## Carrera Track Layout Turns



Note: Read the reference numbers on the image and matching them to correct Carrera product listings below.

## Curves:

1: $205771 / 30\rangle, 6$ each $=180\rangle$
2: 20571 1/60 , 3 each $=180$
3: 20572 2/30, 6 each $=180$
4: $205733 / 30$, 6 each $=180$
5: 20578 4/15, 12 each $=180$

## Outside Shoulder for Curve:

6: $205671 / 30$, 6 each $=180$
7: 20561 1/60 , 3 each $=180$
8: $205622 / 30$, 6 each $=180$
9: 20563 3/30, 6 each $=180$
10: $205684 / 15$, 12 each $=180$

## Inside Shoulder for Curve:

11: $205901 / 30\rangle, 6$ each $=180\rangle$
12: 20551 1/60 $\rangle, 3$ each $=180\rangle$
13: $205912 / 30$ 》, 6 each $=180\rangle$
14: $205923 / 30$, 6 each $=180\rangle$
15: 20593 4/15, 12 each $=180\rangle$
End Sections Outside Shoulder:
16: 20598 1/30

## Explaining how curved track relate to each other:

- Let's say you want to build a four lane track and make a 180 curve: $2 / 30$ track (product number 20572) fits outside a $1 / 30$ track (20577) or $1 / 60$ track (20571).
- How about a six lane track? 3/30 (20573) fits outside 2/30 (20572) track.
- And for an eight lane track? $4 / 15 \geqslant$ (20578) fits outside $3 / 30 \geqslant(20573)$ track.


## But wait, what does 1, 2, 3, or 4 mean when I read 1/60 $\geqslant, 4 / 15 \geqslant$, or 2/30?

The numbers refer to the tightness of the turn. $A$ " 1 " would be the inner most curve. It has the smallest radius for a turn, thus a tighter turn. On the opposite end of the spectrum, a "4" would be the largest possible radius for a turn. It's the outermost curve and curves of this nature are very shallow and gradual.

