

Where Passion Meets Precision™

Catalog of Standard and Custom Optical Components

Table of Contents

Introduction	1
60 Years of Optics	
ITAR Statement	5
Products and Capabilities	7
Conversion Tables	
Glass Reference Chart	13
Optical Formulas	21
Optical Materials	
UV Grade Fused Silica	
Infrared Grade Fused Silica	
Commercial Grade Fused Quartz	
Optical Grade Fused Quartz	
N-BK7/S-BSL7 Optical Glass	
Optical Glass	
Colored Filter Glass	
Low Expansion Materials	
Ohara CCZ and ZERODUR (Schott)	
Optical Grade Sapphire	
Optical Characteristics	
Refractive Index and Dispersion	
Optical Transmission	
Coatings	
Anti-Reflection Coatings	
Maximum Reflecting Dielectric Coatings	
Metallic Reflectors	
Bi-Convex Lenses	
Standard	
Custom	
Plano-Convex Lenses	
Standard	
Custom	
Achromatic Lenses	51
Standard	
Custom	
Cylindrical Lenses	
Standard	
Custom	
Aspheric Lenses	
Standard	60
Aspheric Cylindrical Lenses	61

Bestform (Laser) Lenses	
Standard	
Custom	
Industrial Laser Lenses	
Standard	
Custom	
Optical Flats	71
Windows	
Commercial Quality Flat Windows	
Precision Flat Windows	
Wedge Windows	
Sapphire Windows	
Custom	
Laboratory Supplies	
Microscope Slides	
Cover Slips	
Mirrors	
Precision (Laser) Quality Flat Mirrors	
Commercial Quality Flat Mirrors	
Custom	
Filters	
Color Filter Glass	
Custom Colored Glass Filters	
Neutral Density Filters	
Custom Neutral Density Filters	
Bandpass Filters	
Beamsplitters	
Beamsplitter Plates	
Beamsplitter Cubes	
Custom	
Prisms	
Right Angle Prisms	
Equilateral Prisms	
Laser Prisms	
Custom	

Introduction

Can I use N-BK7/S-BSL7 or does my application require fused silica? What are the consequences of using a bi-convex lens instead of a plano-convex lens? Which type of neutral density filter best suits my application, metallic coated or solid glass? Do I need $\lambda/10$, or will $\lambda/2$ be precise enough?

Questions such as these are not uncommon in the high tech field of optical design and manufacturing. Today's engineers are faced with a staggering array of available components and configurations to make their designs a reality. From the development of aspheric surface contours, to the more complex thin film coatings, to the formulation of new and more exotic materials, modern fabrication techniques now allow for previously impossible optical designs to become feasible.

Esco Optics is proud to be at the forefront of this challenging field. Esco offers one of the most comprehensive lines of standard and custom optical elements in the world today.

Our goal is to ensure our customers can easily locate the parts they need. As well as, have access to the expertise of our sales and engineering teams, as well as, receiving timely and accurate answers to their technical questions.

Our opticians possess the skills that are necessary to produce high accuracy elements in low quantities. Additionally, Esco has the capacity to produce high volume, American made components at competitive prices.

Our reputation precedes us! Esco is a proven manufacturing leader of fused silica and quartz, standard optical glasses, low expansion materials, absorptive filters, and a host of others to suit a wide portfolio of custom requests. Whether windows, lenses, prisms, cylinders, or aspheres, all including the application of thin film coatings, Esco Optics is the go to choice for high precision optical components.

We are pleased that you have looked to us as a reliable ITAR registered supplier of your optical needs. We hope that this catalog demonstrates our commitment to excellence. Further, we hope it answers many of your questions and gives you a clearer understanding of why Esco Optics is an industry leader.

Esco Optics headquarters at 95 Chamberlain Road in Oak Ridge, New Jersey.

