

A COMPARISON OF LIVING SOIL METHODOLOGIES IN RELATION TO PLANT HEALTH AND YIELD IN A CONTROLLED ENVIRONMENT FOR CANNABIS

TAD HUSSEY AND JAYA PALMER

08.15.2018

Abstract: There currently exists many different methodologies for growing cannabis in controlled environments, however there is very little published research on the subject in regards to cannabis cultivation. Conventional approaches using bottled nutrients have a higher cost of production, which has become a challenge cultivators as the market price of cannabis has dropped dramatically.¹ With an estimated revenue of 9 billion in legal cannabis sales in 2017 and estimated revenue of 11 billion for 2018, the emerging market is growing rapidly.² Many of the current methods involving hydroponic cultivation have a large carbon footprint and negative environmental impact due to the use of fossil fuels. These methods typically only allow for the media to be used one or two times before being disposed of, which contributes to leaching of phosphates and other nutrients into our groundwater.

The need for more sustainable and earth-friendly methods of cultivation is important from a social perception, environmental, and economic perspective.

Methodology:

For this study an enclosed indoor space was outfitted with three 4' x 12 ' soil beds each containing different organic living soil recipes.

Soil Bed #1: **S2S** comprised of Peat Moss, Pumice, Compost, Worm Castings, Blood Meal, Feather Meal, Alfalfa Meal, Kelp Meal, Insect Frass, Fish Bone Meal, Bone Meal, Bat Guano, Seabird Guano, Soft Rock Phosphate, Potassium Sulfate, Langbeinite, Greensand, Azomite, Oyster Shell Flour, Gypsum, Basalt Rock Dust, Glacial Rock Dust, Iron Sulfate, Copper Sulfate, Nutrisorb, Fossilized Carbon Complex, Diatomaceous Earth

Soil Bed #2: **KIS Organics Biochar Soil** comprised of biochar, spaghnum peat moss, fish compost, earthworm castings, volcanic pumice, glacial rock dust, basalt, soft rock phosphate, oyster shell flour, alfalfa meal, fish bone meal, crustacean meal, kelp meal, neem cake, karanja cake, fish meal, feather meal, steamed bone meal, agricultural lime.

Soil Bed #3: **XXX Soil Mix** comprised of Peat Moss, Coconut Coir, Perlite, African Night Crawler Worm Castings, Composted Porcine Manure, Glacial Rock Dust, Basalt Rock Dust, Oyster Shell Flour, Insect Frass, Fishbone Meal, Certified Organic Alfalfa Meal, Gypsum, Limestone Flour, Bone Meal, Feather Meal, Mined Potassium Sulfate, Blood Meal, Rock Phosphate, Fossilized Carbon Complex, Kelp Meal, Bat Guano/ Mineralized Phosphate amended with 10% Biochar and a blend of compost at 2% by volume.

All soil was mixed on-site to ensure accuracy. Each bed was planted with clones containing 1/3 Cookies and Cream cultivar (CNC) and 2/3 Gorilla Glue #4 cultivar (GG).

Environmental Controls:

82F (27.7 C) daytime temperature, 76F (24.4 C) nighttime set point
75rH daytime, 64rH nighttime set point
1500 ppm CO2 set point
Dehumidifiers on 15 minute increment timers so they would turn on 30 mins before lights out.
1000 pfd average at canopy height
Lighting controller would turn off half the lights 15-30 mins before the other half so temp would drop slowly and not spike humidity.
Humidifier on another 15min increment timer so it would turn off 30 mins before lights turned off.

Plants were watered using Blumat irrigation and set to maintain moisture content in the soil at 100 mbar.

Equipment:

Three rolling beds on v-casters and v-track, each 4'x12'.

LED lighting from Fluence Biotechnology (<u>https://fluence.science/</u>). There were 12 VYPRxPlus lights over a 12' x 12' canopy with each light covering a 3' x 4' footprint. We chose Fluence based on the existing body of research supporting their lights as well as the higher efficiency of LED lighting in comparison to HPS, double-ended HPS and LEC technology.

