
VSCAN Manual
Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018Edition: September 2018

Tel: +49 40 528 401 0
Fax: +49 40 528 401 99
Web: www.visionsystems.de
Support: faq.visionsystems.de

http://www.visionsystems.de
http://faq.visionsystems.de

Contents

Contents

1 Installation 5
1.1 USB-CAN Plus Device . 5
1.2 Network CAN Device . 9

1.2.1 Operational Modes . 9
1.2.2 Configuration Overview . 11
1.2.3 Webbrowser Server Configuration 12
1.2.4 Webbrowser Channel Configuration 15
1.2.5 Webbrowser Tools . 16
1.2.6 Factory Settings . 18

1.3 Linux Installation (SocketCAN) . 19
1.4 Windows Driver Installation . 20
1.5 General Information . 21

1.5.1 LED Status . 21
1.5.2 Baud-rates and Handshake . 21
1.5.3 Pin-out of the 9 Pin D-Sub Connector 21
1.5.4 Pin-out of the 4 Pin Connector (USB-CAN Plus mPCIe) 21
1.5.5 CAN Topology, Wiring and Termination 21
1.5.6 Termination Resistors (USB-CAN Plus Devices) 22
1.5.7 Terminal Block Power . 22

1.6 Products . 23

2 Application Programming Interface 25
2.1 Introduction . 25
2.2 Functions . 26

2.2.1 VSCAN Open . 26
2.2.2 VSCAN Close . 27
2.2.3 VSCAN Ioctl . 28
2.2.4 VSCAN Read . 33
2.2.5 VSCAN SetRcvEvent . 34
2.2.6 VSCAN Write . 36
2.2.7 VSCAN Flush . 37
2.2.8 VSCAN GetErrorString . 38

2.3 Types and Structures . 39
2.3.1 VSCAN HANDLE . 39
2.3.2 VSCAN STATUS . 39
2.3.3 VSCAN API VERSION . 39
2.3.4 VSCAN HWPARAM . 40
2.3.5 VSCAN MSG . 40
2.3.6 VSCAN BTR . 41
2.3.7 VSCAN CODE MASK . 41

Version 1.21 VSCAN Manual 2

Contents

3 ASCII Command Set 42
3.1 Introduction . 42
3.2 Commands . 43

3.2.1 Open the CAN Channel . 43
3.2.2 Close the CAN Channel . 43
3.2.3 Setup the Bus Timing (Standard) 43
3.2.4 Setup the Bus Timing (Advanced) 44
3.2.5 Transmitting a Standard Frame . 45
3.2.6 Transmitting a Standard Remote Request Frame 45
3.2.7 Transmitting an Extended Frame 46
3.2.8 Transmitting an Extended Remote Request Frame 46
3.2.9 Set Time-Stamps . 47
3.2.10 Set Filter Mode . 47
3.2.11 Set Acceptance Code and Mask Register 47
3.2.12 Set Advanced Filter . 48
3.2.13 Get Status Flags . 49
3.2.14 Get Version Information . 49
3.2.15 Get Serial Number . 49
3.2.16 Get Extra-Information . 50

4 Tools 51
4.1 Firmware-Update . 51
4.2 Busmaster . 51
4.3 vscandump and vscansend . 55
4.4 vs can test simple.exe . 57
4.5 Wireshark . 58
4.6 CANopen . 59

4.6.1 Introduction . 59
4.6.2 Running Example . 59
4.6.3 Compilation Instructions . 60

4.7 Wrapper DLL System . 62
4.8 ZOC . 63
4.9 putty . 63
4.10 vs can search . 65
4.11 LabVIEW . 66

4.11.1 Open CAN Channel . 66
4.11.2 Read CAN Frame . 67
4.11.3 Write CAN Frame . 68

5 Frequently Asked Questions 69
5.1 All output from the CAN adapter will be written in one line in HyperT-

erminal? . 69
5.2 I’ve updated the driver of my USB-CAN Plus, but the alias baudrate 9600

is not functioning anymore? . 69

Version 1.21 VSCAN Manual 3

Contents

5.3 The Error LED is permanently on . 69
5.4 SocketCAN Troubleshooting . 70
5.5 USB-CAN Plus Troubleshooting in Windows 71

Version 1.21 VSCAN Manual 4

1 INSTALLATION

1 Installation

VSCAN devices support both Windows and Linux operating systems. The ASCII pro-
tocol is used to exchange data and control information with the devices and hence a
serial interface is required to enable the communication.

USB-CAN Plus requires Windows driver installation. This is best done by connecting the
device to the PC, and have Windows download the appropriate drivers from Windows
Update via Internet. Usually this does not require manual interaction. Modern Linux
distributions often include those drivers by default, so no need to install the driver.
NetCAN Plus has Windows drivers only, but can be used operating system independent
without driver in TCP raw mode. Please read the relevant installation instructions below
for your particular device.

For the ease of use ASCII protocol is implemented in vs can api library with appropriate
API. Linux users can alternatively use SocketCAN driver, that also implements ASCII
protocol.

1.1 USB-CAN Plus Device

On a modern Windows system the USB driver probably installs automatically being
downloaded from Microsoft on the first connection to the PC. If this is not desired
download the driver from our company website1. Execute the installer, then plug in the
adapter in an USB port of your choice. The device will be registered and you can use
the COM port for your further work (see Figure 1).

Figure 1: Device Manager

To get a better performance and set every standard baudrate as an alias for 3Mbit
(except 115200), you should use the VS USB-COM Configurator software (Figure 2).
This will a) set ’Latency Timer’ to 1ms, b) activate ’Event on Surprise Removal’, and
c) set all baud rates to 3MBit except of 115.2k.

On the left list select the Com Port of your USB-CAN Plus device (Make sure that it is
the CAN adapter). Then click ’Optimize for USB-CAN’, and finally click ’OK’.

1http://www.visionsystems.de/produkte/usb-can-plus-usb-can-plus-iso.html#downloads

Version 1.21 VSCAN Manual 5

http://www.visionsystems.de/produkte/usb-can-plus-usb-can-plus-iso.html#downloads

1 INSTALLATION

On Windows XP as an administrator open a command console window (DOS Box).
Navigate to the folder where the script

”
regmodify.vbs” is located and execute it with

the desired COM port like this:

cscript regmodify.vbs COM10

Please disconnect the device from the system for about 5 seconds after this step and
connect again.

Then you can open the COM port of the USB-CAN Plus with any standard baudrate2

(see Figure 3).

As for the Linux the driver it is already available in modern kernels. The device name
will be /dev/ttyUSBx. Use port configuration as 3M,8N1 with RTS/CTS flow control.

2300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 230400, 460800, 921600

Version 1.21 VSCAN Manual 6

1 INSTALLATION

Figure 2: USB-COM Configurator

Version 1.21 VSCAN Manual 7

1 INSTALLATION

Figure 3: COM Port Properties

Version 1.21 VSCAN Manual 8

1 INSTALLATION

1.2 Network CAN Device

NetCAN Plus gateways provide CAN communication over network in versatile ways.
For brevity the name NetCAN Plus is sometimes shortened to NetCAN+.

1.2.1 Operational Modes

NetCAN Plus can act either as CAN Server (CAN frames will be exchanged between
NetCAN+ and an application connected via COM port or TCP socket) or as CAN
over IP Router (two or more NetCAN+ exchange CAN frames between various CAN
networks)

CAN Server Mode For CAN Server following approaches are provided:

Driver mode: in this mode the network is transparent for the application. To use this
mode the installation of the Windows driver is required (please refer to section 1.4
on page 20 for detailed installation instructions). After driver installation the new
virtual COM port will be available to the system, so NetCAN Plus can be used in
the same way as USB-CAN Plus. Due to the virtual COM port protocol overhead
the performance is lower than by the TCP raw mode. You don’t have to set the
baudrate and hardware handshake explicitly - it’s fixed to 3Mbit and RTS/CTS.

TCP raw mode: the communication will be handled directly via IP address and port
number. In this mode no driver installation is required.

NetCAN+ devices can be operated with either ASCII or VSCAN API. For the API there
is no difference whether Driver mode or TCP raw mode is used, but due to performance
issues TCP raw mode is recommended.

CAN over IP Router In this mode two or more NetCAN Plus devices are intercon-
nected to enable seamless communication between two or more CAN networks. Figure 4a
shows the first case, where two NetCAN+ devices act as a tunnel between CAN Network
A and B, so all frames sent inside Network A will be transported to Network B and vice
versa.

Figure 4b shows extension of the tunnel. In this case additional CAN networks can
be attached, so that CAN frames sent inside Network A will be transported to both
B and C, but CAN Network B and C communicate only with Network A, so frames
from Network B could not be seen by Network C and vice versa. See Section 1.2.4 for
configuration instructions.

CAN Acceptance Code and Acceptance Mask can be set to filter the CAN frames, so
only dedicated frames are passed via TCP link.

Version 1.21 VSCAN Manual 9

1 INSTALLATION

NetCAN+

Node 1

Node n

Legend

Ethernet link

CAN link

NetCAN+

Node 1

Node n

1 von 1 28.08.2015 14:51

(a) Tunnel

NetCAN+

Node 1

Node n

Legend

Ethernet link

CAN link

NetCAN+

Node 1

Node n

NetCAN+

Node 1

Node n

1 von 1 28.08.2015 14:46

(b) 1-to-n

Figure 4: CAN over IP

Version 1.21 VSCAN Manual 10

1 INSTALLATION

1.2.2 Configuration Overview

NetCAN Plus device can be configured in following ways:

• via web interface

• via Telnet

• via NetCom Manager

Before you can use the above mentioned methods you first need to know the IP address
of your NetCAN+ device. On the first start the device tries to obtain its IP address
using DHCP3 protocol. If there is no DHCP server on the network a default IP address
192.168.254.254 will be used. In both cases your PC and NetCAN+ must be in the same
subnet4 in order to talk to each other.