65 Years of Optics

The Foundation of the Past

Esco Optics was founded in the late 1950's in Hoboken, New Jersey. Back then the company was operating under the name Esco Products and was exclusively a supplier of telescope kits for aspiring astronomers.

Fueled by the commitment to quality, Esco's precision component of the business quickly grew to require additional space. Property was purchased at 171 Oak Ridge Road in Oak Ridge, New Jersey. The custom optics business continued to thrive in the 1970's. It was during this time that Gary Steneken, a graduate of Stevens Institute of Technology, joined the company. Gary rose to the position of General Manager in the 1980's and eventually purchased the business to become the sole owner of Esco Products.

ESCO

In 2001, Gary's son Lee joined the company. Lee spent his early years on the production floor gaining a full understanding of the in house processes and procedures. Lee spearheaded an all-out effort to refine and optimize the processes by incorporating state of the art fabrication and metrology equipment. The business continued to grow under his direction. In 2011, Lee became a partner in Esco Products and was appointed as President and CEO. The company continued to expand and in 2012 adopted a new name and a new philosophy. Esco Optics was born!

The Challenges of the Present

On August 10, 2014, disaster struck. A fire raged through the shop at 171 Oak Ridge Road destroying everything. While no one was hurt, the entire facility experienced varying degrees of damage which ultimately culminated in a total loss. While most would think there was no recovery possible, Esco rose to the challenge. Within a weeks time Esco had a plan to satisfy current and future in house order commitments to its customers. Failure was never an option! All members of the Esco team banded together and began rebuilding the *new* Esco Optics. The fire spawned the image and philosophy of a phoenix rising from the ashes and the mantra of "Rising Above".

The Rise of the Future

Esco Optics now operates in a 27,000 square foot facility at 95 Chamberlain Road in Oak Ridge, New Jersey. Esco's manufacturing flow is based on lean manufacturing principals, in addition to, the optimization of the fabrication processes. Since the fire, Esco Optics has doubled its lens manufacturing capacity for both the spherical, aspherical, acylindrical, and free form elements. Moreover, Esco has tripled its plano capacity and metrology and coating equipment have been greatly improved upon.

ITAR Registered

As the leader for military and defense optics in the United States, Esco Optics adheres to the International Traffic in Arms Regulations (ITAR), a set of government regulations that controls the manufacturing and exporting activities of defense services.

ITAR registered and compliant, Esco manufactures ITAR optics with the strictest confidentiality. ITAR regulations dictate that information and materials pertaining to defense and military-related technologies may only be shared with U.S. Persons unless authorization from the Department of State is received.

Your order information will be kept confidential when you purchase optical components from Esco.

We take great precautions in securing our manufacturing plant as well as all sensitive documents and prints. As an ITAR registered and compliant manufacturer, you will have peace of mind knowing all federal rules and regulations will be followed in order to manufacture your optical components.

Esco applies the ITAR regulation to all its customers. Whether you are purchasing catalog optics or custom precision optical components, your information and usage will remain classified.

Products and Capabilities

Our top priority is to provide customers with the highest quality and most accurate optics in the industry. From catalog optics to custom optical components, we are committed to manufacturing optics that meet or exceed your specifications.

The majority of our staff has been with the company for over 20 years, demonstrating their expertise and delivering products you will be completely satisfied with. We strive to maintain an elevated level of customer service, where you are always treated with respect and in a timely manner.

Our process begins and ends with quality control. Every order we receive is reviewed and confirmed. We encourgae open lines of communication throughout the manufacturing and delivery of your optical components.