Two 12k BTU Air Conditioning Units; 200 pint Ideal-Air Humidifier; Atlas 8 Digital CO2 Controller; 2 - 70 pint Dehumidifiers; Helios 12 Light Controller

Soil Testing: We used three types of soil tests to evaluate the nutrient and mineral levels in the media. The Meilich III test and saturated paste test from Logan Laboratories and a Soil Savvy (artificial resin) test from UniBest. The Meilich III test is an acid extraction that is helpful in determining what nutrients and minerals are in the media but it does not show what is currently available for uptake for the plant. The Saturated Paste Tests and Soil Savvy test are two different testing methodologies designed to show what is currently available for plant uptake.

	Zoom Zoom to Fit	Share		Highlight R	ot View		Zoom Zoom to	Fit Share			Hig	ghlight Rote	View	Zoom Zo	om to Fit Sha	re		Н	ghlight	Ro	
Soil Report Job Name Jaya Palmer Data 8/14/2017 Company Jaya Palmer Submitted BV Data 8/14/2017			7	Soil Report			Joh Name Java Palmer			Soil Report		Date	Date 10/5/201								
				Company Java Palmer Date 913/2017					Com	Company Jaya Palmer		Submitted By				_					
			-	Sample (coatine			S2S KIS Destiny		Sample Location		\$25 KIS	KIS	Destiny								
Samply D					12	Satoph	Ø						Samp	de lO	11						
è Nure	nber	29	29	30		Lab Nu	včer		14	15	16		LAD A	lumber		14	15	16		_	
mpik i	Depth in inches	6	6 6 6			Sample Depth in inches			6	6	6		Sang	In Depth in inches		6	6	6		_	
e/Ex	rohange Capacity (M. E.)	27.53	16.21	8.98		TUNE	change Capacity (M. E.)	2	7.01	17.67	11.95		Total	Exchange Capacity (M. E.)		22.08	14.62	13.50		-	
of So	of Sample	5.0	6.6	6.5		pH of 5	of Sample	_	5.4	6.9	57		pW of	Sol Sampie		6.0	7.1	6.7	_	-	
panic	Matter, Percent	42.18	48.25	33.50	-	Ogasi	Mater, Forcent	6	3.28	43.87	45.66		Cros	sc secer, Percelit		56.81	31.22	41.56		+	
	SULPUN: PPIN	278	103	93		SNO	SUDUR DD		453	174	144		SHO	Hableh II Phasebores	PPM.	300	161	126		-	
4	Herrich in Phospholous.	229	163	119		1	Mersich il Photohorous:		187	142	140		2		Hist.	236	189	326			
	CALCUM: Desired Val	a 3744	2204	1220	100		CALCIUM Des	sted value	674	2403	1625			GALCIUM	Desired Value	3003	1987	1836			
	com Value Four	2125	2312	1027		10	ppm Valu	ue Found	650	2678	1468		60	ppm	Value Found	3015	2241	1886			
	Defer	-1619	70336	-193		0 m	Defi	42 -1	024	1000	-167		NO.	1.	Deficit			6	4		
	MAGNEGUM: Desred Val	a 306	233	129		No.	NACHERUM: Des	avid/ bera	389	254	172		CAT	MAGNESUM:	Desnec Value	318	210	194		1	