Once this requirement is satisfied NetCAN+ device will appear in the Network Places of
Windows Explorer (press Windows key + ’e’ to open the Windows Explorer and click on
the Network symbol). You’ll see following icon as shown in Figure 5 on page 11 providing
information about device’s serial number and IP address. Clicking on this icon would
open your default Internet browser showing the main page where NetCAN+ welcomes
you with its “Home” screen (see Figure Figure 6 on page 12).

Figure 5: UPnP Device Display

Click on the icon for your desired option. In many menus you’ll see a blue question
mark. This is a symbol for help. Click it to get a short explanation, informing about the
function of this parameter. Some other settings require a reboot to save and activate
them. Whenever this situation occurs, the NetCAN+ requests for a Reboot (see Figure
7).

You can instantly reboot or do that later when the configuration is finished.

3https://en.wikipedia.org/wiki/Dynamic Host Configuration Protocol
4https://support.microsoft.com/en-us/help/164015/understanding-tcp-ip-addressing-and-subnetting-

basics

Version 1.21 VSCAN Manual 11

https://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
https://support.microsoft.com/en-us/help/164015/understanding-tcp-ip-addressing-and-subnetting-basics
https://support.microsoft.com/en-us/help/164015/understanding-tcp-ip-addressing-and-subnetting-basics

1 INSTALLATION

Figure 6: Web Interface for Configuration

Figure 7: Web Interface Request to Reboot

1.2.3 Webbrowser Server Configuration

The Server Configuration is a very long menu (see Figure 8). There is basic server
information (see Figure 8a), the server parameters related to the IP-configuration (see
Figure 8b), the section for wireless communication (NetCAN Plus 120 WLAN only) (see
Figure 8c), the section for encrypted communication (see Figure 8d), Password settings
(see Figure 8e), and finally the configuration for date and time (see Figure 8f).

Information about the selected NetCAN+ is displayed as Server Info. Starting with the
Server Type, this is the model of the NetCAN+, followed by the version of Software and
Hardware. This will give a rough overview, which features are implemented, or need an
upgrade of the firmware. You can check whether a new firmware version is available via
clicking on the

”
Check for new version” button. The Serial Nr. is important to identify

the device you are configuring right now. For further information the UpTime is listed.
Contact and Location are user-defined information. They may later help to find the
device in the installation, and the person responsible for management.

The Server Parameter allow configuration of the NetCAN Plus’ name and of course
all parameters in IP-settings. Generally it is used as information, e.g. in the NetCom
Manager program or in SNMP.

Manual changes of IP parameters are only available with DHCP set as Disabled. When

Version 1.21 VSCAN Manual 12

1 INSTALLATION

DHCP is not used, enter IP Address and Netmask, as well as the Broadcast address.
Gateway is required, if there are Routers in the network. DNS is used to access other
stations by name. The ConfigPort is used to access the NetCAN+ for administration
via Telnet. It is suggested to use the standard value for Telnet, TCP port number 23.
However it may be changed for different purposes. This does not change the function of
the Telnet menus.

KeepAlive is an intrinsic function of the TCP/IP protocol. If used it causes network
traffic, but connection problems are detected earlier. In a LAN this is usually not a
problem. However, if used via DialUp connections this may cause problems. If this
function is used, you must define an interval in seconds. NetCAN+ has a better chance
to react on network problems, or failed hosts. Even dropping an old connection may be
useful in certain environments.

For detailed information about further Server Configuration options please refer to sec-
tion

”
Server Configuration” of the NetCom Plus User Manual.

Version 1.21 VSCAN Manual 13

http://www.vscom.de/download/multiio/others/info/NetComPlusUserManual.pdf

1 INSTALLATION

(a) Server Info (b) Server Parameter

(c) Wireless Parameter (d) OpenVPN Parameter

(e) Authentication (f) Date and Time Settings

Figure 8: Server Configuration

Version 1.21 VSCAN Manual 14

1 INSTALLATION

1.2.4 Webbrowser Channel Configuration

NetCAN Plus can be operated in following modes (see Figure 9):

Driver Mode - Only very few parameters have a function in Driver Mode (see Figure 9a).
NetCAN+ is operating as a Server. It accepts two connections for the CAN channel.
One connection is used to transmit the serial data, this is the TCP Port(Data).
And the other is used to transmit control information, TCP Port(Control). This
control connection is mostly used to request the status of the virtual serial port.
Software may intend to change serial parameters like baudrate or parity, such
requests are honored. However they are ignored, because the serial parameters are
fixed in the NetCAN+.
The NetCAN+ can check if the connected Client is still alive. This may be done,
when a second Client wants to establish a connection (On Connect). It may also
be done in regular intervals (Polling). The Driver Mode allows for one Client only.

TCP Raw Server - As TCP Raw Server NetCAN+ operates very simple (see Figure 9b).
It only waits for incoming data connections in Raw IP mode. As with the Driver
Mode only the data connection is defined, there is no connection for control.
You can connect multiple times to the NetCAN+ also from different machines.

CAN Bridge Server - Configures server side of the CAN over IP Router functionality.
In this mode NetCAN+ waits for incoming connections. Max. Clients value defines
how many CAN Bridge Clients can connect to the server. CAN Speed sets the
appropriate baudrate of the attached CAN network. Acceptance Code and Mask
allow CAN frame filtering so only the dedicated frames pass over the TCP link
(See Figure 9c).

CAN Bridge Client - Configures client side of the CAN over IP Router functionality. In
this mode NetCAN+ connects to the other NetCAN+ in the CAN Bridge Server
Mode. This is specified as destination by IP Address and the TCP Port number
(e.g. 192.168.1.97:2001). CAN Speed sets the appropriate baudrate of the attached
CAN network. Acceptance Code and Mask allow CAN frame filtering so only the
dedicated frames pass over the TCP link (See Figure 9d).

Version 1.21 VSCAN Manual 15

1 INSTALLATION

(a) Driver Mode (b) TCP Raw Server

(c) CAN Bridge Server (d) CAN Bridge Client

Figure 9: Channel Configuration

1.2.5 Webbrowser Tools

The available tools are (see Figure 10):

• The Ping utility will be used to check if a station is available (see Figure 10a).
Enter the IP-Address or the name of a station in the field, and click the Ping but-
ton. The network connection is checked by sending certain ICMP data packages.
If the target responds, the network between the NetCAN+ and the target is oper-
ational. The time required for an echo depends on the speed of the network. In a
typical Ethernet this is only very few Milliseconds, while it can be several seconds
throughout the Internet.

• The Netstat utility will be used to monitor TCP connections (see Figure 10b).
Use Netstat to see the actual status of NetCAN+ IP Ports. This is a standard
tool for network debugging. A Foreign Address of 0.0.0.0 is listed when NetCAN+

is waiting for an incoming connection (LISTEN). If the value is not 0.0.0.0, the
connection is either active (ESTABLISHED) or closed (TIMEWAIT).

• The Firmware Update option is used to update the firmware (see Figure 10c). To
upload a new version of the firmware, put the name of the file in the field. Your

Version 1.21 VSCAN Manual 16

1 INSTALLATION

Webbrowser may allow to search for the file. Click on the “Update” button. While
loading the file is checked. If it is valid, it is stored in the Flash Memory. When
the upload is finished, NetCAN+ will Reboot.

• The Saving of Configuration to / Loading from a file option will be used to manage
NetCAN+ configuration (see Figure 10d). It is possible to save the current config-
uration to a text file. Of course it is also possible to load the saved configuration
into a NetCAN Plus.

• The Syslog option will be used to send logging information to the syslog facility
(see Figure 10e). Syslogging requires a server the information is sent to. Facility
allows to select the data sent to that server.

• The DebugLog option will be used to show logging information via TCP connection
(see Figure 10e). For this kind of logging the NetCAN+ behaves as the server. Open
a TCP connection to the configured port, and receive all information generated.

(a) Ping (b) Netstat

(c) Firmware Update (d) Configuration File

(e) Syslog

Figure 10: Tools

Version 1.21 VSCAN Manual 17

1 INSTALLATION

1.2.6 Factory Settings

NetCAN Plus provides DIP-switches to set the configuration back to its defaults. Set
the DIP-switches to the

”
Factory Settings” position (refer to the Table 1) and reboot the

device (press reset button or perform a power off/on cycle). As soon as the green LED
is on again, the DIP-switches must be returned to the

”
CAN Operation” position.

Operation Mode S1 S2 S3 S4

CAN Operation OFF OFF OFF OFF

Factory Settings OFF OFF OFF ON

Table 1: Switches

Version 1.21 VSCAN Manual 18

1 INSTALLATION

1.3 Linux Installation (SocketCAN)

SocketCAN5 is a set of open source CAN drivers and a networking stack contributed
by Volkswagen Research to the Linux kernel. As of Linux kernel 2.6.38 ASCII protocol
(slcan) will be also supported. To use it you’ll first need to install can-utils either from
your Linux distribution repository6 or from project’s git7 repository8.

For a USB-CAN Plus device, that is attached to /dev/ttyUSB0 device, execute fol-
lowing commands:

slcand -o -s8 -t hw -S 3000000 /dev/ttyUSB0
ip link set up slcan0

Parameter -s in slcand specifies CAN birate as described in section Setup the Bus
Timing (Standard). After execution you’ll get your USB-CAN Plus operated at 1MBit/s,
with candump and cansend you can make first send/receive tests.

For Network CAN devices (NetCAN Plus) you’ll first need to create a symbolic link to
it via socat. Assume your NetCAN+ has following IP address: 192.168.254.254. So
the needed commands are:

socat pty,link=/dev/netcan0,raw tcp:192.168.254.254:2001&
slcand -o -s8 /dev/netcan0
ip link set up slcan0

Please note, that NetCAN+ must be either in
”
Driver Mode” or in

”
TCP Raw Server”

mode in order to properly work with slcand.