Products and Capabilities

Products	Capabilities			
Spherical, Cylindrical, and Aspherical Lenses	Scratch Dig: ≤ 5-2 per MIL-PRF-13830			
Precision Flats and Wedges	Flatness: $\leq \lambda_{10}$			
Plano and Spherical Mirrors	Wedge: ≤ 1 arc sec			
Commercial Windows and Wafers	Centering TIR: ≤ 30 arc sec			
Beamsplitters Cubes and Plates	Parallelism: ≤ 1 arc sec			
Colored Filters, ND Filters and Bandpass Filters	Max Diameter: 16" (406 mm)			
Sapphire Components	Min Thickness: 0.004" (0.10 mm)			
Complete in-house coating capabilities	Precision Bevels: +/-0.001"			
Fused Silica, BK-7 and Substrate Blanks	Surface Roughness: ≤ 5 Å			

Why Should You Choose Esco Optics?

- Esco Optics is vertically integrated, creating lower pricing and shorter lead times
- Esco incorporates a tenured work force with state of the art CNC machinery and metrology
- Esco stocks all optical materials for UV, Visible, and IR applications
- Esco maintains an extensive OEM catalog as well as the ability to manufacture custom optical elements
- Double-Sided and CP polishing centers allow Esco to achieve high accuracy surface flatness and parallelism
- Spherical and Aspherical lenses are produced on OptiPro and OptoTech CNC machine centers, which ensure precision and repeatability
- Optipro OptiTrace and Mahr LD150 3D profilometers provide accurate and precise metrology of all lenses
- An in-house coating facility provides standard and custom coatings including: Metallic Reflectors, Anti-Reflective Coatings, Beamsplitter Coatings, and Bandpass Filters
- Esco's philosophy is to treat every customer with the utmost respect, as Esco's success is measured by the success of their customers

Conversion Tables

The following conversion tables are for your understanding and calculations in making better decisions for your specific needs. If you have any questions please contact us at 1-800-922-ESCO (3726) or email sales@EscoOptics.com

Conversion Tables

	* Interference Fringes @632.8 nm	Inches (in)	Micro Inches (µin)	Millimeters (mm)	Microns (µ)	Nanometers (nm)	Angstroms (Å)
	0.05	6.2283E-07	0.62	0.0000158	0.0158200	15.82	158
	0.1	1.2457E-06	1.25	0.0000316	0.0316400	31.64	316
	0.25	3.1142E-06	3.11	0.0000791	0.0791000	79.10	791
	0.3	3.7370E-06	3.74	0.0000949	0.0949200	94.92	949
	0.4	4.9827E-06	4.98	0.0001266	0.1265600	126.56	1266
	0.5	6.2283E-06	6.23	0.0001582	0.1582000	158.20	1582
	0.6	7.4740E-06	7.47	0.0001898	0.1898400	189.84	1898
ble	0.7	8.7197E-06	8.72	0.0002215	0.2214799	221.48	2215
n Ta	0.8	9.9654E-06	9.97	0.0002531	0.2531199	253.12	2531
sio	0.9	0.0000112	11.21	0.0002848	0.2847599	284.76	2848
IVer	1	0.0000125	12.46	0.0003164	0.3163999	316.40	3164
Cor	2	0.0000249	24.91	0.0006328	0.6327999	632.80	6328
	3	0.0000374	37.37	0.0009492	0.9491998	949.20	9492
	4	0.0000498	49.83	0.0012656	1.2655997	1265.60	12656
	5	0.0000623	62.28	0.0015820	1.5819996	1582.00	15820
	6	0.0000747	74.74	0.0018984	1.8983996	1898.40	18984
	7	0.0000872	87.20	0.0022148	2.2147995	2214.80	22148
	8	0.0000997	99.65	0.0025312	2.5311994	2531.20	25312
	9	0.0001121	112.11	0.0028476	2.8475993	2847.60	28476
	10	0.0001246	124.57	0.0031640	3.1639993	3164.00	31640

* Values assume that 2 fringes = 1λ

Prefix	Symbol	Scientific Value	Prefix	Symbol
femto	f	1 x 10 ⁻¹⁵	hecto	h
pico	р	1 x 10 ⁻¹²	kilo	k
nano	n	1 x 10 ⁻⁹	mega	М
micro	μ	1 x 10 ⁻⁶	giga	G
milli	m	1 x 10 ⁻³	tera	т
centi	с	1 x 10 ⁻²	peta	Р