	spin Value Four	142	187	154		E I	com Val.	un Found	197	232	221		1	spm	Value Found	176	213	200			
	Defice	-254	-45			3	Defi	42	192	-22			EN	and a second second	Deficit	-142		1			
	POTASSIUM: Desred Val	a 429	252	140	1	PNC I	FOTASSUM Des	shed Value	421	275	186	1.1	No.	POTASSIUM:	Deared Value	344	228	210			
	epin Velue Foun	308	305	409		1 de	ppm Valu	ue Found	319	260	468		5	(DM	Value Found	284	233	367			
	Deficit	-121				ă.	Defi	44	102	-15			•		Deficit	-59					
_	SODIUM: spm	118	128	90			SODIUM: port		140	142	109		_	SODUM:	pgrv.	71	94	58			
	Calcium (50 to 72%)	38.59	71.32	57.21			Calcium (NE to 79%)	1	0.06	75.78	61.42			Calcium (50 to 72%)		68.26	76.68	69.84			
11	Magneelum (10 to 20%)	4.28	9.64	14.34	1	NO	Nagnesium (10 to 20%)		8.08	10.94	15.37		NO.	Magnesium (10 to 20%)		6.04	12.14	12.31			
	Potassium (2.10.9%)	2.85	4.83	11.68		RAT	Polaisium (210 5%)		3.02	3.77	10.04		IMI	Potessium (2 to 5%)		3.30	4.09	6.79		1	
	8odum (,5 to 7%)	1.80	3.42	4.37		ATU	Godum (.5 to 2%)		2.25	3.50	3.97		ATT	Sodum (5 to 3%)		1.40	2.79	1.86	_		
	Other Bases (Variable)	7.40	4.80	4.90		5	Other Bases (Variable)		8.60	4.50	4.70		38	Other Bases (Variable)		5.40	4.30	4.70		4	
	Exchangable Hydrogen (10 to 19%)	45.00	6.00	7.60		DAG	Exchangable Hydrogen (10 to 16%)	3	3.00	1.50	4.50		a a	Exchangebie Hydrogen (19	16-11%)	15.00	0.00	4.50			
	Baran (a.p.m.)	0.54	0.65	0.56		64	Boron (p.p.m.)		0.7	0.65	0.61		52	Boren (p.p.m.)		0.62	0.7	0.78		_	
	Iron (s.g.m.)	98	92	73		ENT	Iton(pp.m)		140	99	97		ENJ	Iron(p.p.m)		150	97	110		-	
	Marganese (a.p.m.)	12	11	8			Manganese (s.p.m.)		14	10	10		TEN	Manganese (s.p.m.)		12	11	16		-	
	Copper(p.p.m.)	0.52	0.63	0.3	-	1	Coper (p.p.m.)		0.6	0.48	1.08			Copper(p.p.m.)		0.7	0.52	0.58		+	
	Zne(s.a.m.)	4.51	6.1	4.22		MC	Zre(s.g.m)	_	à.57	5.13	9.36		RAC	Zec (s.p.m.)		6.32	6.1	15.87		+	
-	Aurenum (p.p.m.)	134	93	69	-	=	Aumnum (p.p.m.)		172	84	63		+	Second second		165	62	90		+	
	Cobat ppri	0.027	0.039	0.04			Coset ppr		3.08	0.042	0.061			Cobat ppr		0.048	0.038	0.076		+	
- 1	Molybalenum ppm	0.1	0.01	0.06	-	5	Nolybdenum gpm		3.07	0.02	0.02			Metycoenum ppm		0.02	0.01	0.02		+	
. 1	Edenum ppm	0.13	0.16	0.02	-			Selenium gpm		1.02	0.02	0.02		2000	Ninds (s.e.s.)		321	129	57.4		+
	EC antipatra	13.5	11.5	14.8			Sector (pp)		10.6	10.7	14.8		HE H	Selenum ppm		0.04	0.67	0.56	_	+	
		0.58	U.47	0.43		E	Lo scheron		1.01	0.95	6s ti		5	Salcon pore		16.0	12.5	10.4		-	
								-+		-			100	EC mmboslam		1,30	0.98	0.58		+	
		_	-						_							1.35	0.90	0.00		+	