5http://en.wikipedia.org/wiki/Socketcan
6can-utils package is available in Debian since vesion 8. Debian derivates like Ubuntu should also

include this package.
7Git
8SocketCAN git repository

Version 1.21 VSCAN Manual 19

http://en.wikipedia.org/wiki/Socketcan
http://en.wikipedia.org/wiki/Git_scm
https://github.com/linux-can/can-utils

1 INSTALLATION

1.4 Windows Driver Installation

The use of the Driver Mode for NetCAN Plus CAN Bus Gateway is not necessary in
most installations. A more easy way of operation is the use of the VSCAN API (section 2
on page 25), which supports TCP Raw Mode. This way of installation is recommended,
especially because it will support any future device in the same way.

The only reason for using the Virtual Com Port Driver are applications specifically
designed to operate via ASCII Protocol (section 3 on page 42) on Windows Com Ports.

Since the Virtual Com Port Driver is rarely used, it is not covered in detail in this
manual. Instead please use the NetCom Plus User Manual to get more information.

Figure 11: NetCom Plus Driver Installation

Start the installation program, select
”
Complete Installation”and follow the instructions.

When finished your Windows system has a new Com Port, e.g. named as COM5.

Version 1.21 VSCAN Manual 20

http://www.vscom.de/download/multiio/others/info/NetComPlusUserManual.pdf

1 INSTALLATION

1.5 General Information

1.5.1 LED Status

The red error LED lights up, when a bus error occurs. And the green data LED is on,
when a frame was sent to or received from the bus.

1.5.2 Baud-rates and Handshake

Ensure you’ve set the handshake to RTS/CTS (hardware) when you open the port!

Device Baud-rate Handshake

USB-CAN Plus 3 Mbit RTS/CTS

NetCAN Plus 3 Mbit RTS/CTS

1.5.3 Pin-out of the 9 Pin D-Sub Connector

Pin Signal Description

1 -

2 CAN L CAN L bus line (dominant level is low)

3 CAN GND CAN ground

4 - reserved

5 - reserved

6 -

7 CAN H CAN H bus line (dominant level is high)

8 - reserved

9 -

1.5.4 Pin-out of the 4 Pin Connector (USB-CAN Plus mPCIe)

Pin Signal Description

1 CAN H CAN H bus line (dominant level is high)

2 CAN GND CAN ground

3 CAN L CAN L bus line (dominant level is low)

4 CAN GND case ground (connected to Pin 2)

1.5.5 CAN Topology, Wiring and Termination

CAN bus requires three signals (CAN H, CAN L and CAN GND) to be connected
between all CAN bus participants. In addition both ends of the bus are to be terminated.
Figure 12 on page 22 shows standard termination scheme and Figure 13 on page 22 shows

Version 1.21 VSCAN Manual 21

1 INSTALLATION

split termination scheme. For more information about these two approaches please refer
to this blog article9.

1
2

0
Ω

1
2

0
Ω

CAN_H

CAN_L
CAN_GND

Dev 1 Dev n...

Figure 12: CAN Topology: Standard Termination

CAN_H

CAN_L

CAN_GND

Dev 1 Dev n...

4,7nF

60Ω

60Ω
4,7nF

60Ω

60Ω

Figure 13: CAN Topology: Split Termination

1.5.6 Termination Resistors (USB-CAN Plus Devices)

The USB-CAN Plus has an internal termination resistors inside (120Ω), activated by
a jumper J1, but external termination shown in Section CAN Topology, Wiring and
Termination is recommended. It’s up to you to choose the correct combination and
values for your topology.

1.5.7 Terminal Block Power

NetCAN Plus Devices The Terminal Block power connector receives positive voltage
on the right (V+) pin. The center (V-) pin connector is negative, which is connected to
GND and the case. GND is the same as Field GND (FG), so the standard adapter does
not connect to this pin.

9https://e2e.ti.com/blogs /b/industrial strength/archive/2016/07/14/the-importance-of-termination-
networks-in-can-transceivers

Version 1.21 VSCAN Manual 22

https://e2e.ti.com/blogs_/b/industrial_strength/archive/2016/07/14/the-importance-of-termination-networks-in-can-transceivers
https://e2e.ti.com/blogs_/b/industrial_strength/archive/2016/07/14/the-importance-of-termination-networks-in-can-transceivers

1 INSTALLATION

NetCAN Plus Mini Devices The Terminal Block power connector for the Mini model
receives positive voltage on the left (V+) pin. The right (V-) pin receives ground voltage.
Connect the case to Protective Earth Rail.

1.6 Products

Figure 14 shows USB-CAN Plus and NetCAN Plus 120 WLAN devices. Also available
are USB-CAN Plus mPCIe and the isolated USB-CAN Plus ISO as also NetCAN Plus
110 without Wireless LAN and NetCAN Plus 110 Mini.

Version 1.21 VSCAN Manual 23

1 INSTALLATION

Figure 14: CAN Plus Models

Version 1.21 VSCAN Manual 24

2 APPLICATION PROGRAMMING INTERFACE

2 Application Programming Interface

2.1 Introduction

The Application Programming Interface (API) gives you the right tools to use all of
the functions that the VSCAN devices provide. It will make your life much easier to
build your own CAN controlling software with these functions, than to implement your
application directly on top of the ASCII protocol. All functions and data structures are
explained in the next sub-sections. You’ll find programming examples in our repository
on GitHub10.

Windows For Windows, the only thing you must do, is to copy vs_can_api.dll (the
dynamic link library), vs_can_api.lib (the linker input file) and vs_can_api.h
(the header file) into your project directory. Include the header in your source code and
add the vs_can_api.lib to your project configuration.

Linux Linux users are advised to use SocketCAN framework described in Section 1.3.
If you do want to use the VSCAN API then copy the library (libvs_can_api.so)
to your global libraries path and add it to your compilation parameters. You must also
include the header file (vs_can_api.h) in your source file.

Other Operating Systems For other operating systems like MacOS you’ll have to
implement ASCII protocol yourself. Alternatively you can use Python and python-can
module. See the next paragraph.

Python python-can11 module provides native support for the ASCII protocol, so VS-
CAN devices can be used without vs can api library. You’ll find programming examples
in our repository on GitHub12.

Programming Language Bindings You can also use our API library with programming
languages other than C/C++. To do so you’ll have to learn how to import the functions
from our library to your application. To ease this task a collection of bindings for follow-
ing programming languages will be provided together with VSCAN_API_x_y_z.zip
under Wrapper\Languages:

• C#

• VisualBasic.NET

• Delphi

• more to come
10https://github.com/visionsystemsgmbh/programming examples/tree/master/CAN/c
11https://python-can.readthedocs.io/en/2.2.0/
12https://github.com/visionsystemsgmbh/programming examples/tree/master/CAN/python

Version 1.21 VSCAN Manual 25

https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/c
https://python-can.readthedocs.io/en/2.2.0/
https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/python

2 APPLICATION PROGRAMMING INTERFACE

2.2 Functions

2.2.1 VSCAN Open

The VSCAN_Open function opens the CAN channel.

VSCAN_HANDLE VSCAN_Open(CHAR *SerialNrORComPortORNet, DWORD Mode);

Parameters:

SerialNrORComPortORNet

[in] A char pointer with one of the following values.

• VSCAN FIRST FOUND - the first device found will be opened

• Serial number of the specific device

• COM port or CAN name where the device is located

• IP address and port number of the device

Mode

[in] The mode in which the CAN channel shall be opened.

• VSCAN MODE NORMAL - the normal operation mode

• VSCAN MODE LISTEN ONLY - the listen only mode, in which no CAN inter-
action will be done from the controller

• VSCAN MODE SELF RECEPTION - the self reception mode, in which the de-
vice receives also the frames that it sends. The firmware version must be 1.4 or
greater and the DLL version 1.6 or greater.

Examples:

// Windows, Linux
handle = VSCAN_Open(VSCAN_FIRST_FOUND, VSCAN_MODE_NORMAL);

// Windows, Linux
handle = VSCAN_Open("123456", VSCAN_MODE_LISTEN_ONLY);

// Windows, WinCE
handle = VSCAN_Open("COM3", VSCAN_MODE_NORMAL);

// Linux
handle = VSCAN_Open("/dev/ttyUSB0", VSCAN_MODE_NORMAL);

// Linux on Alena (CAN on local bus)
handle = VSCAN_Open("/dev/can0", VSCAN_MODE_LISTEN_ONLY);

// Windows, WinCE, Linux
handle = VSCAN_Open("192.168.254.254:2001", VSCAN_MODE_SELF_RECEPTION);

Version 1.21 VSCAN Manual 26

2 APPLICATION PROGRAMMING INTERFACE

2.2.2 VSCAN Close

The VSCAN_Close function will close the CAN channel.

VSCAN_STATUS VSCAN_Close(VSCAN_HANDLE Handle);

Parameters:

Handle

[in] The handle of the CAN device, which shall be closed.

Example:

status = VSCAN_Close(handle);

Version 1.21 VSCAN Manual 27

2 APPLICATION PROGRAMMING INTERFACE

2.2.3 VSCAN Ioctl

You can get and set special information and commands of the CAN device with the
VSCAN_Ioctl function.

VSCAN_STATUS VSCAN_Ioctl(VSCAN_HANDLE Handle, DWORD Ioctl, VOID *Param);

Parameters:

Handle

[in] The handle of the CAN device, which should be used.

Ioctl

[in] Tells the function which of the following ioctl should be called.

Param

[in, out] A pointer to the data for the ioctls which are listed below.

VSCAN IOCTL SET DEBUG
You can set the debug verbosity with this ioctl. The higher the debug level the more

debug information you get. The VSCAN_HANDLE can be NULL.