Measurement	Angle	Per Inch	Per mm	Per 10 mm	Per 25 mm	Per 50 mm	Per 100 mm
	1 arc sec	0.000050	0.0000020	0.000020	0.000049	0.000098	0.000197
	5 arc sec	0.000024	0.0000009	0.000009	0.000024	0.000047	0.000094
	10 arc sec	0.000048	0.0000019	0.000019	0.000047	0.000094	0.000189
near	30 arc sec	0.000145	0.0000057	0.000057	0.000143	0.000285	0.000571
to Li	1 arc min	0.000291	0.0000115	0.000115	0.000286	0.000573	0.001146
ngles	5 arc min	0.001455	0.0000573	0.000573	0.001432	0.002864	0.005728
Ar	10 arc min	0.002910	0.0001146	0.001146	0.002864	0.005728	0.011457
	30 arc min	0.008730	0.0003437	0.003437	0.008593	0.017185	0.034370

Conversion Tables

	Number of Bands	Microinches (Millionths of an Inch)	Inches	Millimeters
	0.1	1.2	0.0000012	0.000032
	0.2	2.5	0.000025	0.000063
	0.3	3.7	0.000037	0.000095
	0.4	5	0.000050	0.000127
	0.5	6.2	0.0000062	0.000158
	0.6	7.5	0.000075	0.000190
	0.7	8.7	0.000087	0.000221
	0.8	10	0.0000100	0.000253
	0.9	11.2	0.0000112	0.000285
	1.0	12.5	0.0000125	0.000316
	2.0	24.9	0.0000249	0.000633
e	3.0	37.4	0.0000374	0.000949
ר Tab	4.0	49.8	0.0000498	0.001266
ersion	5.0	62.3	0.0000623	0.001582
onve	6.0	74.7	0.0000747	0.001898
less (7.0	87.2	0.0000872	0.002215
Flatn	8.0	99.7	0.0000997	0.002531
	9.0	112.1	0.0001121	0.002848
	10.0	124.6	0.0001246	0.003164
	11.0	137	0.0001370	0.003480
	12.0	149.5	0.0001495	0.003797
	13.0	161.9	0.0001619	0.004113
	14.0	174.4	0.0001744	0.004430
	15.0	186.9	0.0001869	0.004746
	16.0	199.3	0.0001993	0.005062
	17.0	211.8	0.0002118	0.005379
	18.0	224.2	0.0002242	0.005695
	19.0	236.7	0.0002367	0.006012
	20.0	249.1	0.0002491	0.006328
	Millimeters or inches is wave	elength dependent. Assumes re	eference λ = 632.8 nm	

A bank of Speed Fam 16 B double sided polishers ready for service in Esco's new facility.

12

The following chart lists the glass types according to their industry standard glass codes. The first three numbers represent the refractive index and the last three numbers are the dispersion. For example, the first glass code 471673 represents an index of 1.471 and a dispersion of 67.3. The codes are listed in order of increasing refractive index.

