
39=5DB93C�D538>?<?7I

NBS-10 NINE BIT SERIAL CARD

USER'S MANUAL

COPYRIGHT © 1991 - 1998 BY CIMETRICS TECHNOLOGY
ALL RIGHTS RESERVED

CIMETRICS TECHNOLOGY
55 TEMPLE PLACE

BOSTON, MA 02111-1300
U.S.A.

TELEPHONE: (617) 350-7550
FAX: (617) 350-7552

EMAIL: info@cimetrics.com
URL: http://www.cimetrics.com

LIMITED WARRANTY: NBS-10 HARDWARE

Cimetrics Technology warrants the NBS-10 card against defects in materials and workmanship
for a period of Ninety (90) days from the date of purchase.

If you discover a defect, Cimetrics Technology will, at its option, repair, replace, or refund the
purchase price of the product at no charge to you, provided you return it during the warranty
period, transportation charges prepaid, to Cimetrics Technology. Please attach your name, phone
number, a description of the problem and a copy of the bill of sale bearing the appropriate
Cimetrics Technology serial numbers as proof of date of original purchase, to each product
returned for warranty service.

This warranty does not apply if the product has been damaged by accident, abuse or misuse, or
misapplication, has been modified without the written permission of Cimetrics Technology, or if
any serial number has been removed or defaced.

Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental and consequential damages, so the above limitation or exclusion may not apply to you.
This warranty gives you specific legal rights, and you may also have other rights which vary from
state to state.

LIABILITY DISCLAIMER

Cimetrics Technology assumes no liability for damages, lost profits, lost savings, lost goodwill,
downtime, or any other incidental or consequential damage resulting from the use, misuse of, or
inability to use this product. Cimetrics Technology will not be liable for any claim made by any
other related party. No Cimetrics Technology dealer, agent, or employee is authorized to make
any modification, extension or addition to this policy.

Cimetrics Technology's products are not authorized for use as critical components in life support
devices or systems.

DOCUMENTATION DISCLAIMER

Cimetrics Technology makes no warranty of any kind with regard to this material, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose.
Cimetrics shall not be liable for errors contained herein or for incidental consequential damages
in connection with the furnishing, performance, or use of this material.

The information contained within this document is subject to change without notice and does not
represent a commitment on the part of Cimetrics Technology.

OVERVIEW

1.1 DESCRIPTION OF THE NBS-10 . 1.

1.2 AUDIENCE . 1.

1.3 ABOUT THIS MANUAL . 1.

1.4 REFERENCES AND ADDITIONAL INFORMATION 2.

1.5 FCC INFORMATION . 3.

INSTALLATION

2.1 THE CONFIGURATION PROCESS . 4.

2.2 UNDERSTANDING RS-422 and RS-485 . 4.

2.2.1 RS-422 . 5.

2.2.2 . 5.

2.2.3 RS-485 . 5.

2.2.4 UARTS AND BIAS RESISTORS . 6.

2.3 NBS-10 CONFIGURATION WORKSHEET . 7.

2.4 SETTING THE BASE ADDRESS . 8.

2.5 INTERRUPT REQUEST SELECT . 10.

2.6 OUTPUT CONTROL SWITCH SETTINGS . 10.

2.6.1 EXPLANATION OF TABLE: Switch Functions 10.

2.6.1.1 SWITCH 2.1: DUPLEX CONTROL . 10.

2.6.1.2 SWITCH 2.2 RECEIVE-TRANSMIT CONFIGURATION 11.

2.6.1.3 SWITCH 2.3 RTS-CTS LOOPBACK . 11.

2.6.1.4 SWITCH 2.4 CONTROL SELECT . 12.

2.6.1.5 SWITCH 2.5 IS CURRENTLY UNDEFINED 12.

2.7 USING DOS SERVICES . 12.

2.8 TERMINATION RESISTORS AND TRANSMISSION LINE BIAS 12.

2.8.1 TERMINATION RESISTORS ON RS-485 NETWORKS 12.

2.8.2 BIAS ON RS-485 NETWORKS . 12.

2.8.3 TERMINATION RESISTORS ON RS-422 NETWORKS 13.

2.8.4 BIAS ON RS-422 NETWORKS . 13.

2.9 DEFAULT FACTORY SWITCH SETTINGS . 13.

2.10 EXTERNAL CONNECTOR PINOUTS . 14.

2.11 INSTALLING THE NBS-10 IN THE HOST COMPUTER 14.

Table of Contents

PROGRAMMING THE NBS-10

3.1 INTRODUCTION . 15.

3.2 FOR SERIOUS APPLICATIONS . 15.

3.3 THE BASICS . 16.

3.4 USE OF BIOS AND DOS SERVICES . 17.

3.5 SETTING THE BAUD RATE . 17.

3.6 NINE-DATA-BIT MODES . 19.

3.7 USING FIFO MODE . 20.

3.8 NBS-10 INTERRUPTS AND THE PC . 21.

Appendix A

A Sample Program 23

Table of Contents

1 OVERVIEW

1.1 DESCRIPTION OF THE NBS-10

The NBS-10 is a flexible RS-485/422 special purpose asynchronous serial adapter for
PC/XT/AT compatible computers. Based on the Intel 82510 UART, the NBS-10 provides
several features particularly suited to RS-485 multidrop networking. The NBS-10 can also be
used as an RS-422 serial link.

FEATURES:

Full- or Half-duplex 9-bit serial communication mode
Half- or full-duplex standard PC communications
Flexible control of transmit direction - RTS/DTR
Jumper selectable termination resistors
Removable bias resistors

1.2 AUDIENCE

To use this product, you should be familiar with PC compatible computers and DOS operating
systems. This manual is written for engineers involved with personal computers and embedded
systems networking.

1.3 ABOUT THIS MANUAL

This manual is organized as follows:

Chapter 1: Overview
Introduces the NBS-10 features and gives an overview of this manual.

Chapter 2: Installation
Provides detailed instructions and flowcharts on how to set up the NBS-10 for operation.

Chapter 3: Programming
Describes the operation of the NBS-10 in typical programming applications.

Appendix A
Sample Program

Appendix B
INTEL 82510 Data Sheets.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

1

1.4 REFERENCES AND ADDITIONAL INFORMATION

Electronics Industry Association Publications

[1] "High Speed 25-Position Interface for Data Terminal Equipment and Data
Circuit-Terminating Equipment" (EIA-530), Electronics Industry Association, 1987.

[2] "Standard for Electrical Characteristics of Generators and Receivers for Use in Balanced
Digital Multipoint Systems"(EIA-485), Electronics Industry Association, 1983.

[3] "Electrical Characteristics of Balanced Voltage Digital Interface Circuits" (EIA-422-A),
Electronics Industry Association, 1978.

PC Reference Material

[4] Eggebrecht, Lewis, Interfacing to the IBM Personal Computer, Howard W. Sams and Co.,
1990 (Second Edition).

[5] System BIOS for IBM PC/XT/AT Computers and Compatibles, Phoenix Technologies Ltd.,
Addison-Wesley, 1989.

[6] Mueller, Scott, Upgrading and Repairing PCs, QUE Corporation, 1988.

[7] Duncan, Ray, Advanced MS-DOS Programming, Microsoft Press, 1988.

Data Books

[8] Interface Databook (1990), National Semiconductor Corp.

[9] Microcommunications, Intel Corporation, 1991

[10] Embedded Control Applications, Intel Corporation, 1991.

Networking/Microcontroller Networking

[11] Nisley, Ed, "A network for Distributed Control, Part 1," Circuit Cellar Ink,
August/September 1989, pp. 32-39.

[12] The BITBUS Interconnect Serial Control Bus Specification, Intel Corp., 1988.

Nine-Bit Embedded Control Networking

[13] Woehr, Jack, "Multidrop Processing", Embedded Systems Programming, March 1990, pp.
58-67. Nine-data-bit communication using the 68681 DUART.

