
HMG

LM Guide Straight-Curved Guide Model HMG

Point of Selection	A1-10
Point of Design	A1-436
Options	A1-459
Model No.	A1-524
Precautions on Use	A1-530
Accessories for Lubrication	A24-1
Mounting Procedure and Maintenance	■ 1-89
Equivalent moment factor	A1-43
Rated Loads in All Directions	△ 1-58
Equivalent factor in each direction	△ 1-60
Radial Clearance	A1-72
Accuracy Standards	A 1-77
Shoulder Height of the Mounting Base and the Corner Radius	A 1-447
Dimensions of Each Model with an Option Attached	A1-472

Structure and Features

The Straight-Curved Guide HMG is a new straight-curved guide that allows the same type of LM blocks to continuously move on straight and curved rails by combining the technologies of the LM Guide HSR and the R Guide HCR. It achieves drastic cost reduction through improvement of work efficiency at the assembly and conveyance lines and the inspection equipment and simplification of the structure by eliminating a lift and a table.

[Freedom of Design]

It allows free combinations of straight and curved shapes.

Since LM blocks can smoothly transit between the straight and curved sections, various combinations of straight and curved rails can be joined into various shapes such as O, U, L and S shapes. In addition, HMG allows a large table to be mounted and a heavy object to be carried through combinations of multiple blocks on a single rail or 2 or more LM rails. Thus, it provides great freedom of design.

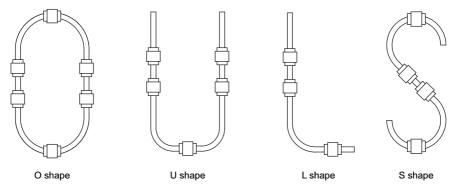


Fig.1 Examples of Joining Rails into Different Shapes

[Shortened Transportation Time]

Unlike the shuttle method, using HMG units in a circulating system allows workpieces to be placed while other workpieces are being inspected or mounted, thus to significantly improve process time. Increasing the number of tables can further shorten process time.

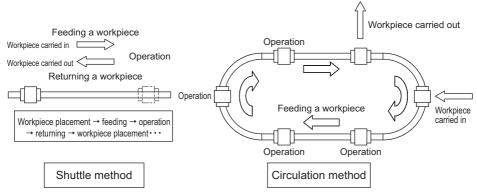
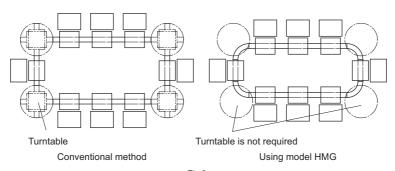
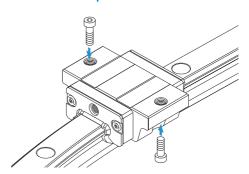


Fig.2 Improved process time

[Cost Reduction through a Simplified Mechanism]

Combination of straight and curved rails eliminates a lift and a turntable conventionally used for changing directions in the conveyance and production lines. Therefore, use of HMG simplifies the mechanism and eliminates a large number of parts, allowing the cost to be reduced. Additionally, man-hours in designing can also be reduced.




Fig.3

Types and Features

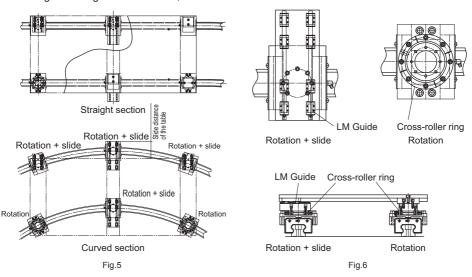
Model HMG

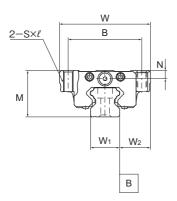
The flange of the LM block has tapped holes. Can be mounted from the top or the bottom.