Code	Schott	Code	Ohara	Code	Ноуа	Code	CDGM
		439 950	S-FPL53				
				457 903	FCD10	457 903	H-FK71
471 673	FK1	471 674	FSL1	471 673	FC1	470 668	H-QK1
487 704	N-FK5	487 702	S-FSL5	487 704	FC5	487 704	H-QK3L
487 845	N-FK51A						
497 816	N-PK52A	497 816	S-FPL51	497 816	FCD1	497 816	H-FK61
498 670	N-BK10						
500 658	BK4	500 660	BSL4	500 660	BSC4	500 660	Н-К2
501 564	K10						
				505 650	BK5	505 647	Н-КЗ
508 612	N-ZK7	508 608	ZSL7	508 613	ZNC7	508 611	K4A
510 635	BK1	510 636	BSL1	510 634	BSC1	510 634	Н-К5
511 604	К7	511 605	NSL7	511 605	С7	511 605	Н-К6
						515 606	Н-К7
517 642	N-BK7	516 641	S-BSL7	517 642	BSC7	517 642	H-K9L
		517 524	S-NSL36	517 522	E-CF6	517 522	H-KF6
		518 590	S-NSL3	518 590	E-C3	518 590	Н-К10
						518 635	D-K59
522 595	N-K5	522 598	S-NSL5	522 595	С5	522 592	Н-К50
523 515	N-KF9						
		523 585	NSL51	523 586	C12	523 586	H-K51
						525 704	D-PK3
526 600	BALK1	526 600	NSL21	526 601	BACL1	526 602	H-K11
529 770	N-PK51						
						530 605	H-BaK1
531 488	LLF6	532 489	PBL6	532 488	FEL6	532 488	QF6
532 489	N-LLF6	532 489	S-TIL6	532 488	E-FEL6	532 488	H-QF6A
540 597	N-BAK2	540 595	S-BAL12	540 597	BAC2	540 597	H-BaK2
541 472	LLF2	541 472	PBL2	541 472	FEL2	541 472	QF8
		541 472	S-TIL2	541 472	E-FEL2	541 472	H-QF8
547 536	N-BALF5						
548 458	N-FEL1	548 458	S-TIL1	548 458	E-FEL1	548 458	H-QF1
548 458	LLF1	548 458	PBL1	548 458	FEL1	548 459	QF1
				548 628	BAL21	547 628	H-BaK3
552 635	N-PSK3	552 638	BAL23	552 634	PCD3	552 634	H-BaK4

Code	Schott	Code	Ohara	Code	Hoya	Code	CDGM
558 540	N-KZFS2						
						561 583	H-BaK5
564 608	N-SK11	564 607	S-BAL41	564 608	BACD11	564 608	H-BaK6
		567 428	S-TIL26	567 428	E-FL6	567 428	H-QF56
569 560	N-BAK4	569 563	S-BAL14	569 560	BAC4	569 560	H-BaK7
569 631	PSK2	569 631	BAL22	569 631	PCD2	569 629	H-ZK1
570 494	BAF2	570 493	BAM2	570 492	BAF2	570 495	BaF2
		571 508	S-BAL2				
		571 530	S-BAL3				
573 576	N-BAK1	573 575	S-BAL11	573 575	BAC1	573 575	H-BaK8
575 415	LF7	575 415	PBL27	575 413	FL7	575 413	QF3
		575 415	S-TIL27			575 415	H-QF3
580 539	N-BALF4			580 539	N-BALF4	580 537	H-BaF3
581 409	LF5	581 407	PBL25	581 409	FL5	581 409	QF50
581 409	N-LF5	581 407	S-TIL25	581 409	E-FL5	581 409	H-QF50
582 421	LF3	582 421	PBL23	582 420	FL3	582 420	QF5
		583 464	S-BAM3				
583 595	SK12	583 594	S-BAL42	583 595	BACD12	583 595	H-ZK2
		583 594	L-BAL42	583 595	M-BACD12	583 594	D-ZK2
589 613	N-SK5	589 612	S-BAL35	589 613	BACD5	589 613	H-ZK3
589 612	P-SK58A	589 612	L-BAL35	589 613	M-BACD5N	589 612	D-ZK3
		593 353	S-FTM16	593 355	FF5		
		595 677	S-FPM2				
		596 392	S-TIM8	596 392	E-F8	596 392	H-QF14
603 380	F5	603 380	PBM5	603 380	F5	603 380	F1
		603 380	S-TIM5	603 380	E-F5	603 380	H-F1
603 606	N-SK14	603 607	S-BSM14	603 607	BACD14	603 606	H-ZK14
		603 655	S-PHM53			603 655	H-ZPK2
606 437	BAF4	606 437	BAM4	606 439	BAF4	606 439	BaF5
606 437	N-BAF4	606 437	S-BAM4				
				606 637	LBC3N		
607 567	N-SK2	607 568	BSM2	607 567	BACD2	607 567	H-ZK50
		607 568	S-BSM2				
				608 462	BAF7	608 462	H-BaF6
609 466	N-BAF52						