Saturated Paste Report

Job Nam	e Jaya Palmer				Dat	e 10/5/2017
Company	Jaya Palmer		Su	bmitted By		
Famala	Lacation		S2S	KIS	Destiny	
Jampie	Location					
Sample	ID					
Lab Nur	nber		110954	110955	110956	
Water U	lsed		DI	DI	DI	
ρΗ			6.0	7.1	6.7	
Soluble	Salts	ppm	2,062	1,334	835	
Chinada	(7)		250	411	120	
Childhae	(0)	ppm	200	411	120	
Bicarbor	nate (HCO3)	ppm	63	83	61	
SNC	SULFUR	ppm	221.4	154.1	117.5	
ANIC	PHOSPHORUS	ppm	7.59	0.89	1.73	
	CALCULU.	ppm	451.40	232.50	104.80	
	CALCIUM	meq/l	22.57	11.63	5.24	
SNO	MACHECTUM	ppm	45.95	40.23	25.21	
CATI	MAGNESIUM	meq/l	3.83	3.35	2.10	
UBLE		ppm	157.80	127.70	172.30	
SOL	POTASSIUM:	meq/l	4.10	3.32	4.48	
		ppm	39.53	58.64	28.29	
	SODIOM	meq/l	1.72	2.55	1.23	
	Calcium		70.06	55.77	40.17	
ENT	Magnesium		11.89	16.08	16.10	
ERC	Potassium		12.72	15.91	34.30	
	Sodium		5.33	12.23	9.43	
s	Boron (p.p.m.)		0.13	0.04	0.07	
EN	Iron (p.p.m.)		0.4	0.21	0.42	
EW	Manganese (p.p.m.)		0.13	0.02	0.03	
	Copper (p.p.m.)		< 0.02	< 0.02	< 0.02	
RAC	Zinc (p.p.m.)		0.04	< 0.02	< 0.02	
F	Aluminum (p.p.m.)		1.38	0.96	1.15	
~						
Ĥ						
10						

Soil Report

Logan Labs, LLC

Saturated Paste Report

Date 1/5/2018

_

Destiny

114373

DI

6.8

662

193

49

142.5

2.03

78.28

3.91

20.38

1.70

108.00

2.81

44.26

1.92

37.85

16.42

27.12 18.61

0.46 0.24 0.02 0.02

< 0.02 0.64

JOD N	ame Jaya Palmer		0	mitted By	Date	1/5/201	0	-			ədtul	aleu Pas	е керс
comp	any bayar annor		Sub	тицео ву				- ,	Job Name	Jaya Palmer			
Sample Location			S2S	KIS	Destiny				Company	Jaya Palmer		Su	bmitted By
Sample	ID											000	1/10
Lab Number			29	30	31			5	Sample Location			525	KIS
Sample Depth in inches			6	6	6				Sample ID				
Total Exchange Capacity (M. E.)			18.14	10.46	9.29			1 1				444074	444070
pH or Soil Sample			5.6	7.5	6.8			Lab Number				114371	114372
un un	SIII FUP:	40.05	01.12	30.04			Water Used				DI	DI	
Ň	Mehlich III Phosphorous:	p.p.m.	303	215	109							5.6	7.5
AN		78 109		153	153		pH				3.0	1.5	
	CALCIUM: Desired Value		2467	2467 1422				3	Soluble Salts ppm			2,217	982
n	ppm	Value Found	1937	1659	1333							450	000
5		Deficit	-530						Chloride	(CI)	ppm	456	322
5	MAGNESIUM: Desired Value		261	261 150 133		Ricarhon	(HCO3) ppm		29	102			
Ē.	ppm	Value Found	153	137	127			ΙË	6	SUI EUD		200	202.2
Ë		Deficit	-107	-12	-6				NOI 1	SOLFOR	ppm	290	203.3
ANG	POTASSIUM:	Desired Value	282	163	144				A.	PHOSPHORUS	ppm	11.8	1.12
ŝ	ppm	Value Found	243	63	214						ppm	471.60	188.30
		Deficit	-39	-100					1	CALCIUM	meg/l	23.58	0.42
	SODIUM:	ppm	123	103	72				ş		incept	50.06	20.59
*	Calcium (60 to 70%)		53.39	79.32	71.74				10I	MAGNESIUM	ppm	59.00	29.30
ē	Magnesium (10 to 20%)	7.05	10.96	11.35				5		meq/l	4.92	2.47	
IRA	Potassium (2 to 5%)	3.43	1.53	5.91				B		ppm	119.60	22.12	
SATI	Sodium (.5 to 3%)	2.94	4.30	3.39				SOL	POTASSIUM:	men/l	3.11	0.57	
S	Other Bases (Variable)	6.20	3.90	4.60							0.11	0.07	
B	Exchangable Hydrogen (10 to	27.00	0.00	3.00					SODIUM	ppm	69.78	66.86	
IS	Boron (p.p.m.)		0.77	0.73	0.83				- L		meq/l	3.03	2.91
EN I	Iron (p.p.m.)	84	75	96			$+$ \square		Calcium	lcium		61.29	
9	Manganese (p.p.m.)	/	2 4 2	15			11	ENT	Magnesium	agnesium		16.05	
5	Zinc (n n m)		10.90	2.43	2.00			11	SCI	Potassium	taccium		3.74
TRA	Aluminum (p.p.m.)		115	59	79			11		Codium	dissium		18.92
	Cobalt nnm	0.008	0.206	0.203			┥┝		Boron (n n m)	dium		0.2	
	Molybdenum ppm	0.030	0.06	0.200			11		Iron (n.n.m.)	n (p.p.m.)		0.15	
	Ammonium (p.p.m.)	0.5	0.2	0.2			1	H H	Manganese (p.p.m.)	anganese (p.p.m.)		0.02	
~	Nitrate (p.p.m.)	112.6	39.2	20.6			1	ACEELE	Copper (p.p.m.)	opper (p.p.m.)		< 0.02	
É	Selenium ppm	0.71	0.02	0.07			1		Zinc (p.p.m.)	inc (p.p.m.)		0.03	
5	Silicon ppm	6.3	11.7	15.5			1 L	Ħ.	Aluminum (p.p.m.)		1.04	0.77	
	EC mmhos/cm	1.72	0.64	0.65									
	Media Weight %		11.8	15.8	15.7			4	뛾				
									5				
	1											11	