Possible debug levels are:

• VSCAN DEBUG NONE (no debug information)

• VSCAN DEBUG LOW (errors from the VSCAN API)

• VSCAN DEBUG MID (information from the VSCAN API)

• VSCAN DEBUG HIGH (errors from system functions)

Example:

status = VSCAN_Ioctl(NULL, VSCAN_IOCTL_SET_DEBUG, VSCAN_DEBUG_HIGH);

VSCAN IOCTL SET DEBUG MODE
You can set the debug mode with this ioctl. It is possible to log the error to the

standard error console output (default value) or to save it in a log file. The log file will
be saved in the directory from which your application is running and will be named

”
vs can api.log”. The VSCAN_HANDLE can be NULL.

The debug mode defines are:

• VSCAN DEBUG MODE CONSOLE

• VSCAN DEBUG MODE FILE

Example:

status = VSCAN_Ioctl(NULL, VSCAN_IOCTL_SET_DEBUG_MODE, VSCAN_DEBUG_MODE_FILE);

Version 1.21 VSCAN Manual 28

2 APPLICATION PROGRAMMING INTERFACE

VSCAN IOCTL GET API VERSION
You can request the API version number with this ioctl. Therefore you must commit

a pointer of the type VSCAN API VERSION to the function. The DLL version must
be 1.6 or greater.

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_GET_API_VERSION, &version);

VSCAN IOCTL GET HWPARAM
This ioctl gives you the possibility to get the hardware parameters (serial number,

hardware and software version) of the device. Therefore you must commit a pointer of
the type VSCAN HWPARAM to the function.

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_GET_HWPARAM, &hwparam);

VSCAN IOCTL SET SPEED
With this ioctl you can set the speed of your CAN device. The following constant

speed values are supported:

• VSCAN SPEED 1M

• VSCAN SPEED 800K

• VSCAN SPEED 500K

• VSCAN SPEED 250K

• VSCAN SPEED 125K

• VSCAN SPEED 100K

• VSCAN SPEED 50K

• VSCAN SPEED 20K

With the
”
NetCAN Plus” you have also the choice to use your desired baudrate directly

as the parameter in bit/s.

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_SPEED, VSCAN_SPEED_1M);

// set NET-CAN Plus bitrate to 25kbit/s:
status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_SPEED, (void*)25000);

Version 1.21 VSCAN Manual 29

2 APPLICATION PROGRAMMING INTERFACE

VSCAN IOCTL SET BTR
This ioctl gives you the possibility to configure the speed registers manually (bus

timing registers). Therefore you must commit a structure from the type VSCAN BTR.
For more information on this registers, please take a look at the SJA1000 datasheet from
NXP Semiconductors or you can use an online bittiming calculator13 .

Example:

VSCAN_BTR btr = { .Btr0 = 0x00, .Btr1 = 0x14 }; // for 1Mb/s

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_BTR, &btr);

VSCAN IOCTL SET FILTER MODE
This ioctl let you set the desired filter mode for the acceptance code and mask. You

can switch between single and dual filter mode. For more informations, please take a
look at the SJA1000 datasheet from NXP Semiconductors. The firmware version must
be 1.4 or greater and the DLL version 1.6 or greater.

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_FILTER_MODE, VSCAN_FILTER_MODE_DUAL);

VSCAN IOCTL SET ACC CODE MASK
You can set the acceptance code and acceptance mask register with this ioctl. This

gives you the possibility to filter for special frame types you want to receive. Therefore
you must commit a structure from the type VSCAN CODE MASK. For more informa-
tion on this specific registers, please take a look at the SJA1000 datasheet from NXP
Semiconductors.

Example:

VSCAN_CODE_MASK codeMask;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_FILTER_MODE, VSCAN_FILTER_MODE_DUAL);

// will receive the ids between 0x300 and 0x3ff (dual filter mode set filter 2)
codeMask.Code = 0x6000;
codeMask.Mask = 0x1ff0;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_ACC_CODE_MASK, &codeMask);

// receive all frames on the CAN bus (default)
codeMask.Code = VSCAN_IOCTL_ACC_CODE_ALL;
codeMask.Mask = VSCAN_IOCTL_ACC_MASK_ALL;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_ACC_CODE_MASK, &codeMask);

13On http://www.bittiming.can-wiki.info/ select
”
NXP SJA1000(Philips) or Intel” from the drop-down

list and specify the desired bitrate, click on
”
Request Table” button and you’ll get calculated BTR

settings.

Version 1.21 VSCAN Manual 30

http://www.nxp.com/documents/data_sheet/SJA1000.pdf
http://www.nxp.com/documents/data_sheet/SJA1000.pdf
http://www.nxp.com/documents/data_sheet/SJA1000.pdf
http://www.bittiming.can-wiki.info/

2 APPLICATION PROGRAMMING INTERFACE

VSCAN IOCTL SET FILTER
This ioctl let set you up to 16 advanced filters for

”
NetCAN Plus”. The logic is

<received_can_id> & Mask == Id & Mask. The DLL version must be 1.8 or
greater.

Example:

// set two filters
VSCAN_FILTER filter[2];
filter[0].Size = 2;
filter[0].Id = 0x543;
filter[0].Mask = 0xfff;
filter[0].Extended = 1;
filter[1].Id = 0x231;
filter[1].Mask = 0x0ff;
filter[1].Extended = 0;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_FILTER, filter);

// clear all filters
VSCAN_FILTER filter;
filter.Size = 0;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_FILTER, &filter);

VSCAN IOCTL GET FLAGS
To get extended status and error flags use this ioctl. Commit a DWORD(32bit)

pointer as the Param argument. The bit flags and their equivalent macro names are:

• Bit 0: VSCAN IOCTL FLAG RX FIFO FULL

• Bit 1: VSCAN IOCTL FLAG TX FIFO FULL

• Bit 2: VSCAN IOCTL FLAG ERR WARNING

• Bit 3: VSCAN IOCTL FLAG DATA OVERRUN

• Bit 4: VSCAN IOCTL FLAG UNUSED

• Bit 5: VSCAN IOCTL FLAG ERR PASSIVE

• Bit 6: VSCAN IOCTL FLAG ARBIT LOST

• Bit 7: VSCAN IOCTL FLAG BUS ERROR

Take a look at the SJA1000 datasheet from NXP Semiconductors, if you want more
information on what’s behind bit 2 to 7.

Example:

DWORD flags;

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_GET_FLAGS, &flags);

Version 1.21 VSCAN Manual 31

http://www.nxp.com/documents/data_sheet/SJA1000.pdf

2 APPLICATION PROGRAMMING INTERFACE

VSCAN IOCTL SET TIMESTAMP
You can set on and off the time-stamp functionality with this ioctl. If you switch it on,

every received frame will have a valid time-stamp value in the VSCAN MSG structure.
The time base is in milliseconds and will be overrun after 60 seconds (timestamps between
0-60000ms).

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_TIMESTAMP, VSCAN_TIMESTAMP_ON);

VSCAN IOCTL SET BLOCKING READ
This ioctl will set theVSCAN Read function to blocking mode (default is unblock).

Example:

status = VSCAN_Ioctl(handle, VSCAN_IOCTL_SET_BLOCKING_READ, VSCAN_IOCTL_ON);

Version 1.21 VSCAN Manual 32

2 APPLICATION PROGRAMMING INTERFACE

2.2.4 VSCAN Read

To read one or more CAN frames from the CAN bus, you must use the VSCAN_Read
function. The read mode of this function is set to non-blocking mode per default. This
means that VSCAN_Read will return immediately - even when there are no frames at
the moment. Use the ioctl VSCAN IOCTL SET BLOCKING READ to make make the
VSCAN_Read blocking - then it will return only when frames were received.

VSCAN_STATUS VSCAN_Read(VSCAN_HANDLE Handle, VSCAN_MSG *Buf, DWORD Size, DWORD *Read);

Parameters:

Handle

[in] The handle of the CAN device, which should be used.

Buf

[in] A pointer to one element or an array of the structure VSCAN MSG.

Size

[in] The number of the array elements in Buf.

*Read

[out] A pointer to a DWORD that will receive the real number of the frames read.

Example:

VSCAN_MSG msgs[10];
DWORD read;

status = VSCAN_Read(handle, msgs, 10, &read);

Version 1.21 VSCAN Manual 33

2 APPLICATION PROGRAMMING INTERFACE

2.2.5 VSCAN SetRcvEvent

With the VSCAN_SetRcvEvent function you can set an event which will be set when
a frame arrives. There are different versions for Windows and Linux. The DLL version
must be 1.6 or greater.

// Windows Prototype:
VSCAN_STATUS VSCAN_SetRcvEvent(VSCAN_HANDLE Handle, HANDLE Event);
// Linux Prototype:
VSCAN_STATUS VSCAN_SetRcvEvent(VSCAN_HANDLE Handle, sem_t *Event);

Parameters:

Handle

[in] The handle of the CAN device, which should be used.

Event

[in] In Windows an event handle of the type HANDLE and in Linux a pointer to the
sem_t union.

Windows Example:

// don’t forget your own error handling for the API and system functions
// for further informations on these functions take a look at the MSDN

HANDLE hEvent;
DWORD dwRetCode;

hEvent = CreateEvent(NULL, FALSE, FALSE, NULL);

VSCAN_SetRcvEvent(handle, hEvent);

dwRetCode = WaitForSingleObject(hEvent, INFINITE);

switch(dwRetCode)
{

case WAIT_OBJECT_O :
// a CAN frame arrived
break;

default:
// probe for error

}

CloseHandle(hEvent);

Version 1.21 VSCAN Manual 34

2 APPLICATION PROGRAMMING INTERFACE

Linux Example:

// don’t forget your own error handling for the API and system functions
// take also a look at sem_trywait, sem_timedwait and the rest of the sem_* functions

sem_t sem;
int retCode;

retCode = sem_init(&sem, 0, 0);

VSCAN_SetRcvEvent(handle, &sem);

retCode = sem_wait(&sem);

// a CAN frame arrived

retCode = sem_destroy(&sem);

Version 1.21 VSCAN Manual 35

2 APPLICATION PROGRAMMING INTERFACE

2.2.6 VSCAN Write

With the VSCAN_Write function you can write one or more frames to the CAN bus.
The frames will be buffered and send out after some time - this time can grow up to one
time slice of the scheduler (Windows = ˜16ms and Linux = ˜10ms). If you want to send
the frames immediately, you must call the functionVSCAN Flush.