Code	Schott	Code	Ohara	Code	Ноуа	Code	CDGM
						609 579	D-ZK79
609 589	SK3	609 590	BSM3	609 589	BACD3	609 589	H-ZK4
611 559	SK8	611 559	BSM8	611 558	BACD8	611 558	H-ZK5
613 370	F3	613 370	PBM3	613 370	F3	613 370	F2
		613 370	S-TIM3	613 370	E-F3	613 370	H-F2
613 443	KZFS4	613 442	BPM51	613 443	ADF40	612 441	TF3
		613 443	S-NBM51			613 441	H-TF3L
613 445	N-KZFS4						
613 586	N-SK4	613 587	S-BSM4	613 586	BACD4	613 586	H-ZK6
						613 606	H-ZK7
						614 400	BaF7
				613 444	E-ADF10		
614 552	SK9	614 550	S-BSM9	614 551	BACD9	614 551	H-ZK8
617 366	F4	617 366	PBM4	617 366	F4	617 366	F3
617 539	SSK1	617 540	BSM21	617 539	BACED1	617 539	H-ZK20
618 498	N-SSK8	618 498	S-BSM28				
618 634	N-PSK53A	618 634	S-PHM52	618 634	PCD4	618 634	H-ZPK1
620 364	F2	620 363	PBM2	620 363	F2	620 364	F4
620 364	N-F2	620 363	S-TIM2	620 363	E-F2	620 364	H-F4
620 603	N-SK16	620 603	S-BSM16	620 603	BACD16	620 603	H-ZK9B
				620 622	ADC1		
				621 359	PBM11	624 359	F5
622 533	N-SSK2	622 532	S-BSM22			622 532	H-ZBaF1
						622 567	H-ZK10
622 570	N-SK10	623 570	S-BSM10	623 569	E-BACD10	623 569	H-ZK10L
623 580	N-SK15	623 582	S-BSM15	623 581	BACD15	623 581	H-ZK21
				624 471	E-BAF8		
				625 356	F7	625 356	F6
		626 357	S-TIM1	626 357	E-F1	626 357	H-F13
626 357	F1	626 357	PBM1	626 375	F1	626 357	F13
626 390	BASF1	626 392	BAM21	626 391	BAFD1	626 391	H-BaF8
636 353	F6	636 354	PBM6	636 353	F6	636 354	F7
638 424	N-KZFS11						
		639 449	S-BAM12				
639 554	N-SK18	639 554	S-BSM18	639 555	BACD18	639 555	H-ZK11