[14] Dhuse, Jon, and George R. Hayek, "Standard Protocols Are Needed for Distributed
Microcontrollers," Data Communications, January 1986, pp. 171-175.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

[15] Horden, Ira, and David Ryan, "Microcontrollers for Factory Automation," Machine Design,
March 6, 1986, pp. 117-120. Nine-bit protocols using the 8096.

[16] Bruntlett, John E., "Serial Protocol for Distributed Microcontrollers," Wescon/86
Conference Record.

[17] Simmers, Chuck, "Specialized I/O and High Speed CPU Yields Efficient Microcontroller for
Automotive Applications," IEEE CH2072-7/84/0000-0003.

[18] Butler, Jim, "A Simple RS-485 Network," Circuit Cellar Ink , June/July 1991, Issue 21.

[19] Butler, Jim, "Embedded Controller Networking Alternatives," Circuit Cellar Ink, April/May
1992, Issue 26.

1.5 FCC INFORMATION

WARNING: This equipment generates, uses, and can radiate radio frequency energy. If not
installed and used in accordance with the instruction manual, it may cause interference to radio
communications. This equipment has been tested and found to comply with the limits for a
Class A computing device pursuant to Subpart B, Part 15 of the FCC Rules, which are
designed to provide reasonable protection against such interference when operated in a
commercial environment. Operation of this equipment in a residential area is likely to cause
interference in which case the user at his own expense will be required to take whatever
measures may be required to correct the interference.

The NBS-10 has been verified for FCC Part 15 Class A computing device compliance using
shielded twisted-pair cable and shielded head shells. Your installation must use shielded
components in order to satisfy the Part 15 requirements.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

3

2 INSTALLATION

2.1 THE CONFIGURATION PROCESS

The installation material in this manual is designed with two groups in mind. For experienced
users, configuration information is presented in flow charts and a series of tables, quickly
enabling installation of the NBS-10. For those with more limited familiarity with personal
computers and RS-485 networking a tutorial explaining RS-485/422 is included in addition to
the charts (section 2.2). This section should provide the less-seasoned user with the
background information necessary for continuing with installation.

After the one-section introduction to RS-485/422, a worksheet is presented in order to facilitate
organization of your configuration data (section 2.3). The worksheet is designed for use in
conjunction with the flow chart (figure 2.4). Questions that might arise while using the flow
chart are addressed in subsequent sections; relevant sections are indicated on the flow chart in
parentheses (for example, "How do I know whether to use half- or full-duplex?", step four on the
flow chart, is answered in section 2.6).

2.2 UNDERSTANDING RS-422 and RS-485

This section discusses standards: what they are and how they work. Over the years, a number
of industry standards have been developed to cope with a broad range of communications
problems; you are probably already familiar with the RS-232 standard in its many incarnations.
For this reason, we will use the RS-232 as a basis for comparison throughout this section. This
discussion will center around RS-422 and RS-485. Unlike the RS-232 standard, which includes
specifications for both the electrical and mechanical properties of the interface problem, RS-422
and RS-485 are Electronics Industry Association (EIA) standards that describe and specify only
the ELECTRICAL characteristics of that problem.

(Note: none of the above-mentioned standards recommends or specifies a protocol in any way.
A communication protocol such as Cimetrics Technology's NSP must be used in conjunction
with these standards.)

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

2.2.1 RS-422
In 1975 the EIA introduced RS-422, a standard which uses differential (balanced) data
transmission in one direction along a transmission line. A differential signal is represented by
the voltage difference between two conductors of the transmission line (not by the voltage from
each of the conductors to ground). In RS-422 the driver (transmitter) is at one end of the line
with up to 10 receivers on the line and a 100-ohm termination resistor at the other end (see
figure 2.1). The RS-422 standard is typically used in full duplex mode with one pair of
transmission lines (usually twisted-pair wire) for sending and another pair for receiving data
(see figure 2.2). In the configuration represented in figure 2.3, a 100-ohm termination resistor
would be placed across the receiver at the far end of the line.

RS-422 offers greatly improved characteristics over RS-232 in noise immunity, speed, and
distance capabilities. [3]

 COMPARISON OF RS-232, RS-422, RS-485

 PARAMETER RS-232 RS-422 RS-485

 TRANSMISSION MODE SINGLE-ENDED DIFFERENTIAL DIFFERENTIAL

 MAX CABLE LENGTH 50' 4000' 4000'

 MAX NUMBER DRIVERS 1 1 32

 MAX NUMBER RECEIVERS 1 10 32

 MAX DATA RATE 20K BITS/S 10M BITS/S 10M BITS/S

 DRIVER ZOUT POWER OFF 300 OHMS 60K OHMS 120K OHMS

 RECEIVER LOAD IMP. 3K - 7K OHMS >4K OHMS >12K OHMS

 RECEIVER SENSITIVITY +/- 3V +/- 200mV +/- 200mV

 LOAD IMPEDANCE 3K - 7K OHMS 100 OHMS 60 OHMS

 COMMON MODE RANGE +/- 25V -0.25V to +6V -7V to +12V

2.2.3 RS-485
In 1983, the EIA approved RS-485, a new differential transmission standard considered by
many to be an extension of the existing RS-422 standard. RS-485 specifies the electrical
characteristics of receivers and drivers which are intended to operate in a balanced multipoint
or party-line configuration. The RS-485 network is designed to support 32 receivers and drivers
operating over twisted-pair wire terminated at both ends by 120-ohm resistors. The resistors
should be at the extreme ends and all nodes should be directly connected (daisy chained) to
the network or connected to it with short stubs. Although 32 nodes can exist on the network,
only one may transmit at any given time. If two or more nodes attempt to transmit at the same
time, a collision will result, causing garbled data. The network receivers and drivers are
designed to tolerate this fault condition for a limited amount of time, but the situation should be
avoided. Proper operation of the RS-485 interface circuits requires a signal return path between
circuit grounds of the devices. This signal return path may be provided by a third wire, or by
connecting all devices to an earth reference. When this path is provided by a third wire, the
wire should be connected to the device through some resistance (1002: in the NBS-10) in
order to limit current. Care must be taken not to form ground loops. For detailed information
concerning grounding, consult the RS-485 standard and appropriate local, national, and
international electrical codes.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

5

2.2.4 UARTS AND BIAS RESISTORS

The RS-485 voltage standard as defined by the EIA does not specify the output level of a
receiver when no input is applied to the line. The RS-485 threshold voltage between high and
low logic levels is defined with a +/- 200mV indeterminant area around the nominal threshold of
0 volts (i.e., zero potential difference voltage between the two lines). When the transmission
line is properly terminated, and no transmitters are activated, the voltage level on the
transmission line usually floats in this indeterminant area. Any noise picked up on the line may
modulate the tristated line in this threshold region, producing random data at the receiver.

This random information wrecks havoc with traditional UARTs. These UARTs are designed to
interpret a line in the mark (high) state as an idle condition, unless good (non-random) data is
available. The UARTs view the first one to zero transition as a start bit, normally used to
synchronize the rest of the byte. Random noise appears as false start bits and data, causing
the network to malfunction.

To get around this tristated line condition of RS-485, a differential bias can be applied to the
transmission line. When no transmitters are on the line, this technique can be used to push the
line out of the threshold area into the high state. Different biasing techniques have been
successfully used on RS-485 lines. In a network where the length and characteristic
impedance of the line are not known, DC biasing is the preferred method. A simple voltage
divider is often used to hold the differential line in a state which produces a one at the output of
the receiver.

 By the voltage divider rule we know that the voltage at V1 is given by:

 V1= (R2+RT) Vcc = (620) 5V = 2.627V

 R1+(R2+RT) 1180

 By symmetry, we know V2 is 2.373V

 Therefore Vdiff = 2.627V - 2.373V = 254mV

Thus the differential pair is held apart by 254mV with the non-inverting line more
positive than the inverting line.