VSCAN_STATUS VSCAN_Write(VSCAN_HANDLE Handle,
VSCAN_MSG *Buf, DWORD Size, DWORD *Written);

Parameters:

Handle

[in] The handle of the CAN device, which should be used.

Buf

[in] A pointer to one element or an array of the structure VSCAN MSG.

Size

[in] The number of the array elements in Buf.

*Written

[out] A pointer to a DWORD that will receive the number of frames written.

Example:

VSCAN_MSG msgs[10];
DWORD written;

msgs[0].Flags = VSCAN_FLAGS_EXTENDED;
msgs[0].Id = 100;
msgs[0].Size = 1;
msgs[0].Data[0] = 0x1B;

// we will send ten frames with the same data
// to the ids 100-109
for (i = 1; i < 10; i++)
{

memcpy(msgs + i, &msgs[0], sizeof(msgs[0]));
msgs[i].Id++;

}

status = VSCAN_Write(handle, msgs, 10, &written);

Version 1.21 VSCAN Manual 36

2 APPLICATION PROGRAMMING INTERFACE

2.2.7 VSCAN Flush

The VSCAN_Flush function will send all frames immediately out to the CAN bus.

VSCAN_STATUS VSCAN_Flush(VSCAN_HANDLE Handle);

Parameters:

Handle

[in] The handle of the CAN device, whose data should be flushed.

Example:

status = VSCAN_Flush(handle);

Version 1.21 VSCAN Manual 37

2 APPLICATION PROGRAMMING INTERFACE

2.2.8 VSCAN GetErrorString

The VSCAN_GetErrorString function retrieves the associated human readable error
string.

VOID VSCAN_GetErrorString(VSCAN_STATUS Status, CHAR *String, DWORD MaxLen);

Parameters:

Status

[in] The status for which the error string should be retrieved.

String

[out] A pointer of a string array which will receive the error string.

MaxLen

[in] The maximum possible length of the error string (without the terminating zero).

Example:

VSCAN_STATUS status = VSCAN_ERR_NO_DEVICE_FOUND;
char string[33];

VSCAN_GetErrorString(status, string, 32);

printf(string);

Version 1.21 VSCAN Manual 38

2 APPLICATION PROGRAMMING INTERFACE

2.3 Types and Structures

2.3.1 VSCAN HANDLE

typedef int VSCAN_HANDLE;

This type definition holds the handle of an opened CAN channel. In this case the
value is greater than zero. Otherwise the value is equal to one of the type definition
VSCAN STATUS.

2.3.2 VSCAN STATUS

typedef int VSCAN_STATUS;

The type definition VSCAN_STATUS can have one of the following status value.

• VSCAN ERR OK - indicates that everything is okay

• VSCAN ERR ERR - indicates a general error

• VSCAN ERR NO DEVICE FOUND - indicates that no CAN device was
found with the specific functions

• VSCAN ERR SUBAPI - indicates that an error occurred in a subordinated
library

• VSCAN ERR NOT ENOUGH MEMORY - indicates that there is not enough
memory to complete the function

• VSCAN ERR NO ELEMENT FOUND - indicates that there is no requested
element available (e.g. from an input buffer)

• VSCAN ERR INVALID HANDLE - indicates that the handle which is used
is not valid (e.g. CAN channel closed)

• VSCAN ERR IOCTL - indicates that an ioctl request failed; ensure that you’ve
used the right parameter values

• VSCAN ERR MUTEX - indicates that there was a problem with a used mutex
in the VSCAN API (e.g. timeout)

• VSCAN ERR CMD - indicates that there was a problem to complete a given
command on the CAN device

2.3.3 VSCAN API VERSION

This structure holds the version information of the API.

Version 1.21 VSCAN Manual 39

2 APPLICATION PROGRAMMING INTERFACE

typedef struct
{

UINT8 Major;
UINT8 Minor;
UINT8 SubMinor;

} VSCAN_API_VERSION;

2.3.4 VSCAN HWPARAM

This structure holds the values of the hardware parameters.

typedef struct
{

UINT32 SerialNr;
UINT8 HwVersion;
UINT8 SwVersion;
UINT8 HwType;

} VSCAN_HWPARAM;

The SerialNr element comprised the unique serial number reserved for this device. The
HwVersion holds the revision of the CAN hardware and in the opposite SwVersion
the actual software version of the firmware. The upper four bits of these variables hold
the major and the lower four the minor number. And HwType retrieves the type of CAN
hardware (e.g. Serial, USB, Net).

2.3.5 VSCAN MSG

The structure is used for the information of each CAN frame which will be received or
transmitted.

typedef struct
{

UINT32 Id;
UINT8 Size;
UINT8 Data[8];
UINT8 Flags;
UINT16 Timestamp;

} VSCAN_MSG;

The element Id holds the identifier of the standard or extended CAN frame. The
width of the data bytes is saved in the Size element and the maximum eight data
bytes itself in Data. The member Flags is a bit-mask to retrieve or set some of these
special flags: VSCAN_FLAGS_STANDARD - is set when this message is a standard frame,
VSCAN_FLAGS_EXTENDED - this bit is set in the case of an extended frame and the
VSCAN_FLAGS_REMOTE bit could be set, when it was or should be a remote request
frame. The Timestamp element holds the time-stamp of the received frame, when
this special function is activated over the ioctl VSCAN IOCTL SET TIMESTAMP. If a
frame was received with a time-stamp, also the flag VSCAN_FLAGS_TIMESTAMP is set
in the member Flags.

Version 1.21 VSCAN Manual 40

2 APPLICATION PROGRAMMING INTERFACE

2.3.6 VSCAN BTR

This structure is used for the setting of the bus timing register.

typedef struct
{

UINT8 Btr0;
UINT8 Btr1;

} VSCAN_BTR;

The elements Btr0 and Btr1 implements the values for the bus timing register one
and two. For more information read the chapter 2.2.3 or take a look at the SJA1000
datasheet from NXP Semiconductors.

2.3.7 VSCAN CODE MASK

The structure stores the acceptance filter code and filter mask.

typedef struct
{

UINT32 Code;
UINT32 Mask;

} VSCAN_CODE_MASK;

The structure member Code stores the acceptance code and Mask the acceptance mask.
For more information see chapter 2.2.3 or take a look at the SJA1000 datasheet from
NXP Semiconductors.

Version 1.21 VSCAN Manual 41

http://www.nxp.com/documents/data_sheet/SJA1000.pdf
http://www.nxp.com/documents/data_sheet/SJA1000.pdf
http://www.nxp.com/documents/data_sheet/SJA1000.pdf

3 ASCII COMMAND SET

3 ASCII Command Set

3.1 Introduction

The ASCII command set gives you the possibility to use the VSCAN device even with a
simple terminal program. This makes it very easy for you, to send some frames by hand
or to sniff the frames on the CAN bus in a simple human readable view. It will also be
possible to use such a simple semantic in a scripting system (e.g. Linux bash-script).

Every binary data will be sent and received by their ASCII hexadecimal equivalents.
The return values of all functions will be CR (ASCII 13) if the function succeeds or
BELL (ASCII 7) if the function fails. Some functions have extended return values,
but this will be described per function in the command description.

The received frames will be send directly to your ASCII communication channel - e.g.
serial port or network connection.

Version 1.21 VSCAN Manual 42

3 ASCII COMMAND SET

3.2 Commands

3.2.1 Open the CAN Channel

The CAN channel will be opened with the command O[CR], L[CR] or Y[CR]. The
difference between these three types is, that the second command will open the channel
in a listen only mode, in which no bus interaction will be done from the controller. The
last command will open the channel in a self reception mode, in which the device will also
receive the frames that it sends (only available in firmware version 1.4 or greater). Before
you will use one of the commands, you should setup a bus timing with the command S
or s. Anyway, the last configured bit rate is stored in the device and used as the standard
bus timing at power up.

Examples:

Open the channel in normal operation mode.

O[CR]

Open the channel in the listen only mode.

L[CR]

Open the channel in the self reception mode.

Y[CR]

3.2.2 Close the CAN Channel

The CAN channel will be closed with the command C[CR]. The command is only active
if the CAN channel is open.

Example:

C[CR]

3.2.3 Setup the Bus Timing (Standard)

The bus timing will be setup-ed with the command Sn[CR]. With the
”
NetCAN Plus”

it is also possible to define the bitrate directly (e.g. S125000[CR]). You can only use
this command if the CAN channel is closed.

Parameters:

n

Version 1.21 VSCAN Manual 43

3 ASCII COMMAND SET

Could be one of the following values:

• 1 - 20 KBit

• 2 - 50 KBit

• 3 - 100 KBit

• 4 - 125 KBit

• 5 - 250 KBit

• 6 - 500 KBit

• 7 - 800 KBit

• 8 - 1 MBit

Example:

Configure a bus timing of 1 MBit.

S8[CR]

3.2.4 Setup the Bus Timing (Advanced)

A more user defined bus timing could be configured with the command sxxyy[CR].
This command is not available for the

”
NetCAN Plus” series. As with the standard bus

timing command above, you can only use it when the CAN channel is closed.

Parameters:

xx

This is the hex value of the bit timing register 0.
For more information please take a look at the SJA1000 datasheet from NXP Semicon-
ductors.

yy

This is the hex value of the bit timing register 1.

Example:

Configure a bus timing of 100 KBit.

s041C[CR]

Version 1.21 VSCAN Manual 44

http://www.nxp.com/documents/data_sheet/SJA1000.pdf

3 ASCII COMMAND SET

3.2.5 Transmitting a Standard Frame

Transmitting a standard frame (11bit) over the CAN bus will be done with command
tiiildd[0-8]. The return value will be z[CR] or the normal error byte (BELL). As
you can imagine, this command is only available when the CAN channel is open.

