional properties are not present: Change_Of_State_Time,
Change_Of_State_Count, Time_Of_State_Count_Reset, Elapsed_Active_Time,
Time_Of_Active_Time_Reset, Time_Delay, Notification_Class, Alarm_Value, Event_Enable,
Acked_Transitions, Notify_Type, Event_Time_Stamps, Profile_Name.

6.7 Binary Output Object

The following optional properties are not present: Change_Of_State_Time,
Change_Of_State_Count, Time_Of_State_Count_Reset, Elapsed_Active_Time,
Time_Of_Active_Time_Reset, Minimum_Off_Time, Minimum_On_Time, Time_Delay,
Notification_Class, Feedback_Value, Event_Enable, Acked_Transitions, Notify_Type,
Event_Time_Stamps, Profile_Name.

EasyBAC API24

© 2006 Cimetrics Inc.

6.8 Binary Value Object

1) These properties are optional, they may be present if Present_Value property is writeable. Either
both are present or both are absent. If these properties are present, Present_Value is
commandable, otherwise it is not.

2) May be either read-only or writeable. Writeable Present_Value may or may not be
commandable.

The following optional properties are not present: Change_Of_State_Time,
Change_Of_State_Count, Time_Of_State_Count_Reset, Elapsed_Active_Time,
Time_Of_Active_Time_Reset, Minimum_Off_Time, Minimum_On_Time, Time_Delay,
Notification_Class, Alarm_Value, Event_Enable, Acked_Transitions, Notify_Type,
Event_Time_Stamps, Profile_Name.

6.9 Multi-state Input Object

The following optional properties are not present: Time_Delay, Notification_Class,
Alarm_Values, Fault_Values, Event_Enable, Acked_Transitions, Notify_Type, Event_Time_Stamps,
Profile_Name.

BACnet/IP - Object types 25

© 2006 Cimetrics Inc.

6.10 Multi-state Output Object

The following optional properties are not present: Time_Delay, Notification_Class,
Feedback_Value, Event_Enable, Acked_Transitions, Notify_Type, Event_Time_Stamps,
Profile_Name.

6.11 Multi-state Value Object

1) These properties are optional, they may be present if Present_Value property is writeable. Either
both are present or both are absent. If these properties are present, Present_Value is
commandable, otherwise it is not.

2) May be either read-only or writeable. Writeable Present_Value may or may not be
commandable.

The following optional properties are not present: Time_Delay, Notification_Class,
Alarm_Values, Fault_Values, Event_Enable, Acked_Transitions, Notify_Type, Event_Time_Stamps,
Profile_Name.

7 BACnet/IP - Services & Behavior

7.1 Services supported

EasyBAC supports the following BACnet protocol services:

Who-Is (Execute) Upon receipt of a Who-Is request, EasyBAC initiates an I-Am request, as

EasyBAC API26

© 2006 Cimetrics Inc.

appropriate, using Device object's properties values for service request parameters.

NOTE: Your microprocessor is not involved in Who-Is request execution.

I-Am (Initiate) EasyBAC initiates I-Am requests filled with Device object's properties values in
the following situations:

· at startup
· upon receipt of a Who-Is request

NOTE: Your microprocessor is not involved in I-Am request initiating.

ReadProperty (Execute) All properties present in the Object Database are readable.
Upon receipt of a ReadProperty request, EasyBAC performs request validation and sends back an
acknowledgement, as defined by the BACnet standard. In case of a success, EasyBAC sends back
to the BACnet network positive acknowledgement (ReadProperty-ACK) containing current value of
the requested property from the BACnet Object Database. In case of a failure, EasyBAC sends
negative acknowledgement (BACnet-Error) with appropriate BACnet error class and error code.
Current value of a property in the Database may originate from:

· EasyBAC
· Microprocessor (set by means of an Input_Property serial message)
· Another BACnet device (set by means of a WriteProperty BACnet service

request)

NOTE: Your microprocessor is not directly involved in processing of the ReadProperty
service requests. It is involved indirectly by changing values of properties in the
Database by means of the Input_Property serial message.

WriteProperty (Execute) Most of the properties in the BACnet Object Database are not writeable
and cannot be changed by means of a WriteProperty service request. See Object Types Supported
for complete list of writeable properties in each supported object type.

Upon receipt of a valid WriteProperty request, EasyBAC writes to the Virtual Object Database
specified value of the specified property of the specified object and sends back to the BACnet
network positive acknowledgement, as defined by the BACnet standard. In case of a failure
EasyBAC sends negative acknowledgement.

If the property being written is Present_Value or Relinquish_Default, and the object in question is
not out of service (see Handling Out_Of_Service Property), new property value is sent to the
microprocessor using the Output_Property serial message. FB: Output_Property serial message is
sent asynchronously and may be sent to the microprocessor either after or before BACnet
acknowledgement is actually sent over the BACnet network.

EasyBAC WriteProperty handler performs basic request validity checks, such as existence of the
object specified, existence and writeability of the property specified. Standard-mandated BACnet
logic is also implemented: see handling Command Priorities and Out_Of_Service handling.
However, application-level checks, such as checking Present_Value against device-specific bounds,
are not performed.