Most RS-485 serial products which employ UARTs provide a DC bias resistor network on the
card. When one has more than one card on a network, however, the presence of more than
one bias source is problematic for several reasons:

Additional bias networks affect the impedance of the transmission line;
Bias networks often do not have the same polarities or voltage levels, especially
if the cards are produced by different manufacturers.

The Cimetrics Technology NBS-10 is designed with removable bias resistor networks so that if
another bias source already exists, the Cimetrics bias networks can be removed from the card.

Termination resistors should be placed only at the ends of the transmission line. There should
be ONLY TWO SUCH RESISTORS ON THE ENTIRE NETWORK. More than two will
substantially lower the impedance of the line and will hinder the line drivers.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

The most common configuration for RS-485 in multidrop embedded control networking is the
half-duplex, two-wire system (see figure 2.3).

2.3 NBS-10 CONFIGURATION WORKSHEET

Before you get started on the NBS-10 configuration process, it's a good idea to organize
information about your application. By filling out the following worksheet, and then following the
adjacent flowchart, you should be able to complete the configuration in a minimum amount of
time.

(1) What base address should be assigned to the NBS-10? The NBS-10 requires eight
consecutive locations above the base address.

(2) What interrupt will the NBS-10 use?

(3) For what application will the NBS-10 be used?

(A) RS-422 communications
(B) RS-485 networking/embedded control networking

(4) Will the card be used in full or half duplex?

(5) If half duplex:

(A) What should control the direction of transmission? (RTS or DTR)
(B) Should receiver be off during transmit?

(6) If full duplex:

(A) Should the transmitter always be on?
If no, select control bit (RTS or DTR)

(7) Will handshaking be used? If not, will RTS-CTS loopback be needed to fool the
DCE?

(8) Is the NBS-10 at the end of the network?

(9) Is the NBS-10 being configured the only RS-485 card on the network? Are there any
other bias resistors on the network?

(10) At what baud rate should the card run? At what speed do the other devices on the
network operate?

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

7

2.4 SETTING THE BASE ADDRESS

The NBS-10 card occupies eight consecutive locations in the PC I/O address space. Dip
Switch 1 is used to set the base address for these locations. Since existing ports in your PC
occupy some I/O addresses, it is important that you find an unoccupied address area to put
your NBS-10. The following table shows an I/O map representing an amalgamation of PC, XT
and AT peripheral locations. This sort of list is very difficult to maintain due to the rapid
advance of PC peripheral products.

SHADED AREA FOR SYSTEM BOARD USE ONLY
 HEX RANGE DECODED # OF BYTES FUNCTION

 000H TO 001FH 32 DMA CHIP

 0020H TO 003FH 32 INTERRUPT CONTROLLER

 0040H TO 005FH 32 TIMER COUNTER

 0060H TO 007FH 32 PPI

 0080H TO 009FH 32 DMA PAGE REGISTERS

 00A0H TO 00BFH 32 NMI MASK BIT

 00C0H TO 01FFH 320 NOT USED

 0200H TO 020FH 16 GAME CONTROL ADAPTER

 0210H TO 0277H 104 NOT USED

 0278H TO 027FH 8 LPT2: PRINTER PORT

 0280H TO 02DFH 96 NOT USED

 02E0H TO 02E7H 8 VGA/EGA/GPIB/DATA ACQ.

 02E8H TO 02EFH 8 COM4: SERIAL PORT - NOT STANDARD

 02F0H TO 02F7H 8 NOT USED

 02F8H TO 02FFH 8 COM2: SECOND SERIAL PORT

 0300H TO 031FH 32 PROTOTYPE CARD

 0320H TO 0324H 4 FIXED DISK REGISTERS

 +0325H TO 0347H 34 NOT USED

 0348H TO 0357H 10 DCA 3278

 0358H TO 035FH 8 NOT USED

 0360H TO 036FH 16 RESERVED

 0370H TO 0371H 2 NOT USED

 0372H TO 0377H 6 DISKETTE CONTROLLER

 0378H TO 037FH 8 LPT1: PRINTER PORT

 0380H TO 038FH 8 SDLC, BISYNCHRONOUS 2

 0390H TO 0393H 4 CLUSTER

 0394H TO 039FH 12 NOT USED

 03A0H TO 03AFH 16 BISYNCHRONOUS 1

 03B0H TO 03BFH 16 MONOCHROME + PRINTER CARD

 03C0H TO 03CFH 16 VIDEO REGISTERS

 03D0H TO 03DFH 16 CGA ADAPTER

 03E0H TO 03E7H 8 NOT USED

 03E8H TO 03EFH 8 COM3: SERIAL PORT

 03F0H TO 03F7H 8 5.25" DISK DRIVE

 03F8H TO 03FFH 8 COM1: SERIAL PORT

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

This table is not exhaustive. Further information can be found in the following books: System
BIOS by Phoenix, Upgrading and Repairing your PCs by Mueller, and Interfacing to the IBM
Personal Computer by Eggbrecht. See the reference list (section 1.4) for more information on
these books.

Place your NBS-10 in an address that is not used by any other adapter in your system. As this
list is a composite, chances are that you will not have many of the peripherals mentioned
above. If you want to use DOS or BIOS serial port services, we recommend that you put the
card in one of the COM ports.

The following table shows address locations and corresponding switch settings for COM1
through COM4. In addition, the last line of the table shows the correspondence between switch
number and PC address line.

 COM PORT BASE
ADDRESS

 SW 1.1 SW 1.2 SW 1.3 SW 1.4 SW
1.5

 SW 1.6 SW 1.7

 COM1 03F8 HEX OFF OFF OFF OFF OFF OFF OFF

 COM2 02F8 HEX OFF OFF OFF OFF OFF ON OFF

 COM3* 03E8 HEX OFF ON OFF OFF OFF OFF OFF

 COM4* 02E8 HEX OFF ON OFF OFF OFF ON OFF

 ADDRESS LINE A3 A4 A5 A6 A7 A8 A9

* NON-STANDARD

NOTE: A switch in the ON or CLOSED position corresponds to a 0 in the address whereas a
switch in the OFF or OPEN position corresponds to a 1 in the address. For example if the
NBS-10 were to be placed at address 210H, we would start by converting 210H to binary (210H
= 1000010000). Since the last three binary digits will be used to select the registers on the
UART, we will ignore them (210H = 1000010XXX).

Switch 1.1 corresponds to address line A3 (the least significant bit). Translate the binary
address starting from the right and proceeding left. Where you see a 1 in the binary
representation, set the switch to open or off and where you see a 0, set the switch to closed or
on. The appropriate switch settings for address 210H are shown in the table below:

 ADDRESS LINE A0 A1 A2 A3 A4 A5 A6 A7 A8 A9

 210H X X X 0 1 0 0 0 0 1

 SWITCH NUMBER X X X SW
1.1

 SW
1.2

 SW
1.3

 SW
1.4

 SW
1.5

 SW
1.6

 SW
1.7

 SWITCH SETTING X X X ON OF
F

 ON ON ON ON OFF

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

9

2.5 INTERRUPT REQUEST SELECT

After setting the boards base address, the next step to tackle is setting the interrupt request. If
you are using the NBS-10 in a COM port address, the following table can help you pick the
proper interrupt.

 COM PORT BASE
ADDRESS

 INTERRUPT
REQUEST

 COM1 03F8 HEX IRQ4

 COM2 02F8 HEX IRQ3

 COM3 03E8 HEX IRQ4

 COM4 02E8 HEX IRQ3

If you are not using one of the COM ports, check your software for information on which
interrupt to use. If interrupt driven transfers are not required, remove the jumper completely.

2.6 OUTPUT CONTROL SWITCH SETTINGS

The NBS-10 flexible output circuits control the following features: Duplex, Receiver/Transmitter
enablers and functions, and CTS-RTS loopback.