Logan Labs, LLC

Logan Labs, LLC

Day 53 of flower

Results:

Yield expressed in lbs. per 16 square feet

Cultivar	S2S	KIS Organics	XXX
Gorilla Glue #4	2.13	2.76	2.65
Gorilla Glue #4	2.62	3.22	2.99
Cookies and Cream	1.44	1.95	1.53

*Average yield across all cultivars was 2.475 lbs. per 4'x4' area

Yield expressed in grams per square feet

Cultivar	S2S	KIS Organics	XXX
Gorilla Glue #4	60	78	75
Gorilla Glue #4	74	91	85
Cookies and Cream	41	55	43

*Average yield across all cultivars was 66.88 grams per square foot

Discussion:

While the overall yields show promise, replication of these trials would be needed to draw further conclusions. Furthermore, based on the soil tests, additional trace mineral applications could have potentially improved overall plant health and yield even though deficiencies weren't visually apparent.

Soil S2S was mixed using target ranges to match the macro nutrient levels in the KIS Organics soil, however guaranteed analysis on guanos was not reliable and resulted in very imbalanced soil. For future trials it would be pertinent to test the various fertilizer inputs due to the variance in manufacturing and processing.

It is also important to note that soil testing can show variability across laboratories and samples and the goal is not a perfectly balanced soil test but rather healthy plants. The soil test is just a tool to allow us to see potential deficiencies and excesses. In this study we had quite a bit of variability in test results, however there was much less variability that was visible when viewing the plants. This further demonstrates the ability of the plant to regulate it's own nutrient demand when given traditionally "excessive" levels of nutrients in organic, biologically-active soils.

As we learn more and improve these processes, it seems likely that living soils offer the ability to match or beat hydroponic yields with less input and labor cost, a smaller carbon footprint, and in a manner that would allow for the final product to be certified organic based on current National Organic Program standards.

Citations/Resources:

https://www.waterboards.ca.gov/water_issues/programs/cannabis/ cannabis_water_quality.html

https://www.reuters.com/article/us-usa-marijuana-environment/banned-pesticides-from-illegalpot-farms-seep-into-california-water-idUSKCN1BJ13W

https://www.reuters.com/article/us-usa-marijuana-environment/toxic-waste-from-u-s-pot-farms-alarms-experts-idUSKBN1AM0C3

https://www.oregon.gov/ODA/shared/Documents/Publications/NaturalResources/ CannabisWaterQuality.pdf

https://phys.org/news/2017-02-legal-marijuana-sales-escalating-environment.html

https://pubs.acs.org/doi/10.1021/acs.est.6b06343

https://ktla.com/2018/01/31/u-s-legal-weed-industry-generated-9b-in-revenue-in-2017/

¹ https://www.slyng.com/news/why-are-so-many-weed-farmers-going-out-of-business-411

² https://ktla.com/2018/01/31/u-s-legal-weed-industry-generated-9b-in-revenue-in-2017/