The value of the priority parameter specified in a WriteProperty request for a commandable
Present_Value property is included in the FB: Output_Property serial message EasyBAC sends to
the microprocessor.

IMPORTANT: Your microprocessor is directly involved with this command because an
FB: Output_Property serial message is sent to your microprocessor.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.

BACnet/IP - Services & Behavior 27

© 2006 Cimetrics Inc.

7.2 BACnet BIBBs supported

The BACnet standard defines a concept called BIBBs (BACnet Interoperability Building Blocks). A
BIBB is a simple definition of a specific set of BACnet features that must be implemented by a
device to support that BIBB.

The EasyBAC interface (and module) are capable of performing the functionality of the following
BIBBs:

· DS-RP-B This means DS (data sharing), RP (read property), B (Server device)

· DS-WP-B This means DS (data sharing), WP (write property), B (Server device)

· DM-DDB-B This means DM (device management), DDB (Dynamic Device Binding), B
(Server device) The "DDB" description means that this device can find another device on
the network.

This set of BIBBs matches the BACnet B-ASC profile (without support for Who-Has/I-Have and
DCC - Device Communications Control). Examples of these types of products can be found here.

7.3 Command priorities

EasyBAC handles BACnet Command Prioritization defined by the BACnet standard automatically.
When a WriteProperty request is executed for a commandable Present_Value property (i.e.
Present_Value in an Output object or a Value object with Priority_Array property), EasyBAC does
the following:

· Write new value to the Priority_Array property with respect to the specified priority.
· Calculate effective Present_Value from the Priority_Array property and Relinquish_Default

property.
· Write calculated Present_Value to the Virtual Object Database.
· Send calculated Present_Value to the microprocessor in a FB: Output_Property serial

message.

Similarly, EasyBAC re-calculates Present_Value property when a WriteProperty request is executed
for a Relinquish_Default property, and if Present_Value changes, EasyBAC sends new
Present_Value to the microprocessor in an FB: Output_Property serial message.

NOTE:
1) "microprocessor" refers to your product
2) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning the
direction of the communications and is not a part of the command name.

7.4 Reliability property handling

Upon receipt of a TB: Input_Property with Property_ID set to Reliability EasyBAC automatically
updates FAULT flag in the Status_Flags property in the BACnet Object Database: sets it if new
Reliability value is not equal to NO_FAULT_DETECTED, and clears it otherwise.

NOTE:
1) FB: means "From BACnet" and TB: means "To BACnet" - This is a generalization concerning
the direction of the communications and is not a part of the command name.

EasyBAC API28

© 2006 Cimetrics Inc.

8 General Information

8.1 Links to BACnet Resources

Here is where you can purchase a copy of the BACnet standard:

ASHRAE BACnet Standard 135-2004 - or the crazy long URL is this:

http://resourcecenter.ashrae.org/store/ashrae/newstore.cgi?itemid=22170&view=item&page=1&lo
ginid=5193944&priority=cat311egory&words=135-2004&method=and&

This is available in as a hard-copy , CD-ROM, or download.

BACnet.org - The official ASHRAE BACnet web site.

BACnet International - A group of manufacturers who promote the use of BACnet.

BACnet Testing Lab - The organization that tests BACnet devices for conformance to the standard..

BACnet - European Interest Group - The European group which promotes the use of BACnet and
holds regular training conferences in Europe.

BACnet FAQ - A good frequently asked questions page on the www.bacnet.org web site.

9 Cimetrics Information

9.1 Cimetrics Software Products

We have other Automation Tools and Solutions that can help you with your next job. Visit our
website at www.cimetrics.com or send an email to info@cimetrics.com for further details.

NOTE: Several of these programs have demo versions (upon request).

 - BACnet OPC Server - Control BACnet devices with any OPC workstation.
 - BACnet Explorer - Auto discovery of devices and status on existing BACnet networks.
 - BACtiveX - ActiveX software for writing custom BACnet control programs.
 - BACstac series - BACnet Windows and embedded protocol stacks for manufacturers.
 - BAS-o-matic - A powerful protocol analyzer for building automation protocols.
 - Indy/A - A powerful protocol analyzer for industrial automation protocols.

BACnet OPC Server: Enables control and monitoring BACnet devices from any OPC workstation.

go to top

Cimetrics Information 29

© 2006 Cimetrics Inc.

BACnet Explorer: Connect to any BACnet network and automatically discover all BACnet device
settings.

BACtiveX: Create custom Building Control programs using reusable BACnet script libraries.

BACstac series: Save design time and support costs by using the industry's leading OEM BACnet
protocol stack.

BAS-o-matic: A Protocol Analyzer with support for building automation protocols.

Indy/A: A Protocol Analyzer with support for industrial automation protocols.

EasyBAC API30

© 2006 Cimetrics Inc.

9.2 Cimetrics Hardware Products

We have many Building Connectivity solutions that can help you with your next job. Visit our
website at www.cimetrics.com or send an email to products@cimetrics.com for further details.

