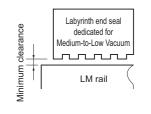

HSR-M1VV

LM Guide Medium-to-low Vacuum Type Model HSR-M1VV

Point of Selection	A 1-10
Point of Design	A 1-436
Options	△1-459
Model No.	A1-524
Precautions on Use	A1-532
Accessories for Lubrication	A24-1
Mounting Procedure and Maintenance	■ 1-89
Equivalent moment factor	A1-43
Rated Loads in All Directions	△1-58
Equivalent factor in each direction	△1-60
Radial Clearance	A 1-71
Accuracy Standards	△1-76
Shoulder Height of the Mounting Base and the Corner Radius	A 1-447
Permissible Error of the Mounting Surface	A1-452
Flatness of the Mounting Surface	A1-454
Dimensions of Each Model with an Option Attached	A1-472

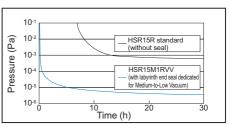

Structure and Features

[Features]

- Operable in various environments at pressure between atmospheric pressure and vacuum (10³ [Pa]).
- Capable of withstanding baking temperature up to 200℃*
- Use of a newly developed labyrinth end seal dedicated for Medium-to-Low Vacuum increases grease retention and allows extended use in vacuum.
- Use of grease designed for Medium-to-Low Vacuum achieves a stable rolling resistance.
- If the baking temperature exceeds 100°C, multiply the basic load rating with the temperature coefficient.

Structure of the labyrinth end seal dedicated for Medium-to-Low Vacuum

The labyrinth end seal dedicated for Medium-to-Low Vacuum forms a multi-stage space as shown in the figure on the right to minimize the pressure difference between adjacent stages. This reduces the outflow velocity of the oil inside the LM block to a minimum. In addition, the seal will not affect the rolling resistance since it does not contact the LM rail.

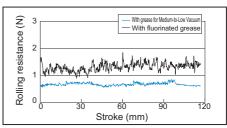


[Achievable vacuum level]

The LM Guide for Medium-to-Low Vacuum demonstrates an excellent achievable vacuum level.

[Test conditions] Temperature: 25°C (±5°C)

[
	HSR15M1RVV	HSR15R (for reference)						
Grease	Grease for Medium- to-Low Vacuum	AFB-LF Grease						
Seal	Labyrinth end seal dedicated for Medi- um-to-Low Vacuum	None						
Endplate	Stainless steel	Resin						

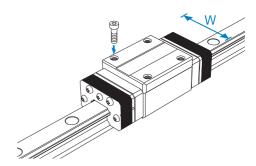


Achievable vacuum level

[Rolling resistance]

The grease used in the LM Guide for Mediumto-Low Vacuum has a smaller rolling resistance than conventional fluorine grease and ensures stable rolling motion.

Specimen: HSR15M1RVV
Temperature: 25°C (±5°C)
Pressure: atmospheric pressure

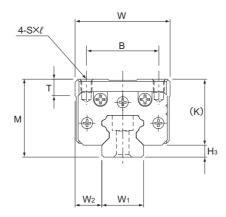

Rolling resistance fluctuation

Types and Features

Model HSR-M1RVV

With this type, the LM block has a smaller width (W) and tapped holes. Used in places where the space for table width is limited.

Specification Table⇒▲1-382



Precautions on Design

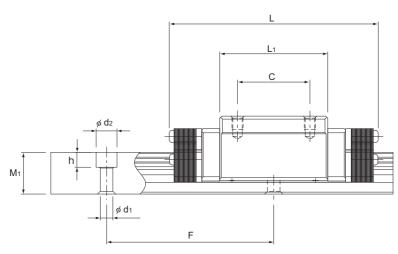
If a large moment is applied to a system consisting of one block on one axis, the labyrinth end seal may contact the rail, and it may affect the motion.

If a moment is applied, we recommend using two axes with two blocks per axis. Contact THK for details.

Model HSR-M1VV

	Oute	er dimens	sions		L						
Model No.	Height	Width	Length								
	М	W	L	В	С	S×ℓ	L ₁	Т	K	Н₃	
HSR15M1R-VV	28	34	75	26	26	M4×5	38.8	6	23.7	4.3	

Model number coding


No. of LM blocks LM rail length used on the same rail (in mm)

(*1) See A1-71. (*2) See A1-379. (*3) See A1-76. (*4) See A1-13.

Note1) The radial clearance, maximum LM rail length and accuracy class are equal to that of model HSR. Note2) With this model, a single-rail unit constitutes one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

Unit: mm

													,	J	
LM rail dimensions							load ing	Static permissible moment kN-m*				Mass			
Width		Height	Pitch		Length*	С	C₀	M _A		M _B		M _c	LM block	LM rail	
W₁ ±0.05	W ₂	M ₁	F	$d_1 \times d_2 \times h$	Max	kN	kN		Double blocks		Double blocks		kg	kg/m	
15	9.5	15	60	4.5×7.5×5.3	1240	8.33	13.5	0.0805	0.457	0.0805	0.457	0.0844	0.27	1.5	

Note) The maximum length under "Length*" indicates the standard maximum length of an LM rail. (See **21-384**.) Static permissible moment*: 1 block: static permissible moment value with 1 LM block

Double blocks: static permissible moment value with 2 blocks closely contacting with each other

If a large moment is applied to a system consisting of one block on one axis, the labyrinth end seal may contact the rail, and it may affect the motion.

If a moment is applied, we recommend using two axes with two blocks per axis.

Contact THK for details.

Standard Length and Maximum Length of the LM Rail

Table1 shows the standard lengths and the maximum lengths of model HSR-M1VV variations. If the maximum length of the desired LM rail exceeds them, jointed rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus causing an adverse impact to accuracy.

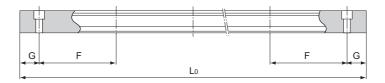


Table1 Standard Length and Maximum Length of the LM Rail for Model HSR-M1VV

Unit: mm

Model No.	HSR15M1R-VV
LM rail standard length (L _o)	160 220 280 340 400 460 520 580 640 700 760 820 940 1000 1060 1120 1180
Standard pitch F	60
G	20
Max length	1240

Note1) The maximum length varies with accuracy grades. Contact THK for details.

Note2) If jointed rails are not allowed and a greater length than the maximum values above is required, contact THK.