 OUTPUT CONTROL SWITCH SETTING

 SWITCH FUNCTION

 SW 2.1 ON = HALF DUPLEX
 OFF = FULL DUPLEX

 NOTE: the setting of SW 2.1 affects SW 2.2

 SW 2.2 in HALF SUPLEX MODE:
 ON = RECEIVER ALWAYS ON
 OFF = RECEIVER OFF DURING TRANSMIT; controled by RTS or DTR (see SW 2.4)
 in FULL DUPLEX MODE:
 ON = TRANSMITTER ENABLED BY RTS or DTR (see SW 2.4)
 OFF = TRANSMITTER ALWAYS ON

 SW 2.3 ON = RTS-CTS LOOPBACK ENABLED
 OFF = RTS-CTS LOOPBACK DISABLED

 SW 2.4 ON = TRANSMIT (RECEIVE) WHEN DTR = 1
 OFF = TRANSMIT (RECEIVE) WHEN RTS = 1

 SW 2.5 *** NOT CURRENTLY DEFINED ***

2.6.1 EXPLANATION OF TABLE: Switch Functions

2.6.1.1 SWITCH 2.1: DUPLEX CONTROL

Definitions

HALF DUPLEX: transmission of data in either direction on the same conductor pair, but not
simultaneous transmission in both directions.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

FULL DUPLEX: simultaneous, two-way transmission on two independent conductor pairs--one
pair for each direction.

When Switch 2.1 is in the off position, the NBS-10 is in full duplex mode. One pair of wires
should be connected to the transmit data connector terminals on the NBS-10 board and another
pair of wires should be attached to the NBS-10 receive data connector terminals. Full duplex is
used in most RS-422 configurations and in four-wire RS-485 systems. (If a four-wire RS-485
system is used, a control line must be selected to control the enabling and disabling of the
transmitter so that other nodes can utilize the lines. Please refer to the description of switches
2.4 further on in this section for information on this control line.)

When Switch 2.1 is in the on position, the NBS-10 is in half duplex mode. In half duplex mode,
there is one and only one pair of conductors. This conductor pair is attached to the transmit
data connector which is internally connected on the NBS-10 board to a receive pair. Half
duplex is used in most RS-485 applications including embedded control networking. In half
duplex mode, the NBS-10 card must be told whether it is receiving or transmitting data; this
information is provided by user software. The transmitter/receiver direction is governed by the
user's software protocol, which allows other nodes to share the line. Please refer to the
description of switch 2.4 further on in this section for more information on the selection of this
control signal.

2.6.1.2 SWITCH 2.2 RECEIVE-TRANSMIT CONFIGURATION

The function of this switch is determined by the position of switch 2.1.

If SW2.1 is ON (in half duplex mode), SW2.2 (on or off) controls the receiver. When SW2.2 is
ON, the receiver is always enabled. This feature should be utilized on networks where collision
detection is part of the communications protocol. Every time a character is transmitted, it
appears in the receive buffer of the UART. If the data transmitted does not equal the data
received, a collision or other error has occurred. If SW2.2 is OFF, then the receiver is disabled
whenever the transmitter is enabled. Please refer to the description of SW2.4 further on in this
section for more information.

If SW2.1 is OFF (in full duplex mode), SW2.2 (on or off) controls the transmitter. If SW2.2 is
OFF, then the transmitter is always on. This is the normal condition for RS-422
communications. If the SW2.2 is ON, then the transmitter is enabled by RTS or DTR. This
configuration is useful in four-wire full duplex RS-485 systems in which there is a multidrop pair
for each direction of transmission. For example, an RS-485 master-slave network with slave
interrupt capabilities would utilize this configuration.

2.6.1.3 SWITCH 2.3 RTS-CTS LOOPBACK

This feature is used when a software protocol in either the transmitting device or the receiving
device requires handshaking signals that the other unit does not supply. The SW2.3 allows a
"request to send" handshaking signal to be looped back to the "clear to send" signal, in
essence fooling the handshaking dependent device into believing that the appropriate
handshake has been delivered. This switch saves the user from having to make an external
loopback on the connector.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

11

2.6.1.4 SWITCH 2.4 CONTROL SELECT
Switch 2.4 allows the selection of the control signal used to drive the features selected by
SW2.2. RTS and DTR are available control sources; this selection allows for compatibility with
other manufacturers' products.

2.6.1.5 SWITCH 2.5 IS CURRENTLY UNDEFINED

2.7 USING DOS SERVICES

While possible, but not recommended, the NBS-10 can be used with software that employs
DOS serial port service routines. Good software packages do not use DOS serial port services
because they are slow and not interrupt driven. Before performing the desired serial port
action, DOS asserts the DTR (Data Terminal Ready) signal and then waits for an active (true)
response on DCD (Data Carrier Detect) and DSR (Data Set Ready) lines. If these lines are not
true, the serial port will not function properly.

When DOS services are desired, all interface signals must be implemented for the serial port to
function properly. Connecting a device that omits all handshaking signals to a device that
expects them results in an interface that does not work. In order to use DOS services in the
above condition, DOS must be tricked into thinking that the proper connections exist.

Because the NBS-10 does not provide DTR, DCD and DSR connections, DTR is internally
looped back to DCD and DSR on the card. DOS services should work with the NBS-10 without
any assistance from the user.

2.8 TERMINATION RESISTORS AND TRANSMISSION LINE
BIAS

2.8.1 TERMINATION RESISTORS ON RS-485 NETWORKS

In an RS-485 network configuration only two termination resistors are permitted. These
resistors must be located at opposites ends of the physical line. When an NBS-10 resides at
the physical end of the network, termination resistors J2, J3 and J4 need to be installed (Refer
to Figure 2.3). If not at the physical end of the line, the jumpers should be removed. The
NBS-10 cards should be attached to the transmission line with short stub wires or daisy chained
directly together.

NBS-10 AT THE END OF THE NETWORK: INSTALL JUMPERS J2,J3,J4
NBS-10 NOT AT THE END OF THE NETWORK: REMOVE JUMPERS J2,J3,J4

2.8.2 BIAS ON RS-485 NETWORKS

If the NBS-10 is serving as the network master for an RS-485 network and no other bias
networks are provided, the DIP resistor package R5 should be installed. If there are other bias
resistors on the network, or if RS-422 is being used, then the resistor pack should be removed.
For a more complete discussion of bias resistor theory, the reader is referred to section 2.1.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

2.8.3 TERMINATION RESISTORS ON RS-422 NETWORKS
If the NBS-10 is used on an RS-422 network, one termination resistor must exist at the end of
the transmission line opposite the transmitter. If the NBS-10 is the transmitter on the network,
then the J2 termination resistors should removed. If the NBS-10 is the last receiver on the
network, termination resistors J3 and J4 should be installed. Only if the NBS-10 is the last
receiver on the network should the termination resistors be installed.

2.8.4 BIAS ON RS-422 NETWORKS

Since a transmitter always holds the line in a known state, bias resistors are not required.

2.9 DEFAULT FACTORY SWITCH SETTINGS

 ADDRESS SETTING

 SWITCH # SW
1.1

 SW
1.2

 SW
1.3

 SW
1.4

 SW
1.5

 SW
1.6

 SW
1.7

 2F8H 1 1 1 1 1 0 1

 SETTING OFF OFF OFF OFF OFF ON OFF

INTERRUPT = IRQ3

 OUTPUT CONTROL SETTINGS

 SWITCH # SW 2.1 SW 2.2 SW 2.3 SW 2.4 SW 2.5

 SETTING OFF OFF OFF OFF OFF

 PURPOSE FULL-DUPLEX TX ALWAYS ON LOOP BACK
OFF

 RTS CTRL
SOURCE

 NOT DEFINED

BIAS RESISTORS R5 INSTALLED

ALL TERMINATION RESISTORS INSTALLED: J2, J3, J4

18.432 MHz CLOCK OSCILLATOR

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

13

2.10 EXTERNAL CONNECTOR PINOUTS

J6 AND J7 RS-485 D-9 CONNECTOR

Connectors J6 and J7 are shorted together on the NBS-10. Both genders of connector are
provided for convenience only.