Parameters:

iii

Standard frame (11bit) identifier.

l

Data length (0-8)

dd[0-8]

Data bytes in hex. The number of the bytes must be equal with the data length field.

Example:

Sending a frame with id 0x111 and three data bytes 0x10, 0x20, 0x30.

t1113102030[CR]

3.2.6 Transmitting a Standard Remote Request Frame

Transmitting a standard remote frame (11bit) over the CAN bus will be done with
riiil. The return value will be z[CR] or the normal error byte (BELL). This command
is only available when the CAN channel is open.

Parameters:

iii

Standard frame (11bit) identifier.

l

Data length (0-8)

Example:

Sending a remote request frame with id 0x111 and request 3 data bytes.

r1113[CR]

Version 1.21 VSCAN Manual 45

3 ASCII COMMAND SET

3.2.7 Transmitting an Extended Frame

Transmitting an extended frame (29bit) over the CAN bus will be done with com-
mand Tiiiiiiiildd[0-8]. The return value will be Z[CR] or the normal error byte
(BELL). The command is only available when the CAN channel is open.

Parameters:

iiiiiiii

Extended frame (29bit) identifier.

l

Data length (0-8)

dd[0-8]

Data bytes in hex. The number of the bytes must be equal with the data length field.

Example:

Sending an extended frame with id 0x111 and three data bytes 0x10, 0x20, 0x30.

T000001113102030[CR]

3.2.8 Transmitting an Extended Remote Request Frame

Transmitting an extended remote request frame (29bit) over the CAN bus will be done
with Riiiiiiiil. The return value will be Z[CR] or the normal error byte (BELL).
The command is only available when the CAN channel is open.

Parameters:

iiiiiiii

Extended frame (29bit) identifier.

l

Data length (0-8)

Example:

Sending an extended remote request frame with id 0x111 and a request for 3 data bytes.

R000001113[CR]

Version 1.21 VSCAN Manual 46

3 ASCII COMMAND SET

3.2.9 Set Time-Stamps

The time-stamp command will set the time-stamp functionality on received frames on
or off. This command will only function, when the CAN channel is closed.

Example:

Will set time-stamps on or off.

Z1[CR]
Z0[CR]

3.2.10 Set Filter Mode

The command D1[CR] switch on the dual filter mode and with D0[CR] you switch over
to the single filter mode. For more information please take a look at chapter 2.2.3. This
command is only available if the CAN channel is closed. The firmware version must be
1.4 or greater.

Example:

Will set dual or single filter mode.

D1[CR]
D0[CR]

3.2.11 Set Acceptance Code and Mask Register

With the acceptance code command Mxxxxxxxx[CR] and mask register command
mxxxxxxxx[CR], you have the choice to filter for specific CAN messages directly on
the CAN controller side. For example the acceptance code addresses in SJA1000 format
are MC0C1C2C3, same for the mask addresses. If a mask bit is set, then this element
from the code bit will be ignored. For more information please take a look at chapter
2.2.3. For the

”
NetCAN Plus” you could only set the bits for the id part and not from

the data. This command is only available if the CAN channel is closed.

Example:

We will filter for all standard frames between 0x300 and 0x3ff (dual filter mode set filter
2).

M00006000[CR]
m00001ff0[CR]

Version 1.21 VSCAN Manual 47

3 ASCII COMMAND SET

3.2.12 Set Advanced Filter

The advanced filter command is only available for
”
NetCAN Plus”. Set the filter with

fxxxxxxxx,yyyyyyyy,z[CR], where x is the id, y the mask and z for optional
extended (’e’) or standard frames (’s’). This equals to <received can id> & mask ==
id & mask. You can set up to 16 individual filters when calling the command multiple
times, or deleting the filter set with id and mask set to zero.

First we set up filter for the id 123 and 234 and then deleting all filters.

f123,fff[CR]
f234,fff,e[CR]
f0,0[CR]

Version 1.21 VSCAN Manual 48

3 ASCII COMMAND SET

3.2.13 Get Status Flags

To get the status bits when an error occurred, you must use the command F[CR]. For
more information on the bit-mask please take a look at chapter 2.2.3. The command is
only available if the CAN channel is open.

Example:

Retrieve the status bits as a hexadecimal value. The return value will be formatted like
this: Fxx[CR]

F[CR]

3.2.14 Get Version Information

To retrieve the current hard- and software version of the device, you must use the com-
mand V[CR]. The command is always available and will return the versions formatted
like this: Vxxyy[CR]. The hardware version is coded in the xx (major and minor ver-
sion) and the software version in the yy (also coded as major and minor).

Example:

Retrieving the versions.

V[CR]

3.2.15 Get Serial Number

With the command N[CR] you will retrieve the serial number of the device. This com-
mand is always active and will return the decimal serial number like this: N12345678[CR].

Example:

Retrieving the serial number.

N[CR]

Version 1.21 VSCAN Manual 49

3 ASCII COMMAND SET

3.2.16 Get Extra-Information

You can retrieve extra information with the command I[CR]. The command is always
available and will return the values of the bus timing registers, the acceptance code and
mask register values, the counter of the arbitration lost interrupt, the arbitration lost
capture register, the status register and the value of the error code capture register of
the CAN chip. For more information please take a look at the SJA1000 datasheet from
NXP Semiconductors.

Example:

Retrieving the extra-information.

I[CR]

Version 1.21 VSCAN Manual 50

http://www.nxp.com/documents/data_sheet/SJA1000.pdf

4 TOOLS

4 Tools

4.1 Firmware-Update

For USB-CAN Plus devices you can use our tool vs fw update.exe. It will determine the
type of device and will use the correct baudrate. If it did not, you can set the baudrate
explicitly.

vs_fw_update.exe COMx vs_can_1_7.bin 3000000

For the NetCAN Plus you should use the base64 web-frontend update file (e.g. net-
can Plus XXX 3.1.1.bin.b64), to update CAN bus and network operation firmware in
the device.

4.2 Busmaster

BUSMASTER14 is an Open Source Software utility to test, simulate and analyze data
bus systems like CAN. Following usage example was tested on BUSMASTER 3.2.2 (use
the download link from our product page).

We will setup USB-CAN Plus device assigned to COM143 and set CAN bitrate to
50kbit/s.

1. Start BUSMASTER

2. Select VScom CAN API: CAN->Driver Selection->VScom CAN-API

3. In the
”
Hardware Selection” dialog move

”
VScom CAN Device” from

”
Available

CAN Hardware” to
”
Configured CAN Hardware” (see Figure 15)

4. Click
”
Advanced” button to configure USB-CAN Plus device (see Figure 16).

Setup COM143 as Serial Port, set Baudrate to 50kbit and Acceptance Mask to
0xFFFFFFFF

5. Once in the main window click on the green
”
Connect/Disconnect” button. If the

connection was successfully established, this button would change to red with a
caption

”
Disconnect”

6. If there are CAN frames on your CAN bus, you’ll see them in the
”
Message Win-

dow” (see Figure 17)

To send a CAN message perform the above actions on order to establish a connection and
select CAN->Transmit Window (see Figure 18). To create a new CAN frame double-
click on

”
Add Message” in the

”
Tx Frame List” and enter message ID in hex (in this

example it is 0x102) and press
”
Enter”. New message is created. Perform single-click

on the
”
Add Message” and then select previously created message and

”
Send Message”

14http://www.vscom.de/download/multiio/winXP/tools/BUSMASTER Installer Ver 3.2.2 VScom 1.0.exe

Version 1.21 VSCAN Manual 51

http://www.vscom.de/download/multiio/winXP/tools/BUSMASTER_Installer_Ver_3.2.2_VScom_1.0.exe

4 TOOLS

button will be activated. Clicking on
”
Send Message” button would send the selected

frame.

You can now change frame payload in the
”
Data Byte View (HEX)” window below.

DLC, Message Type etc. can be modified in the
”
Tx Frame List”.

Figure 15: BUSMASTER: Select Hardware Interface

Figure 16: BUSMASTER: Configure Device

Version 1.21 VSCAN Manual 52

4 TOOLS

Figure 17: BUSMASTER: Received Frames

Version 1.21 VSCAN Manual 53

4 TOOLS

Figure 18: BUSMASTER: Transmit Window

Version 1.21 VSCAN Manual 54

4 TOOLS

4.3 vscandump and vscansend

vs_can_tools.zip15 package provides following tools for sending/receiving CAN
frames on the command prompt:

• vscandump.exe - connects to either USB-CAN Plus or NetCAN Plus and shows
all received frames

• vscansend.exe - connects to either USB-CAN Plus or NetCAN Plus and sends
specified CAN frame

Please note theat you can use only one program with one CAN adapter at a time.
Provided you have two or more CAN adapters, you can then use vscandump.exe on
one of them and vscansend.exe on another.

vscandump.exe has following parameters:

• COM port or IP address and TCP port number

• CAN bitrate in ASCII notation, i.e. S1, S2 etc. (see Section Setup the Bus Timing
(Standard))

In this example vscandump.exe will connect to a NetCAN Plus with IP address
192.168.254.254 and default TCP port 2001 at 50Kbit/s. You can see two different
frames. The first one with ID 0x111 is a standard frame and the extended one with ID
0x00000110. Both have a payload of 4 bytes.

c:\>vscandump.exe 192.168.254.254:2001 S2
VSCAN-API Version 1.8.0
111 [4] 00 11 22 33
00000110 [4] 00 11 22 33

vscansend.exe has following parameters:

• COM port or IP address and TCP port number

• CAN bitrate in ASCII notation, i.e. S1, S2 etc. (see Section Setup the Bus Timing
(Standard))

• CAN frame to send

CAN frame syntax looks like this:

• CAN ID in hex: either 3 digits for the standard ID or 8 digits for the extended ID

• CAN ID delimiter ’#’

• CAN payload in hex. You can specify between 0 and 8 bytes

15http://www.vscom.de/download/multiio/winXP/tools/vs can tools.zip

Version 1.21 VSCAN Manual 55

http://www.vscom.de/download/multiio/winXP/tools/vs_can_tools.zip

4 TOOLS

The first example sends a standard frame via USB-CAN Plus device, the second example
sends an extended frame:

c:\>vscansend.exe COM143 S2 100#00aadd

c:\>vscansend.exe COM143 S2 00000102#00aadd44

Version 1.21 VSCAN Manual 56

4 TOOLS

4.4 vs can test simple.exe

In addition to vscansend.exe and vscandump.exe vs_can_tools.zip also pro-
vides a self-diagnostic tool vs_can_test_simple.exe. You can use it either with
two VScom CAN devices or with only one device. In both cases you’ll need a properly
terminated CAN cable.