 - BR2 Router Series - connect BACnet systems together.
 - BR4 Router Series - Encrypt your BACnet network and send data through firewalls.
 - E+ Protocol Interfaces - Inexpensive BACnet/IP to serial and I/O solutions.
 - Native IP Interfaces - Inexpensive TCP/IP & Web Services to serial and I/O solutions.
 - U+4 Protocol Interface - USB to RS485 coprocessor interface.
 - LISA BACnet/EIA 709 IC Chip - System on a chip for BACnet and EIA 709
 - EasyBAC module - Create BACnet products without learning BACnet !

BR2 Router series: Connect BACnet systems from different manufacturers or connect BACnet
networks together over the Internet (BBMD functionality).

BR4 Router series: BACnet/HTTP gets through firewalls (port 80) and can let BACnet networks
communicate from behind a NAT device.

E+ series: Inexpensive serial and I/O solutions. Models include BACnet/IP to MS/TP Router,
BACnetIP to Web Services, Bacnet/IP/WS to Relays and DIN, and more. See our web site

Cimetrics Information 31

© 2006 Cimetrics Inc.

for the latest models (www.cimetrics.com).

Native IP series: Use IT protocols to communicate to building sensors and networks. Models
include Native IP to Building Automation (BACnet/IP), Native IP to Relays & Sensors,
Native IP to 4 Utility Meters (pulse), and more. See our web site for the latest models
(www.cimetrics.com).

U+ series - Fieldbus Interface: USB to RS485 interface for BACnet MS/TP or Modbus RTU.

LISA - BACnet / EIA 709 Controller Chip: A powerful System on a Chip solution for creating
BACnet or EIA 709 products.

EasyBAC API32

© 2006 Cimetrics Inc.

EasyBAC Module: This is a small module (an elongated RJ45 connector !) which contains a
microprocessor, memory, and Ethernet to serial converter. Powerful 3rd generation BACstac™
software conforms to the BACnet/IP protocol on the Ethernet side, and implements a very simple
serial protocol that your microprocesor software can easily perform ! Even the smallest
microcontrollers should be capable of connecting to this module and become BACnet enabled.
Layout a PCB that accepts this module, spend two weeks writing and testing your microcontroller
software, and you have a BACnet product.

9.3 Contact Us - Support

Our full contact information is:

Please look at our EasyBAC support KNOWLEDGEBASE and use our HELP TICKET system when
you have questions. These are located at:

Cimetrics Information 33

© 2006 Cimetrics Inc.

www.cimetrics.com/support

You can also send email to:

support@cimetrics.com

We would prefer that you use the HELP TICKET system because this gives us a record of
what you asked and when so we can make sure that no questions get lost in an "email pile up".
However, if you really need to speak to someone immediately call:

+1-617-350-7550

9.4 Ordering

Price quote: send an email to products@cimetrics.com or call 617-350-7550

Order: please fax a purchase order to 617-350-7552 with the following information:

 - EasyBAC products include the following

- B6090 - EasyBAC Development Kit
- B6091 - EasyBAC module (built in applications)
- B6095 - EasyBAC interface (stand-alone applications)

 - Your shipping and billing information

Payment options are credit card, bank deposit, or on account (USA only - credit verification
required). We will contact you to complete the payment process.

More questions about purchasing are answered here.

Index
- 8 -
8-bit sum 9

- A -
Analog Input Object 21
Analog Output Object 22
Analog Value Object 22

- B -
BACnet 25

Services 25
BACnet Objects 19
baud rate 9
BIBBs 27
Binary Input Object 23
Binary Output Object 23
Binary Value Object 24
block diagram 3

- C -
Command Priorities 27

- D -
Data Types 17
development 4
Device Object 21

- E -
EasyBAC serial format 10
EasyBAC_started 12
error checking 9
error checking code 9
Example Products 27

- F -
Fault 16
features 4
Frame format 11

- G -
Get_All 12
Get_All_Complete 13

- H -
hardware 4

- I -
I-Am 25
Indicate_Property 15
Input_Property 13

- L -
License Agreement 6
links 28

- M -
message 0 12
message 1 12
message 2 12
message 3 13
message 4 13
message 5 14
message 6 15
Message Types 11
messaging format 10
module dimensions 4
Multi-state Input Object 24
Multi-state Output Object 25
Multi-state Value Object 25

- O -
Object IDs 19

EasyBAC API34

© 2006 Cimetrics Inc.

Options 15, 16
Out_of_Service 13, 14
Out-of-Service 16
Output_Property 14

- P -
Priorities 27
Priority 15
Priority Array 27
products 3
Properties 21
property ID 19

- R -
ReadProperty 25
Reliability 27
Relinquish_Default 27

- S -
screen shot 4
Serial Protocol 11
Status Flags 16

- U -
UART 9
Unlock_database 12

- V -
Virtual Object Creator 4

- W -
Who-Is 25
WriteProperty 25

Index 35

© 2006 Cimetrics Inc.