 D-9 PIN# FUNCTION COMMENT

 1 RTS+ (REQUEST TO SEND +) OPTIONAL HANDSHAKE OUTPUT

 6 RTS- (REQUEST TO SEND -) OPTIONAL HANDSHAKE OUTPUT

 2 TXD+ (TRANSMIT DATA +) ALSO HALF DUPLEX PAIR

 7 TXD- (TRANSMIT DATA -) ALSO HALF DUPLEX PAIR

 3* NETWORK COMMON + TIED TO PC GROUND THRU 100 OHMS

 4 RXD+ (RECEIVE DATA +) NOT USED IN HALF DUPLEX

 8 RXD- (RECEIVE DATA -) NOT USED IN HALF DUPLEX

 5 CTS+ (CLEAR TO SEND +) OPTIONAL HANDSHAKE INPUT

 9 CTS- (CLEAR TO SEND -) OPTIONAL HANDSHAKE INPUT

*the NBS-10 provides a 100 ohm resistor between Pin 3 (the network common) and the PC
ground. This resistor limits ground currents. For more information on grounding, see RS-485
and local and national electric codes.

SHIELDED CABLE MUST BE USED IN ORDER TO COMPLY WITH FCC REGULATIONS.

2.11 INSTALLING THE NBS-10 IN THE HOST COMPUTER

After you have completed configuration of the NBS-10, you are ready for installation. The
NBS-10 occupies one slot in most ISA PC compatible computers. Follow the manucturers
disassembly instructions on your particular machine in order to remove the cover. Locate a free
slot in which to put your NBS-10 and remove the cover. Locate a free slot in which to put your
NBS-10 and remove the blank I/O plate. Please note: slot eight on the original IBM PC XT and
Portable computer are not regular expansion ports and should not be used. Insert the NBS-10
into the slot making sure that the edge-card and the bus connector mate firmly. Replace the
bracket screw and then replace the cover.

If you are making your own cables, be sure to use shielded twisted pair wire and shielded metal
head shells. The NBS-10 has been verified for compliance with FCC Part 15 regulations using
shielded cable and head shells. These components help protect against unwanted radio
frequency emissons emanating from your computers circuitry and they also protect your system
from external electromagnetic interference.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

3 PROGRAMMING THE NBS-10

3.1 INTRODUCTION

The NBS-10 uses Intel's 82510 Asynchronous Serial Controller (a fancy UART), which includes
many high-performance features and allows emulation of the 16450 UART (used in the IBM
PC/AT serial port). The 82510 is functionally identical to the 16450 on powerup, so you should
be able to use your existing programs with little or no modification. High-performance features
include four-byte FIFOs, baud rates up to 288,000 baud (using a 18.432 MHz crystal oscillator),
an extra timer, and nine-bit communication modes.
Intel has kindly allowed us to reprint their 82510 data sheets, which are located in Appendix B
of this manual. Rather than replicate the information they contain, this chapter will focus on
using this chip from a programmer's perspective. We urge you to consult other references on
serial-port programming as well, such as Intel's AP-401 and the chapter on the serial port in
Duncan [7] (8250/16450 programming).

3.2 FOR SERIOUS APPLICATIONS

We have come up with the following recommendations for programming the NBS-10, which are
especially relevant if you are running at moderate or high baud rates. Feel free to ignore these
recommendations if you are running at low baud rates and do not care if you lose characters
once in a while.

1. Manipulate the NBS-10 by directly writing to and reading from its registers. Don't use BIOS
or MS-DOS services, or commands in high-level languages which use those services; they are
slow and not particularly flexible, and they do not use the high-performance features of the
82510 UART.

2. Write a serial port interrupt handler which buffers incoming and outgoing data in assembly
language. Compared to polling, using an interrupt handler means that the 82510 will be
serviced faster, allowing higher baud rates to be sustained without losing incoming characters.
Duncan [7] contains a good sample program.

3. Use the FIFOs in the NBS-10's 82510, especially if you are polling the NBS-10 instead of
following recommendation #2. If for some reason your program can not promptly read a
character from the serial port, the receiver FIFO will buffer up to 4 characters, reducing the
probability that you will lose any. In addition, the FIFOs can reduce the amount of CPU time
required to service the 82510.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

15

3.3 THE BASICS

The 82510 includes 35 registers grouped into four banks:

bank 0: 8250A/16450-compatible bank
bank 1: general work bank
bank 2: general configuration
bank 3: modem configuration

If you only use 16450 emulation mode, you can work entirely in bank 0. However, if you use the
high-performance features of the 82510, you will typically configure the NBS-10 using banks 0,
2, and 3, then operate in bank 1. In order to switch register banks, you write to the GIR/BANK
register, which is present in all four banks.

Regardless of what language you use to program the NBS-10, you will have to set the frame
format and mode of operation. Frame format consists of three parts: the number of data bits
per frame, the number of stop bits per frame, and the type of parity. In addition to the 16450
emulation mode frame formats (five to eight data bits, with or without parity), the 82510 is
capable of nine-data-bit formats.

When a nine-data-bit format is chosen, the 82510 can operate in a mode, in which the only
messages which cause a CPU interrupt from the NBS-10 are messages with a particular
destination address. This reduces the amount of time the CPU must expend doing network
communication.

Next, you have to decide how to send and receive data. There are two techniques for doing
this; polling and interrupt-driven transfer. Polling requires the program to periodically check the
status of the UART and sending or receiving characters as appropriate. To do interrupt-driven
transfer, the NBS-10 must be programmed to generate an interrupt request when the UART
requires service, and an interrupt service routine must be written. Polling is simpler to program,
but interrupt-driven transfer allows higher baud rates and reduces the probability of lost
characters because the UART can be serviced sooner.

You can use the standard high-level language serial port commands to program the NBS-10
(although we do not recommend it), but those commands only support 16450 emulation mode.
Low-level commands which allow direct access to the 82510's registers allow full use of the
NBS-10's capabilities. Here are some useful commands from BASIC and C (see the reference
manual for your particular compiler or interpreter):

BASIC:
OPEN COM, GET, PUT, and LOC are useful high-level commands. In some versions of BASIC,
OPEN COM causes serial data to be buffered. INP and OUT are low-level commands which
can directly access 82510 registers.

C:
fopen() is a high-level function which uses DOS services. bios_serialcom() (Microsoft C) and
bioscom() (Turbo C) are medium-level functions which use BIOS services. inp() and outp() are
low-level functions which can directly access 82510 registers.

If you program in assembly language, you can use BIOS interrupt 14H (see below), DOS
interrupt 21H, or directly program the 82510's registers using the 8086-family IN and OUT
instructions.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

Those of you who are considering programming the NBS-10 using low-level commands may
wish to refer to the sample C-language program at the end of this chapter. Although it uses
some procedures which are unique to nine-bit mode programming, much of it is applicable to
standard serial-port programming. As previously mentioned, Duncan [7] contains a good
sample program written in assembly language which includes a serial-port interrupt handler for
the 8250/16450.

3.4 USE OF BIOS AND DOS SERVICES

Both IBM PC BIOS and MS-DOS provide serial communication services which should work fine
with the NBS-10. However, you will probably be limited to using the 82510 in 16450 emulation
mode. Of the two, BIOS services are more flexible. But both are slow, and neither are
interrupt-driven, so programs written at Cimetrics Technology generally do not use them. See
Duncan [7] for detailed information about these services.

The IBM PC BIOS provides serial communication services through software interrupt 14H.
These include:

initialize COM port
send char
read char
get COM port status

MS-DOS includes device drivers for COM ports which should work with the NBS-10. The
device drivers can be accessed using DOS commands such as MODE and COPY, as well as
software interrupt 21H.