Once invoked this utility sends a CAN frame on the first given CAN channel and receives
it on the other channel. After this CAN channels will be swapped and a send/receive
cycle will be repeated.

vs_can_test_simple.exe has following parameters:

• first CAN channel: COM port or IP address and TCP port number

• second CAN channel: COM port or IP address and TCP port number

• loop flag (-l) is an optional parameter, that repeats the test endlessly

The first example shows a test with two USB-CAN Plus devices:

c:\>vs_can_test_simple.exe COM168 COM32
vs_can_test_simple.exe v1.6

DLL version: 1.8.0

SUCCESS: Sending frame from COM168 to COM32 succeeded.
SUCCESS: Sending frame from COM32 to COM168 succeeded.

The second example shows a test with only one USB-CAN Plus device. In this case the
same COM port is given twice:

c:\>vs_can_test_simple.exe COM168 COM168
vs_can_test_simple.exe v1.6

DLL version: 1.8.0

SUCCESS: Sending frame from COM168 to COM168 succeeded.
SUCCESS: Sending frame from COM168 to COM168 succeeded.

Version 1.21 VSCAN Manual 57

4 TOOLS

4.5 Wireshark

Wireshark16 is a well-known network packet sniffer. It is now possible to sniff via Socket-
CAN interface (Linux only) and parse CAN frames (Linux/Windows) . Figure 19 shows
frames captures via USB-CAN Plus device (/dev/ttyUSB0 attached as slcan0).

Figure 19: Wireshark

16www.wireshark.org

Version 1.21 VSCAN Manual 58

http://www.wireshark.org

4 TOOLS

4.6 CANopen

4.6.1 Introduction

CANopen is a CAN-based higher layer protocol. It was developed as a standardized em-
bedded network with highly flexible configuration capabilities. CANopen was designed
for motion-oriented machine control networks, such as handling systems. By now it is
used in various application fields, such as medical equipment, off-road vehicles, maritime
electronics, railway applications or building automation.

CANopen unburdens the developer from dealing with CAN-specific details such as bit-
timing and implementation-specific functions. It provides standardized communication
objects for real-time data, configuration data as well as network management data.17

One of the protocol implementations is the CanFestival Project (www.canfestival.org) .
It is an Open Source (LGPL and GPL) CANopen framework and is part of the Beremiz
Project (www.beremiz.org), an Open Source framework for automation. CanFestival
focuses on providing an ANSI-C platform independent CANopen stack that can be
implemented as master or slave nodes on PCs, Real-time IPCs, and Micro-controllers.
VScom devices will be already supported in the latest CanFestival version.

Wireshark can be used to capture and analyze CANopen traffic since version 1.7.1 (see
Section 4.5).

4.6.2 Running Example

You’ll find a small CanFestival example in the CAN examples archive18 showing the
communication between master and slave nodes. Following baudrates are supported:
20K, 50K, 100K, 125K, 250K, 500K and 1M. To execute this example decompress one
of the following archives:

• CANopen example win32.zip for Windows

• CANopen example linux.tar.bz2 for Linux

Under Windows connect two VScom CAN devices - for example two USB-CAN Plus
devices installed as COM10 and COM11. Open two command windows and change to the
directory where the CANopen examples were extracted to and execute

TestMasterSlave -s COM10 -S 125K -M none -l libcanfestival_can_vscom.dll

in the first window and

TestMasterSlave -m COM11 -M 125K -S none -l libcanfestival_can_vscom.dll

in the second. Figure 20 shows the output messages of both nodes.

17For more information see the website of CAN in Automation organization www.can-cia.org
18http://www.vscom.de/download/multiio/winXP/tools/CAN Examples.ZIP.exe

Version 1.21 VSCAN Manual 59

http://www.canfestival.org/
http://www.beremiz.org/
http://www.can-cia.org
http://www.vscom.de/download/multiio/winXP/tools/CAN_Examples.ZIP.exe

4 TOOLS

Under Linux connect two VScom CAN devices - for example two USB-CAN Plus devices
installed as /dev/ttyUSB0 and /dev/ttyUSB1. Open two terminal windows and
change to the directory where CANopen examples were extracted to and execute

export LD_LIBRARY_PATH=.
./TestMasterSlave -s „/dev/ttyUSB0” -S 125K -M none -l ./libcanfestival_can_vscom.so

in the first window and

export LD_LIBRARY_PATH=.
./TestMasterSlave -m „/dev/ttyUSB1” -M 125K -S none -l ./libcanfestival_can_vscom.so

in the second. Figure 21 shows the output messages of both nodes.

4.6.3 Compilation Instructions

CanFestival is stored in a Mercurial19 repository. To get CanFestival source code execute:

hg clone http://dev.automforge.net/CanFestival-3/
cd CanFestival-3

Configure and compile the library and examples:

./configure --can=vscom
make

The TestMasterSlave is located under examples/TestMasterSlave/ and the vscom
library is located under drivers/can_vscom/.

For detailed information about these examples and about using CanFestival in your
project refer to the doc/ folder.

19Mercurial

Version 1.21 VSCAN Manual 60

http://en.wikipedia.org/wiki/Mercurial

4 TOOLS

(a) Master (b) Slave

Figure 20: TestMasterSlave under Windows

(a) Master (b) Slave

Figure 21: TestMasterSlave under Linux

Version 1.21 VSCAN Manual 61

4 TOOLS

4.7 Wrapper DLL System

In Linux operating system any application software may use CAN bus adapters from
different manufacturers, without modifying the program. An official CAN API named
SocketCAN exists for the Linux Kernel.
In Windows systems the situation is different. There is neither an API from Microsoft20,
nor a widely accepted de-facto standard used by manufacturers. All products come
with a proprietary driver to access the CAN bus adapter. On top is a set of libraries
for application programmers, encapsulating the hardware in higher layer function sets.
Application software tailored to use one set of libraries binds the application to certain
CAN bus hardware. Those libraries come in the form of DLLs.

VScom provides a system of wrapper DLLs. They provide the possibility to use any
VSCAN product as a replacement of products from other manufacturers, when those
are given a set of DLLs. The wrapper DLLs use the same name as the original set. They
provide the same functions used by the application software, so the existing software
shall not notice that exchange.

Installation: Copy the desired wrapper DLL over the original API DLL in your program
directory, thus replacing the version from the other manufacturer. It may be useful
to create a backup copy before doing so. You must also copy the latest VSCAN-
API (vs can api.dll) into the same directory.

Configuration: If you want to specify a special configuration for the mapping of a VS-
CAN product, you can do this over a configuration file (vscan.ini). When there
is no configuration file available, the wrapper API uses the first VSCAN product
which will be found in the PC. You can also get extra debug information when
you configure the debug option for the CAN channel in the configuration file. The
debug output will be saved in a file called vs_can_api.log in the program
directory.

Configuration File Example:

[CAN_1.dll]
Port = "COM5" ; VSCAN device over a (virtual) COM port
debug = 0

[CAN_2.dll]
Port = "192.168.254.254:2001" ; mapping to NetCAN+ over IP and TCP port (raw mode)
debug = 1 ; debug output is switched on (vs_can_api.log)

Note: In this example CAN 1.dll and CAN 2.dll are just sample text. Replace the text
in the brackets with the name of the DLL used by your application. So if in reality the
names are XCAN USB.dll and yCAN PCI.dll, use those names for the section titles.
The wrapper DLL finds the desired configuration by searching for a section, which is
titled by the DLLs name. The set of wrapper DLLs usually provides a sample configu-
ration file.

20See serial ports, manufacturers use the Windows API, products are interchangeable.

Version 1.21 VSCAN Manual 62

4 TOOLS

4.8 ZOC

ZOC (see Figure 22) is a powerful terminal program which has good logging functionality
and will also let you make connections over the network (telnet client).

Figure 22: ZOC

4.9 putty

With putty21 you can both talk to the network based devices NetCAN Plus (see Figure
23b) and via the serial interface to USB-CAN Plus and NetCAN Plus with the driver
for virtual Com Ports (see Figure 23a).

It is important to enable hardware handshake for the USB-CAN Plus devices (see Figure
24a). Also make sure LF is added to every CR and local echo is on for more convenience
(see Figure 24b).

21http://www.putty.org

Version 1.21 VSCAN Manual 63

http://www.emtec.com/zoc/
http://www.putty.org

4 TOOLS

(a) Serial Connection (b) TCP Raw Connection

Figure 23: Putty

(a) Hardware Handshake (b) Terminal Settings

Figure 24: Putty: Additional Connection Settings

Version 1.21 VSCAN Manual 64

4 TOOLS

4.10 vs can search

This tool search for VSCAN devices on every COM port. You can also get extra debug
information with the parameter

”
-d[1-3]” - eg.

”
vs can search.exe -d3”.