Code	Schott	Code	Ohara	Code	Hoya	Code	CDGM
		640 354	S-TIM27	640 354	E-FD7	640 354	H-F51
						640 483	ZBaF2
640 601	N-LAK21	640 601	S-BSM81	640 602	LACL60	640 602	H-LaK4L
648 339	SF2	648 338	PBM22	648 338	FD2	648 338	ZF1
648 338	N-SF2	648 338	S-TIM22	648 338	E-FD2	648 338	H-ZF1
		649 530	S-BSM71	649 530	E-BACEED20		
651 559	N-LAK22	651 562	S-LAL54	650 557	LACL12	651 559	H-LaK10
652 450	N-BAF51						
652 585	N-LAK7	652 585	S-LAL7	652 584	LAC7	652 584	H-LaK50A
654 337	SF9	654 336	PBM29	654 337	FD9	654 337	ZF8
654 397	N-KZFS5	654 397	S-NBH5	654 396	E-ADF50		
						657 511	H-ZBaF3
658 509	N-SSK5	658 509	S-BSM25	658 509	BACED5	658 509	H-ZBaF50
660 573	LAK11			660 573	LAC11	660 574	H-LaK1
664 360	N-BASF2						
						665 546	H-LaK11
		667 330	S-TIM39			667 330	H-ZF39
667 484	BAFN11	667 483	S-BAH11	667 483	BAF11	667 484	H-ZBaF16
668 419	BASF6			668 419	BAFD6	668 419	ZBaF17
						669 554	D-LaK70
		670 393	S-BAH32				
670 471	N-BAF10	670 473	S-BAH10	670 472	BAF10	670 472	H-ZBaF52
				670 516	LAL53	670 517	H-LaK67
						671 473	H-ZBaF5
673 322	SF5	673 321	PBM25	673 322	FD5	673 322	ZF2
673 323	N-SF5	673 321	S-TIM25	673 322	E-FD5	673 322	H-ZF2
		673 382	S-NBH52				
		678 507	S-LAL56				
678 552	N-LAK12	678 553	S-LAL12	678 555	LAC12	678 555	H-LaK5A
683 445	BAF50			683 447	BAF22	683 445	ZBaF51
689 313	SF8	689 311	PBM28	689 312	FD8	689 312	ZF10
689 313	N-SF8	689 311	S-TIM28	689 312	E-FD8	689 312	H-ZF10
689 312	P-SF8	689 311	L-TIM28	689 312	M-FD80	689 311	D-ZF10
691 547	N-LAK9	691 548	S-LAL9	691 547	LAC9	691 548	H-LaK59A
						692 545	H-LaK2A

Code	Schott	Code	Ohara	Code	Ноуа	Code	CDGM
		694 508	S-LAL58	694 508	LACL5	694 492	H-LaF1
694 533	N-LAK13	694 532	S-LAL13	694 533	LAC13	694 534	H-LaK6A
694 532	P-LAK35	694 532	L-LAL13	694 532	M-LAC130	694 531	D-LaK6
		697 485	S-LAM59	697 485	LAFL2		
697 554	N-LAK14	697 555	S-LAL14	697 555	LAC14	697 555	H-LaK51A
				697 565	LAL64	697 562	H-LaK12
699 302	SF15	699 301	PBM35	699 301	FD15	699 301	ZF11
699 302	N-SF15	699 301	S-TIM35	699 301	E-FD15	699 301	H-ZF11
		700 481	S-LAM51			700 481	H-LaF51
				702 402	BAFD15		
702 410	N-BASF52	702 412	S-BAH27	702 412	BAFD7	702 412	H-ZBaF20
704 394	N-BASF64						
713 538	N-LAK8	713 539	S-LAL8	713 539	LAC8	713 538	H-LaK7A
717 295	SF1	717 295	PBH1	717 295	FD1	717 295	ZF3
717 296	N-SF1	717 295	S-TIH1	717 295	E-FD1	717 295	H-ZF3
717 480	N-LAF3	717 479	S-LAM3	717 480	LAF3	717 479	H-LaF2
720 347	N-KZFS8	720 347	S-NBH8				
		720 420	S-LAM58				
		720 437	S-LAM52			720 437	H-LaF62
		720 460	S-LAM61				
720 506	N-LAK10	720 502	S-LAL10	720 503	LAC10	720 503	H-LaK8A
		722 292	S-TIH18				
724 381	N-BASF51	723 380	S-BAH28	723 380	BAFD8	723 380	H-ZBaF21
728 284	SF10	728 285	PBH10	728 283	FD10	728 283	ZF4
728 285	N-SF10	728 285	S-TIH10	728 283	E-FD10	728 283	H-ZF4
729 545	N-LAK34	729 547	S-LAL18	729 547	TAC8	729 547	H-LaK52
		731 405	L-LAM69	731 405	M-LAF81	731 405	D-LaF79
				733 489	L-LAM72	735 488	D-LaF82L
		734 515	S-LAL59	734 511	TAC4	734 515	H-LaK54
		738 323	S-NBH53				
740 282	SF3	740 283	PBH3	740 282	FD3	740 282	ZF5
		740 283	S-TIH3			740 283	H-ZF5
741 276	SF13	741 278	PBH13	741 278	FD13	741 278	ZF50
		741 278	S-TIH13	741 278	E-FD13	741 278	H-ZF50
		741 527	S-LAL61	741 526	TAC2	741 527	H-LaK61