3.5 SETTING THE BAUD RATE

The NBS-10 is shipped with an 18.432 Mhz crystal oscillator, allowing the NBS-10 to run at up
to 288,000 baud. However, in 16450 emulation mode, the NBS-10 behaves as if it were a
16450 with a 1.8432 Mhz crystal oscillator like a standard PC/XT/AT, with a speed limit of
57,600 baud. This means that you may be able to use high-level language commands or BIOS
services or DOS services to set the baud rate if you intend to run in 16450 emulation mode.
Otherwise you will have to directly program the 82510's registers.

The baud rate is controlled by one or both of the 82510's 16-bit timers. Each timer has two
eight-bit registers which combine to form a sixteen-bit divisor when the timer is used as a
baud-rate generator. In 16450 emulation mode, the two timers are cascaded, and the divisor
(written to timer A) is calculated using the following formula:

divisor = (oscillator frequency in Hz) / (160 * baud rate)

If you use only one timer, then the divisor is calculated using the following formula:

divisor = (oscillator frequency in Hz) / (32 * baud rate)

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

17

To use only timer A for baud-rate generation, you will have to write values to registers in the
modem configuration bank:

RegisterBank(3);
/* put timer B in timer mode */
outp(BRGB_CONFIGURATION_ADDRESS,0);
/* set baud-rate clock source to timer A: */
outp(CLOCKS_CONFIGURE_ADDRESS,0x50);

In the following example, the divisor value is written to timer A's two registers:

unsigned char lcrValue, divisorHighByte, divisorLowByte; unsigned int divisor;
...
divisorHighByte = (unsigned char)(divisor >>>> 8); /* usually, this is 0 */
divisorLowByte = (unsigned char)(divisor & 0x00FF);

RegisterBank(0);
lcrValue = inp(LINE_CONTROL_ADDRESS); /* save LCR value */
outp(LINE_CONTROL_ADDRESS, 0x80); /* set DLAB */
outp(DIVISOR_A_LOW_BYTE_ADDRESS, divisorLowByte);
outp(DIVISOR_A_HIGH_BYTE_ADDRESS, divisorHighByte);
outp(LINE_CONTROL_ADDRESS, lcrValue); /* restore prev. LCR value */ ...

Here are the divisor values for some common baud rates:

(18.432 MHz oscillator, BRG-A only)

 Baud Rate Divisor Comments

 187500 3 (12 MHz 8096)

 83333 7 (16 MHz 8051)

 62500 9 (12 MHz 8051)

 56000 10 (11.059 MHz 8051)

 19200 30

 9600 60

 1200 480 (high byte = 1, low byte = 224)

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

3.6 NINE-DATA-BIT MODES

As mentioned previously, the 82510's frame formats include a nine-data-bit format. This format
is useful when the NBS-10 is used to allow a PC to be in a network of embedded controllers,
most often as the master node of a polled master-slave network. Many popular eight- and
sixteen-bit embedded controllers have a nine-bit mode, including the 8051, 68HC11, Z180, and
the 8096.

Best use of the built-in capabilities of certain microcontrollers means that a protocol with a
certain structure must be used. In this type of protocol, a message between two network nodes
consists of several nine-bit words: an address word followed by data words. The two kinds of
words have the following format (MSB-LSB):

1XXXXXXXX address word
0XXXXXXXX data word

The address word specifies the receiving node. Data words can contain commands and
command parameters, node status information, check words,and of course, data.

When this kind of protocol is used, you may choose to use the 82510's PLAN mode, which is
useful when you want to minimize CPU interruptions. In this mode, the 82510 will only accept
messages with specific destination addresses.

Entering nine-data-bit mode is simple:

RegisterBank(0);
outp(LINE_CONTROL_ADDRESS,0);
RegisterBank(2);
outp(TRANSMIT_MACHINE_MODE_ADDRESS,0x20);

To send a character, set the ninth bit, then write the lower eight bits to the transmit data
register:

/* RegisterBank(1); */
outp(TRANSMIT_FLAGS_ADDRESS, 0x20); /* set ninth bit */
/* to clear the ninth bit: outp(TRANSMIT_FLAGS_ADDRESS,0); */
while ((inp(FIFO_LEVEL_ADDRESS) & 0x07) == 4) ;

/* wait until there is room in the transmitter FIFO */
outp(TRANSMIT_DATA_ADDRESS, lowerEightBits);

To receive a character, read the ninth bit, then read the lower eight bits from the receive data
register:

/* RegisterBank(1); */
ninthBit = inp(RECEIVE_FLAGS_ADDRESS) & 1;
lowerEightBits = inp(RECEIVE_BUFFER_ADDRESS);

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

19

3.7 USING FIFO MODE

We strongly recommend that you make use of the 82510's FIFO mode for the following
reasons:

1. With standard UARTs, the CPU must read a character received by the UART before the
next character has arrived or else a character will be lost; this puts an upper limit on the baud
rate. Using an interrupt handler will allow higher baud rates than polling, but in some
circumstances the handling of the interrupt may be preempted by a higher-priority interrupt.
Since the 82510's receiver FIFO can buffer up to four characters, the probability of losing
incoming characters is lower.

2. The FIFOs reduce the amount of time that the CPU must use in servicing the UART. For
example, the receive interrupt trigger level can be set so that a data available interrupt does not
occur until several characters have been received; therefore, the interrupt routine would be
executed fewer times. Likewise, up to four bytes to be transmitted can be transferred to the
82510 at a time.

If you are using an interrupt handler or are using nine-bit mode, you will need to decide on the
receive interrupt trigger threshold. This is the minimum number of characters in the receiver
FIFO required to trigger a data available interrupt, and can be one to four bytes. This threshold
can be varied while the UART is running to improve performance. The higher the threshold, the
less time the CPU spends servicing the UART, but higher thresholds increase the probability of
lost characters.

If the receive interrupt trigger threshold is greater than 1, then it is possible for data to remain in
the receiver FIFO for an extended period of time without the 82510 interrupting the CPU. There
are two ways to handle this problem: keep the receive interrupt trigger threshold at 1 byte, or
use Timer B to periodically interrupt the CPU (see Intel AP-401 for an example of the latter).

Entering FIFO mode is simple:

RegisterBank(2);
outp(INTERNAL_MODE_ADDRESS,0x08); /* RX FIFO depth=4 bytes */
outp(FIFO_MODE_ADDRESS,0);
/* RX FIFO interrupt if 1 or more bytes are in the RX FIFO */
/* TX FIFO interrupt if the TX FIFO is empty */

Once the NBS-10 is initialized, you can determine the number of characters in each FIFO by
reading the FIFO level register.

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

3.8 NBS-10 INTERRUPTS AND THE PC

As discussed in the 82510 data sheets, the 82510 asynchronous serial controller can generate
an interrupt for any one of several different reasons. These interrupts can be enabled by
setting appropriate bits in the general enable register and optionally other registers. However,
the NBS-10 is designed so that a UART interrupt will not generate an interrupt request on the
IBM PC or AT bus unless bit OUT2 (modem control register) is also set. In addition, the PC's
8259 interrupt controller must be appropriately programmed.

Because of the design of the PC and AT computers, multiple peripherals can not
simultaneously use the same IRQ line. However, it is possible to have two peripherals share an
IRQ line as long as they are not using the line at the same time. For example, you could put
both a modem and an NBS-10 on IRQ 3, but you could not do interrupt-driven modem
communication at the same time you were doing interrupt-driven NBS-10 communication.