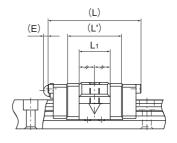
Specification Table⇒A1-326

Examples of Table Mechanisms

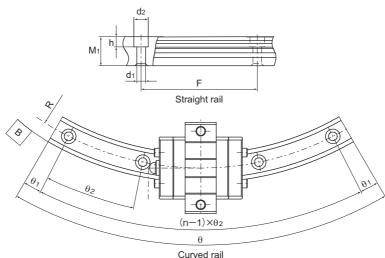
The Straight-Curved Guide HMG requires a rotating mechanism or a slide mechanism for the table to rotate the curved sections when 2 or more rails are used or when 2 or more LM blocks are connected on a single rail. Refer to Fig.4 for examples of such mechanisms.


Fig.5 shows examples of designing a table when units are used on multiple axes. HMG requires a rotating mechanism and a slide mechanism since the table is decentered when an LM block transits from a straight section to a curved section. The amount of decentering differs according to the radius of the curved section and the LM block span. Therefore, it is necessary to design the system in accordance with the corresponding specifications.


Fig.6 shows detail drawings of the slide and rotating mechanisms. In the figure, LM Guides are used in the slide mechanism and Cross-Roller Rings in the rotating mechanism to achieve smooth sliding and rotating motions.

For driving the Straight-Curved Guide, belt drives and chain drives are available.



Model HMG

	Outer dimensions					LM block dimensions					LM rail dimensions		
Model No.											LM rai	il	Height
	М	W	L	L′	В	S×ℓ	L ₁	N	Е	W ₁	W ₂	F	M ₁
HMG 15A	24	47	48	28.8	38	M5×11	16	4.3	5.5	15	16	60	15
HMG 25A	36	70	62.2	42.2	57	M8×16	25.6	6	12	23	23.5	60	22
HMG 35A	48	100	80.6	54.6	82	M10×21	32.6	8	12	34	33	80	29
HMG 45A	60	120	107.6	76.6	100	M12×25	42.6	10	16	45	37.5	105	38
HMG 65A	90	170	144.4	107.4	142	M16×37	63.4	19	16	63	53.5	150	53

Unit: mm

							OTHE THIS				
	Mounting hole Curved rail							Basic static lo	tatic load rating (C ₀)		
	d₁×d₂×h	R	n	θ°	θı°	θ ₂ °	Resultant load (C) kN	Straight section (Cost) kN	Curved section (Cor) kN		
		150	3	60	7	23		4.23	0.44		
	4.5×7.5×5.3	300	5	60	6	12	2.56				
		400	7	60	3	9					
		500	9	60	2	7					
	7×11×9	750	12	60	2.5	5	9.41	10.8	6.7		
		1000	15	60	2	4					
	9×14×12	600	7	60	3	9	17.7	19	11.5		
		800	11	60	2.5	5.5					
		1000	12	60	2.5	5					
		1300	17	60	2	3.5					
	14×20×17	800	8	60	2	8	28.1				
		1000	10	60	3	6		29.7	18.2		
		1200	12	60	2.5	5		29.1	10.2		
		1600	15	60	2	4					
		1000	8	60	2	8					
	18×26×22	1500	10	60	3	6	66.2	66.7	36.2		
		2000	12	45	0.5	4					
		2500	13	45	1.5	3.5					
		3000	10	30	1.5	3					

When a moment is applied where one LM block is specified per axis, the LM block may experience non-smooth motion. We recommend that multiple LM blocks be used per axis when a moment is applied.

Table 1 shows the static permissible moment of an LM block in the M_A, M_B and M_C directions.

