

TASK ANALYSIS

Step (✓)

Identify the problem.

Plot the original figure(s) on the coordinate plane.

Plot the transformed figure(s) on the coordinate plane.

Task

Identify the transformations on the coordinate plane.

State the solution to the math story problem.

Fill in the big ideas.

Read the math story.

Painting with Transformations

Maria is an artist. She is painting a landscape picture. She has already painted some mountains, but she wants to reflect the mountain in the lake below it. The reflection must match the mountain exactly. She also painted a bird on the ground. She wants to paint another bird just like it to look like the bird has taken flight.

Figure 1: Maria plotted the points of the first figure using these coordinates: **(1, 2)**, **(3, 2)**, and **(5, 2)**. She connected the points with curved lines. To transform the figure, she plotted these coordinates **(5, 6)**, **(7, 6)**, and **(9, 6)**. She connected these points with curved lines.

Figure 2: Maria plotted these coordinates for the second figure: (-10, 0), (-7, 6), (-5, 2), (-3, 6), and (0, 0). She connected these points with straight lines. To transform this figure, she plotted these coordinates (-10, 0), (-7, -6), (-5, -2), (-3, -6), and (0, 0). She connected these points with straight lines.

What types of transformations did Maria use?

Identify the problem.

Plot the original figure(s).

Plot the transformed figure(s).

Identify the transformations.

Figure 1

Original

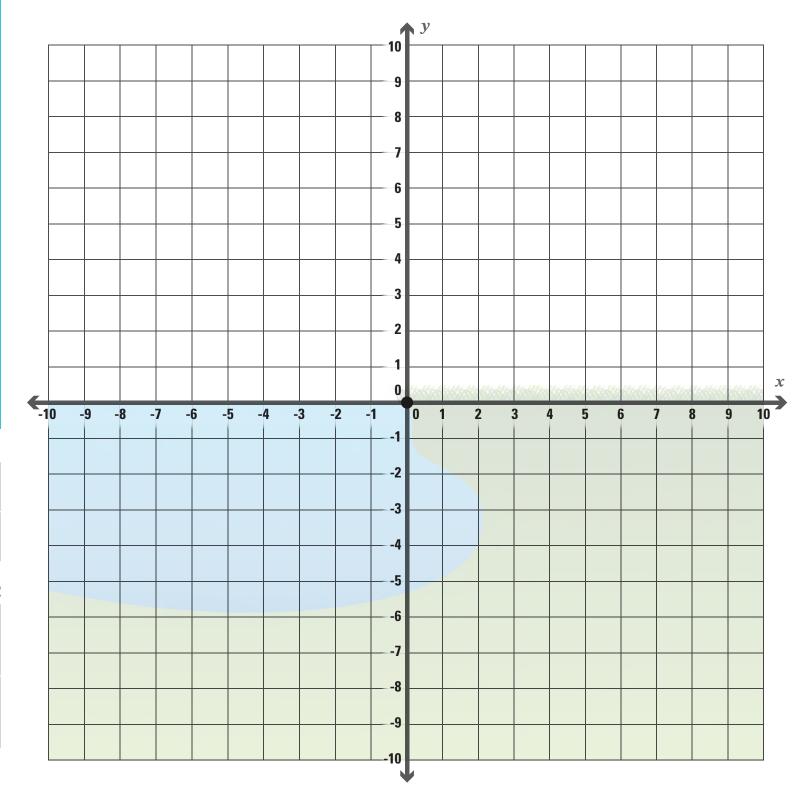
(1, 2) (3, 2) (5, 2)

Transformed

(5, 6) (7, 6) (9, 6)

Figure 2

Original


(-10, 0) (-7, 6)

(-5, 2) (-3, 6) (0, 0)

Transformed

(-10, 0) (-7, -6)

(-5, -2) (-3, -6) (0, 0)

State the solution to the math story problem.

Maria used a **reflection translation** for the bird

and a **reflection translation** for the mountains.

Fill in the big ideas.

A ______ is a movement of a shape on a plane.

A translation ______ and a reflection ______.

Word Bank			
			•
transformation	flips	rotation	slides

GLOSSARY

SYMBOLS

∠ABC angle

 \cong is congruent to

90° degree

 \sim similar to

△LMN triangle

angle: the amount of space between two lines that intersect at a given point

clockwise: moving in the direction of the hands on a clock

congruent triangles: identical triangles with exactly the same three sides and the same three angles

coordinate plane: a plane containing an *x*-axis and a *y*-axis

coordinates (*x*, *y*): pairs of numbers that tell an exact position

counterclockwise: moving in the opposite direction of the hands on a clock

definition: in proofs, a description of a shape or its attributes

degree: a measure of the size of an angle

diagonal: a line segment that goes from one corner to another, but is not an edge

$$x + y = z$$

equation: an expression that two expressions are equal

GLOSSARY

flip: to turn something over

given: facts that are told in the information about the problem

horizontal: going side to side like the horizon

interior angle: the angle inside a shape

line segment: a line between two points (named by the points on each end)

negative number: a number less than zero

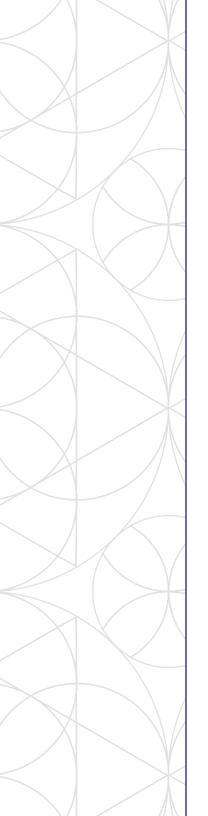
origin point: the point where the x-axis and the y-axis meet (0, 0)

positive number: a number greater than zero

postulate: a statement that everyone agrees is true without the need for proof

proof: logical arguments used to show the truth of a mathematical statement

property: a characteristic or attribute something like a shape has


reason: a statement or fact that explains why something is the way it is

reflection: a flip of a shape to create a mirror image

right angle: an angle of 90°

GLOSSARY

right triangle: a triangle with a right angle

rotation: a circular movement around a point

similar triangles: triangles that have the same size interior angles; the lengths of their sides may be different

slide: to move a shape without turning it or flipping it

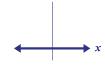
statement: information about a shape's measurements and properties learned by observing the shape

symmetry: another name for reflection; when one half is a reflection of the other half

theorem: a result that has been proved to be true (using operations and known facts)

transformation: changing a shape using a turn, a flip, or a slide

translation: a slide of a shape horizontally, vertically, or diagonally


triangle: a shape with 3 sides and 3 angles

turn: to rotate around a point

vertical: going in an up and down direction, upright

x-axis: a line on a graph that runs horizontally (left-to-right)

y-axis: a line on a graph that runs vertically (up and down)