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

21

APPENDIX A

SAMPLE PROGRAM

The following C-language program uses an extremely simple nine-bit protocol to allow two or
more NBS-10 equipped PC's to "talk" to each other over a single shielded twisted pair cable.
Reception is done by polling the Receive FIFO Interrupt Request (RFIR) bit in the General
Status Register (GSR [register #20]) to see if any characters have been received. If there are
characters in the FIFO, then the Receive Ninth Data Bit (RND) in the Receive Flags Register
(RXF [register #24]) is checked to see if an address byte is present. If the ninth bit is set, then
the address byte is compared with the address of this node. If the message is intended for this
node, characters are put into a ring buffer. When time permits, received characters are
removed from the ring buffer and displayed (putchar() function).

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

APPENDIX A: SAMPLE PROGRAM

/*
 * NBS-10 talk program:
 * Send messages between PCs on a two-wire RS-485 network using
 * an extremely simple nine-bit protocol.
 *
 * SW1 settings: (for COM2, address 2F8h: see BASE_ADDRESS)
 * 1-5, 7 ON
 * 6 OFF
 *
 * SW2 settings:
 * 1 ON (half-duplex)
 * 2 OFF (receiver off during transmit)
 * 3 OFF (RTS-CTS loopback disabled)
 * 4 OFF
 * 5 OFF (RTS=1 enables transmit: see TX_ENABLE_BIT)
 *
 * Interprocessor message format:
 * one address character (ninth-bit set)
 * Data characters (ninth-bit clear)
 */

char *copyright = "Copyright (c) 1991 by Cimetrics, Inc. All rights reserved.";
char *version = "*** 4/1/91 ***";

#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <math.h>

#define BASE_ADDRESS 0x2F8 /* COM2 = 2F8 */
#define TX_ENABLE_BIT RTS_BIT /* RTS_BIT or DTR_BIT */

/*** type definitions ***/
typedef unsigned char uchar;
typedef int boolean;

/*** 82510 register addresses ***/
/* bank 0 */

#define EMULATE_16450_BANK 0
#define DIVISOR_LOW_ADDRESS (BASE_ADDRESS+0)
#define DIVISOR_HIGH_ADDRESS (BASE_ADDRESS+1)
#define TRANSMIT_BUFFER_ADDRESS (BASE_ADDRESS+0) /* also bank 1 */
#define RECEIVE_BUFFER_ADDRESS (BASE_ADDRESS+0) /* also bank 1 */
#define INTERRUPT_ENABLE_ADDRESS (BASE_ADDRESS+1)
#define INTERRUPT_ID_ADDRESS (BASE_ADDRESS+2) /* any bank */
#define BANK_ADDRESS (BASE_ADDRESS+2) /* any bank */
#define LINE_CONTROL_ADDRESS (BASE_ADDRESS+3)
#define MODEM_CONTROL_ADDRESS (BASE_ADDRESS+4) /* also bank 1 */
#define LINE_STATUS_ADDRESS (BASE_ADDRESS+5)
#define MODEM_STATUS_ADDRESS (BASE_ADDRESS+6)
#define SCRATCH_ADDRESS (BASE_ADDRESS+7)

/* bank 1 */
#define GENERAL_WORK_BANK 1
#define TRANSMIT_FLAGS_ADDRESS (BASE_ADDRESS+1)
#define TRANSMIT_FLAGS_BANK 1
#define RECEIVE_FLAGS_ADDRESS (BASE_ADDRESS+1)
#define RECEIVE_FLAGS_BANK 1
#define GENERAL_STATUS_ADDRESS (BASE_ADDRESS+7)
#define GENERAL_STATUS_BANK 1
#define FIFO_LEVEL_ADDRESS (BASE_ADDRESS+4)
#define FIFO_LEVEL_BANK 1
#define INTERNAL_COMMAND_ADDRESS (BASE_ADDRESS+7)
#define INTERNAL_COMMAND_BANK 1

/* bank 2 */
#define TRANSMIT_MACHINE_MODE_ADDRESS (BASE_ADDRESS+3)
#define TRANSMIT_MACHINE_MODE_BANK 2
#define INTERNAL_MODE_ADDRESS (BASE_ADDRESS+4)
#define INTERNAL_MODE_BANK 2
#define FIFO_MODE_ADDRESS (BASE_ADDRESS+1)
#define FIFO_MODE_BANK 2

/* bank 3 */
#define CLOCKS_CONFIGURE_ADDRESS (BASE_ADDRESS+0)
#define CLOCKS_CONFIGURE_BANK 3
#define BRGB_CONFIGURATION_ADDRESS (BASE_ADDRESS+3)
#define BRGB_CONFIGURATION_BANK 3

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

23

/*** useful UART register bits ***/
#define RTS_BIT 0x02 /* modem control register */
#define DTR_BIT 0x01
#define TxIR_BIT 0x10 /* general status register */
#define RFIR_BIT 0x01
#define RESET_BIT 0x10 /* internal command register */

/*** allocate ring buffer ***/
#define RING_BUFFER_SIZE 100
char ringBuffer[RING_BUFFER_SIZE];
int ringInPointer = 0;
int ringOutPointer = 0;

/*** allocate other buffers ***/
char lowerEightBuffer[1000];
char scratchBuffer[100];

/*** miscellaneous constants and variables ***/
#define ESC_KEY 27
#define FALSE 0
#define TRUE (!FALSE)
#define MAX_XTAL_FREQ 20.0
#define MIN_XTAL_FREQ 1.0
double baudRate = 9600.0; /* default, in bits per second (baud) */
double crystalFrequency = 18.432; /* default, in MHz */
unsigned int thisNodeAddress;

#define RegisterBank(b) outp(BANK_ADDRESS,(b)<<5);

/*** function prototypes: ***/
void main(void);
void NetworkMonitor(void);
int ReceiveChar(int *ninthBit);
void SendMessage(uchar nodeAddress, unsigned int messageLength);
void TransmitMode(void);
void ReceiveMode(void);
void SetNinthBit(void);
void ClearNinthBit(void);
void SendChar(uchar lowerEightBits);
void EnableFifoMode(void);
void SetBaudRate(double rate);
unsigned short ComputeDivisor(double baudRate, boolean suppressErrorMsg);

/*** This is the first procedure executed when the program is run. ***/
void main(void)
{

puts("NBS-10 talk program, for 2-wire (half-duplex) RS-485.");
puts(copyright);
puts(version);
RegisterBank(INTERNAL_COMMAND_BANK);
outp(INTERNAL_COMMAND_ADDRESS,RESET_BIT); /* reset 82510 */
RegisterBank(EMULATE_16450_BANK);

/*** SETUP UART REGISTERS ***/
do {

printf("Crystal Frequency in MHz? [%.4lf MHz] ",crystalFrequency);
gets(scratchBuffer);
sscanf(scratchBuffer,"%lf",&crystalFrequency);

} while (crystalFrequency < MIN_XTAL_FREQ && crystalFrequency > MAX_XTAL_FREQ);
do {

printf("Speed in baud? [%.1lf baud] ",baudRate);
gets(scratchBuffer);
sscanf(scratchBuffer,"%lf",&baudRate);

} while (ComputeDivisor(baudRate,FALSE) == 0);

SetBaudRate(baudRate);
outp(MODEM_CONTROL_ADDRESS, 0);

/* receive mode, disable IRQ, disable loopback */
/* nine-bit mode: */
RegisterBank(EMULATE_16450_BANK);
outp(LINE_CONTROL_ADDRESS,0);
RegisterBank(TRANSMIT_MACHINE_MODE_BANK);
outp(TRANSMIT_MACHINE_MODE_ADDRESS,0x20);
EnableFifoMode();
outp(INTERRUPT_ENABLE_ADDRESS,0); /* disable all interrupts */
inp(LINE_STATUS_ADDRESS); /* clear out any garbage */
inp(RECEIVE_BUFFER_ADDRESS); /* ditto */

/*** OPERATOR TYPES IN ADDRESS NUMBER FOR THIS NODE ***/

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

thisNodeAddress = 32767;
while (thisNodeAddress > 255) {

printf("What address # is this node? (0 - 255) ");
gets(scratchBuffer);
sscanf(scratchBuffer,"%u",&thisNodeAddress);