Table1 Static Permissible Moments of Model HMG

Unit: kN-m

Model No.	N C	I _A	N C	ls D	Mc		
	Straight section	Curved section	Straight section	Curved section	Straight section	Curved section	
HMG 15	0.008	0.007	0.008	0.01	0.027	0.003	
HMG 25	0.1	0.04	0.1	0.05	0.11	0.07	
HMG 35	0.22	0.11	0.22	0.12	0.29	0.17	
HMG 45	0.48	0.2	0.48	0.22	0.58	0.34	
HMG 65	1.47	0.66	1.47	0.73	1.83	0.94	

Jointed LM rail

[Level Difference Specification for the Joint]

An accuracy error in LM rail installation has influence on the service life of the product. When installing the LM rail, take care to minimize the level difference in the joint within the specification indicated in Table2. For the joint between curved rails and another between the curved section and the joint rail, we recommend using a flushing piece like the one shown in Fig.7. When using the flushing piece, place the fixed butt piece on the outer side, push the rail against the butt piece, and then adjust the level difference in the joint section by turning the adjustment screw from the inner side.

Table2 Level Difference Specification for the Joint
Unit: mm

Model No.	Ball raceway, side face	Upper face	Maximum clearance of the joint section		
15	0.01	0.02	0.6		
25	0.01	0.02	0.7		
35	0.01	0.02	1.0		
45	0.01	0.02	1.3		
65	0.01	0.02	1.3		

Note) Place the pin on the outer circumference and the bolt on the inner circumference.

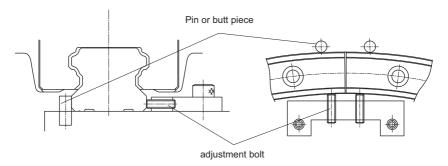


Fig.7 Flush piece

[About the Curved Section]

The curved section of model HMG has a clearance for a structural reason. Therefore, this model may not be used in applications where highly accurate feed is required. In addition, the curved section cannot withstand a large moment. When a large moment is applied, it is necessary to increase the number of LM blocks or LM rails. For permissible moment values, see Table 1 on A1-327.

[Jointed LM Rail]

Model HMG always requires a jointed rail where an LM block travels from the straight section to the curved section and where the curve is inverted such as an S curve. Take this into account when design the system.

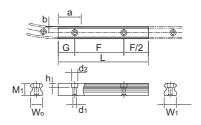


Table3 Dimension of the Jointed Rail

Unit: mm

		Dimension of the jointed rail											
Model No.	Height	Pitch	Mounting hole	Wi	dth	Taper length	Taper depth	Radius					
	M ₁	F	$d_1 \times d_2 \times h$	W ₁	W₀	а	b	R					
			4.5×7.5×5.3	15	14.78	28	0.22	150					
15A	15	60			14.89		0.11	300					
					14.92		0.08	400					
					22.83		0.17	500					
25A	22	60	7×11×9	23	22.89	42	0.11	750					
					22.92		0.08	1000					
	29	80	9×14×12	34	33.77	54	0.23	600					
35A					33.83		0.17	800					
35A					33.86		0.14	1000					
					33.9		0.1	1300					
	38 105			44.71		0.29	800						
45A		105	14×20×17	45	44.77	76	0.23	1000					
45A		105			44.81		0.19	1200					
					44.86		0.14	1600					
			18×26×22		62.48	107	0.52	1000					
					62.66		0.34	1500					
65A	53	150		63	62.74		0.26	2000					
					62.8		0.2	2500					
					62.83		0.17	3000					

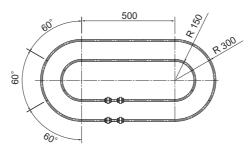


Fig.8 Example of model No.

Model number coding

When 2 rails are used

HMG15A 2 UU C1 +1000L T + 60/150R 6T + 60/300R 6T - II

Contamination Model number protection accessory symbol (*1)

Overall linear LM rail length per rail Symbol for

Center angle of one inner curved rail

No. of inner curved LM rails jointed

Radius of outer Symbol for No. of curved rail

rails used on the same plane (*2)

No. of LM blocks used on the same rail

symbol Normal (No symbol) Light preload (C1)

Radial clearance linear LM rail joint

Radius of inner curved rail

Center angle of No. of outer curved one outer curved LM rails jointed

(*1) See contamination protection accessory on A1-496. (*2) See A1-13.

Note) This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used is 2).

Model HMG does not have a seal as standard For the model number above, Fig.8 applies.