Version 1.21 VSCAN Manual 65

4 TOOLS

4.11 LabVIEW

LabVIEW (short for Laboratory Virtual Instrumentation Engineering Workbench) is a
platform and development environment for a visual programming language from Na-
tional Instruments. This section shows one possible way using vs_can_api.dll with
LabVIEW. Specially prepared example (see Figure 25) can be found in our GitHub
repository22. It lets the user send and read CAN frames after opening the channel with
appropriate bitrate. The LabVIEW example was compiled and tested on LabVIEW
8.6.1.

Before trying the LabVIEW example please make sure you can send/receive CAN frames
using vscandump and vscansend or Busmaster.

You can send CAN frames using the left panel. After configuring your CAN frame just
press

”
Write On/Off” Button and frames will be sent each second. The incoming frames

will be shown on the right panel one per second if any available.

Figure 25: Example Application

4.11.1 Open CAN Channel

The OpenChannel.vi has following input parameters:

• COM Port or IP address and port string, i.e. COM32 or 192.168.1.100:2001 (as in
Section 2.2.1)

• speed as a number between 1 and 8 (as in Section 3.2.3).

Output parameters:

• return error code of VSCAN Open() or VSCAN Ioctl() routines

• CAN channel handle.
22https://github.com/visionsystemsgmbh/programming examples/tree/master/CAN/LabVIEW

Version 1.21 VSCAN Manual 66

https://github.com/visionsystemsgmbh/programming_examples/tree/master/CAN/LabVIEW

4 TOOLS

Figure 26: Open CAN Channel

4.11.2 Read CAN Frame

The CanRead.vi has following input parameter:

• handle

Output parameters:

• return code value

• VSCAN MSG structure

• number of read bytes

CanRead.vi is designed to read one CAN frame per call. To read more bytes at once,
the buffer must be increased.

Figure 27: Read CAN Frame

Version 1.21 VSCAN Manual 67

4 TOOLS

4.11.3 Write CAN Frame

The CanWrite.vi has following input parameters:

• handle

• parts of the VSCAN MSG structure

Output parameters:

• return code value

• number of written bytes

The VSCAN Write call is followed directly by VSCAN Flush call, so the CAN frame
will be sent immediately

Figure 28: Write CAN Frame

Version 1.21 VSCAN Manual 68

5 FREQUENTLY ASKED QUESTIONS

5 Frequently Asked Questions

5.1 All output from the CAN adapter will be written in one line in
HyperTerminal?

You must configure the correct settings and switch on ”Append line feeds to incoming
line ends”:

5.2 I’ve updated the driver of my USB-CAN Plus, but the alias baudrate
9600 is not functioning anymore?

There is a VBScript in the driver package, which must be called for each installed virtual
USB-CAN Plus COM port:

cscript regmodify.vbs COM<x>

After executing the script the USB-CAN Plus must be disconnected for
about 5 seconds and then connected again in order to use the baudrate
aliases. Then you can open the port with any standard baudrate - except 115kbps!

5.3 The Error LED is permanently on

This LED state indicates bus error. The most typical causes are:

• wrong wiring and missing termination (refer to Section CAN Topology, Wiring and
Termination)

• wrong CAN bitrate (refer to Section Setup the Bus Timing (Standard))

Version 1.21 VSCAN Manual 69

5 FREQUENTLY ASKED QUESTIONS

5.4 SocketCAN Troubleshooting

FTDI driver After inserting the USB-CAN Plus device your dmesg should produce
following output:

ftdi_sio 1-1.1:1.0: FTDI USB Serial Device converter detected
usb 1-1.1: Detected FT-X
usb 1-1.1: FTDI USB Serial Device converter now attached to ttyUSB0

Most desktop Linux distributions provide ftdi_sio driver, but the situation can be
different on an embedded Linux machine. So if you don’t see such a message and
no /dev/ttyUSBx device appeared, make sure CONFIG_USB_SERIAL_FTDI_SIO is
activated for your kernel.

slcan driver If you get following message after starting slcand, it means the symbol
CONFIG_CAN_SLCAN wasn’t activated for your kernel and you’ll have to recompile the
kernel with this symbol enabled.

modprobe: FATAL: Module slcan not found in directory /lib/modules/*

slcan0 interface As soon as slcan driver was loaded slcan0 device should appear.
So invoking ip addr show slcan0 should produce following output:

10: slcan0: <NOARP> mtu 16 qdisc noop state DOWN group default qlen 10
link/can

If slcan0 device is missing make sure you’ve selected the proper serial device when
invoking slcand.

CAN Error LED If after trying to send/receive packets the CAN Error LED is per-
manently on, you should first check the wiring as shown in Section CAN Topology,
Wiring and Termination and if the wiring is correct then check whether -sx parameter
corresponds to the required CAN bitrate as shown in Section Setup the Bus Timing
(Standard).

Version 1.21 VSCAN Manual 70

5 FREQUENTLY ASKED QUESTIONS

5.5 USB-CAN Plus Troubleshooting in Windows

If you encounter any issues with USB-CAN Plus like port cannot be opened, no frames
sent or received, you can perform following actions in order to find the issue or at least
to gather as much info for the support request as possible. Please always provide output
from the tools mentioned below and also include a photo/scheme of your cabling.

Powerup LED Blinking Sequence When you plug the USB-CAN Plus device to USB
both Error and Data LEDs will blink twice and remain off afterwards. If you don’t see
this blinking sequence either device or firmware is damaged.

Checking Driver Installation First of all make sure you’ve performed all steps described
in Section USB-CAN Plus Device. This is important for a correct function.

Perform CAN device search using vs can search utility described in Section vs can search.
You should see your device with the corresponding serial number.

Check CAN Wiring Make sure your CAN wiring corresponds to the wiring described
in Section CAN Topology, Wiring and Termination and Error LED is not permanent on
when sending/receiving CAN frames.

Perform Self-Diagnostic Tests Use vs_can_test_simple.exe to perform such a
test either against another VScom device or with your current device itself as described
in vs can test simple.exe.

Check CAN Filter Settings If you can send but not receive CAN frames it is most likely,
that Acceptance Code and Mask registers are setup wrong. These settings are stored
in internal non-volatile memory so that they are persistent across power cycles. Try
default settings i.e. Acceptance Code 0x00000000 and Acceptance Mask 0xFFFFFFFF.
vscandump.exe or vs_can_test_simple.exe will make these settings on every
invocation.

Perform Basic CAN Transmission Tests If your CAN devices send frames autonomously,
you can use vscandump.exe to receive the traffic. You can also inject CAN frames
using vscansend.exe. Both tools are described in Section vscandump and vscansend.
Alternatively you can use BUSMASTER software described in Section Busmaster.

Version 1.21 VSCAN Manual 71

	1 Installation
	1.1 USB-CAN Plus Device
	1.2 Network CAN Device
	1.2.1 Operational Modes
	1.2.2 Configuration Overview
	1.2.3 Webbrowser Server Configuration
	1.2.4 Webbrowser Channel Configuration
	1.2.5 Webbrowser Tools
	1.2.6 Factory Settings

	1.3 Linux Installation (SocketCAN)
	1.4 Windows Driver Installation
	1.5 General Information
	1.5.1 LED Status
	1.5.2 Baud-rates and Handshake
	1.5.3 Pin-out of the 9 Pin D-Sub Connector
	1.5.4 Pin-out of the 4 Pin Connector (USB-CAN Plus mPCIe)
	1.5.5 CAN Topology, Wiring and Termination
	1.5.6 Termination Resistors (USB-CAN Plus Devices)
	1.5.7 Terminal Block Power

	1.6 Products

	2 Application Programming Interface
	2.1 Introduction
	2.2 Functions
	2.2.1 VSCAN_Open
	2.2.2 VSCAN_Close
	2.2.3 VSCAN_Ioctl
	2.2.4 VSCAN_Read
	2.2.5 VSCAN_SetRcvEvent
	2.2.6 VSCAN_Write
	2.2.7 VSCAN_Flush
	2.2.8 VSCAN_GetErrorString

	2.3 Types and Structures
	2.3.1 VSCAN_HANDLE
	2.3.2 VSCAN_STATUS
	2.3.3 VSCAN_API_VERSION
	2.3.4 VSCAN_HWPARAM
	2.3.5 VSCAN_MSG
	2.3.6 VSCAN_BTR
	2.3.7 VSCAN_CODE_MASK

	3 ASCII Command Set
	3.1 Introduction
	3.2 Commands
	3.2.1 Open the CAN Channel
	3.2.2 Close the CAN Channel
	3.2.3 Setup the Bus Timing (Standard)
	3.2.4 Setup the Bus Timing (Advanced)
	3.2.5 Transmitting a Standard Frame
	3.2.6 Transmitting a Standard Remote Request Frame
	3.2.7 Transmitting an Extended Frame
	3.2.8 Transmitting an Extended Remote Request Frame
	3.2.9 Set Time-Stamps
	3.2.10 Set Filter Mode
	3.2.11 Set Acceptance Code and Mask Register
	3.2.12 Set Advanced Filter
	3.2.13 Get Status Flags
	3.2.14 Get Version Information
	3.2.15 Get Serial Number
	3.2.16 Get Extra-Information

	4 Tools
	4.1 Firmware-Update
	4.2 Busmaster
	4.3 vscandump and vscansend
	4.4 vs_can_test_simple.exe
	4.5 Wireshark
	4.6 CANopen
	4.6.1 Introduction
	4.6.2 Running Example
	4.6.3 Compilation Instructions

	4.7 Wrapper DLL System
	4.8 ZOC
	4.9 putty
	4.10 vs_can_search
	4.11 LabVIEW
	4.11.1 Open CAN Channel
	4.11.2 Read CAN Frame
	4.11.3 Write CAN Frame

	5 Frequently Asked Questions
	5.1 All output from the CAN adapter will be written in one line in HyperTerminal?
	5.2 I've updated the driver of my USB-CAN Plus, but the alias baudrate 9600 is not functioning anymore?
	5.3 The Error LED is permanently on
	5.4 SocketCAN Troubleshooting
	5.5 USB-CAN Plus Troubleshooting in Windows