}

NetworkMonitor();

/*** CLEANUP UART REGISTERS BEFORE TERMINATING ***/
RegisterBank(INTERNAL_COMMAND_BANK);
outp(INTERNAL_COMMAND_ADDRESS,RESET_BIT); /* reset 82510 */

}

void NetworkMonitor(void)
{

static boolean messageBeingReceived = FALSE;
int ninthBit, c;
unsigned int destinationNodeAddress = 0;

RegisterBank(GENERAL_WORK_BANK);
printf("Network monitor running: press Esc to exit, any other key to send message.\n");
/*** EXECUTE THIS LOOP UNTIL THE OPERATOR PRESSES THE ESCAPE KEY ***/
for (;;) {

/*** GET ALL DATA RECEIVED BY THE UART ***/
while ((inp(GENERAL_STATUS_ADDRESS) & RFIR_BIT)) {

c = ReceiveChar(&ninthBit);
if (ninthBit == 1) { /* address char */

/* this character begins a new message */
if ((unsigned int)c == thisNodeAddress) {

/* message is addressed to me */
messageBeingReceived = TRUE;

} else {
/* message is not addressed to me */
messageBeingReceived = FALSE;

}
} else if (messageBeingReceived) {

/*** PUT DATA FOR ME IN THE RING BUFFER ***/
if (++ringInPointer >= RING_BUFFER_SIZE)

ringInPointer = 0;
ringBuffer[ringInPointer] = (char)c;

} /* otherwise ignore the character */
}
/*** DISPLAY A CHARACTER IN THE RING BUFFER, IF ANY ***/
if (ringInPointer != ringOutPointer) {

if (++ringOutPointer >= RING_BUFFER_SIZE)
ringOutPointer = 0;

putchar(ringBuffer[ringOutPointer]);
/* do something with the char */

}
/*** CHECK TO SEE IF THE OPERATOR HAS PRESSED A KEY ***/
if (kbhit()) {

if (getch() == ESC_KEY) {
RegisterBank(EMULATE_16450_BANK);
return; /* Exit */

}
printf("\nSend message to which node? [%u] (0 - 255) ",

destinationNodeAddress);
/* OPERATOR TYPES ADDRESS OF DESTINATION NODE */
gets(scratchBuffer);
if (sscanf(scratchBuffer,"%u",&destinationNodeAddress)) {

printf("Message? ");
/* OPERATOR TYPES MESSAGE */
gets(scratchBuffer);
strcpy(lowerEightBuffer,scratchBuffer);
/*** TRANSMIT THE MESSAGE ***/
SendMessage((uchar)destinationNodeAddress,

 strlen(lowerEightBuffer));
}

}
}

}

int ReceiveChar(int *ninthBit)
/*** RETURNS THE LOWER EIGHT BITS, AND SETS VARIABLE ninthBit ***/
{

/* assumes GENERAL_WORK_BANK */
*ninthBit = inp(RECEIVE_FLAGS_ADDRESS) & 1;
return inp(RECEIVE_BUFFER_ADDRESS);

}

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

25

void SendMessage(uchar nodeAddress, unsigned int messageLength)
/* message was previously put into lowerEightBuffer[] */
{

unsigned int i;

TransmitMode();
SetNinthBit();
SendChar(nodeAddress); /* ADDRESS CHAR: 9TH BIT IS SET */
ClearNinthBit();
for (i=0; i<messageLength;) { /* DATA CHARACTERS: 9TH BIT IS CLEAR */

SendChar(lowerEightBuffer[i++]);
}
ReceiveMode();

}

void TransmitMode(void)
/*** ENABLE RS-485 DRIVERS ***/
{

/* assumes EMULATE_16450_BANK or GENERAL_WORK_BANK */
outp(MODEM_CONTROL_ADDRESS, TX_ENABLE_BIT);

/* set transmit enable bit */
}

void ReceiveMode(void)
/*** AFTER TRANSMISSION IS COMPLETE, DISABLE RS-485 DRIVERS ***/
{

/* assumes GENERAL_WORK_BANK */
while ((inp(GENERAL_STATUS_ADDRESS) & TxIR_BIT) == 0) ;

/* wait until transmission is complete */
outp(MODEM_CONTROL_ADDRESS, 0);

/* clear transmit enable bit, whatever it is */
}

void SetNinthBit(void) /* for transmission */
{

/* assumes GENERAL_WORK_BANK */
outp(TRANSMIT_FLAGS_ADDRESS, 0x20);

}

void ClearNinthBit(void) /* for transmission */
{

/* assumes GENERAL_WORK_BANK */
outp(TRANSMIT_FLAGS_ADDRESS, 0);

}

void SendChar(uchar lowerEightBits)
/* SET OR CLEAR NINTH BIT BEFORE CALLING THIS PROCEDURE */
{

/* assumes GENERAL_WORK_BANK */
while ((inp(FIFO_LEVEL_ADDRESS) & 0x07) == 4) ;

/* wait until there is room in the transmitter FIFO */
outp(TRANSMIT_BUFFER_ADDRESS, lowerEightBits);

}

void EnableFifoMode(void)
{

RegisterBank(INTERNAL_MODE_BANK);
outp(INTERNAL_MODE_ADDRESS,0x08); /* RX FIFO depth = 4 bytes */
RegisterBank(FIFO_MODE_BANK);
outp(FIFO_MODE_ADDRESS,0); /* RX FIFO threshold = 1 byte */
RegisterBank(EMULATE_16450_BANK);
printf("82510 FIFO mode enabled; trigger at 1 byte\n\r");

}

void SetBaudRate(double rate)
/* rate is in baud; maximum and minimum depend on the crystal frequency */
{

unsigned short divisor;
uchar lcrValue;

divisor = ComputeDivisor(rate, TRUE);
if (divisor != 0) {

/* disable second divisor: */
RegisterBank(BRGB_CONFIGURATION_BANK);
outp(BRGB_CONFIGURATION_ADDRESS,0);
/* set clock source to first divisor: */
RegisterBank(CLOCKS_CONFIGURE_BANK);
outp(CLOCKS_CONFIGURE_ADDRESS,0x50);
RegisterBank(EMULATE_16450_BANK);

CIMETRICS TECHNOLOGY NBS-10 USER'S MANUAL
COPYRIGHT © 1991 - 1998

/* set value of first divisor */
lcrValue = (uchar)inp(LINE_CONTROL_ADDRESS);
outp(LINE_CONTROL_ADDRESS,lcrValue | 0x80); /* DLAB on */
outp(DIVISOR_LOW_ADDRESS,(uchar)(divisor & 0x00FF));
outp(DIVISOR_HIGH_ADDRESS,(uchar)((divisor>>8) & 0x00FF));
outp(LINE_CONTROL_ADDRESS,lcrValue); /* DLAB restored */

}
}

unsigned short ComputeDivisor(double baudRate, boolean suppressErrorMsg)
{

double rawDivisor, divisor, error;

rawDivisor = crystalFrequency / (2 * 16e-6 * baudRate);
/* factor of 2 is because we are using an external oscillator */

divisor = floor(rawDivisor + .5); /* round to nearest integer */
if (!suppressErrorMsg) {

if (divisor > 65535.0) {
printf("A baud rate of %.1lf is too low.\n",baudRate);
return 0;

}
if (divisor < 1.0) {

printf("A baud rate of %.1lf is too high.\n",baudRate);
return 0;

}
error = fabs((divisor/rawDivisor) - 1.0);
if (error > 0.02)

printf("\aWARNING: the baud rate generation error will be %.2lf%%.\n",
100.0 * error);

}
return (unsigned short)divisor;

}

NBS-10 USER'S MANUAL CIMETRICS TECHNOLOGY
COPYRIGHT © 1991 - 1998

27