Code	Schott	Code	Ohara	Code	Ноуа	Code	CDGM
743 494	N-LAF35	743 493	S-LAM60	743 492	NBF1	743 492	H-LaF53
				743 493	M-NBF1	743 493	D-LaF53
744 449	N-LAF2	744 448	S-LAM2	744 449	LAF2	744 449	H-LaF3B
						747 510	H-LaK3
750 348	N-LAF7	750 353	S-LAM7	750 350	E-LAF7	750 350	H-LaF4
750 350	LAFN7	750 353	S-NBH51				
				752 251	FF8		
						754 375	H-LaFL5
754 523	N-LAK33A	755 523	S-YGH51	755 523	TAC6	755 523	H-LaK53A
755 274	N-SF4	755 275	S-TIH4	755 275	E-FD4	755 275	H-ZF6
755 276	SF4	755 275	PBH4	755 275	FD4	755 275	ZF6
755 523	N-LAK33B	755 523	S-YGH51				
757 478	LAFN24	757 478	S-LAM54	757 477	NBF2	757 477	H-LaF6LA
762 265	SF14	762 265	PBH14	762 266	FD14	762 266	ZF12
762 265	N-SF14	762 265	S-TIH14	762 266	FD140	762 266	H-ZF12
		762 401	S-LAM55			762 401	H-LaF55
				768 492	M-TAF101	768 493	D-LaF050
773 496	N-LAF34	773 496	S-LAH66	773 496	TAF1	773 496	H-LaF50B
782 372	LAF22A	783 362	S-LAM62	783 361	NBFD7	782 371	H-LaF7
		785 257	PBH11	785 257	FD11	785 258	ZF13
785 257	N-SF11	785 257	S-TIH11	785 257	FD110	785 257	H-ZF13
785 258	SF11						
785 261	SF56A	785 262	PBH23	785 261	FDS3	785 261	ZF51
				785 261	FDS30		
		785 263	S-TIH23				
786 441	N-LAF33	786 442	S-LAH51	786 439	NBFD11	786 442	H-LaF52
788 475	N-LAF21	788 474	S-LAH64	788 475	TAF4	788 475	H-LaF10LA
				795 454	TAF2		
		800 299	S-NBH55				
800 424	N-LAF36	800 422	S-LAH52	800 423	NBFD12	800 422	H-LaF54
801 350	N-LASF45	801 350	S-LAM66			801 350	H-ZLaF66
				802 443	NBFD14	802 443	H-ZLaF1
				803 467	LAH62	803 468	H-ZLaF2A
		804 396	S-LAH63	805 396	NBFD3	805 396	H-ZLaF51
804 465	N-LASF44	804 466	S-LAH65V	804 465	TAF3	804 466	H-ZLaF50D

Code	Schott	Code	Ohara	Code	Ноуа	Code	CDGM
805 254	SF6	805 254	PBH6	805 255	FD6	805 255	ZF7L
805 254	N-SF6	805 254	S-TIH6	805 255	FD60	805 255	H-ZF7LA
						806 254	ZF7
				806 333	NBFD15	806 333	H-ZLaF56B
806 406	N-LASF43	806 409	S-LAH53	806 407	NBFD13	806 410	H-ZLaF52
				806 407	M-NBFD130		
		808 228	S-NPH1				
809 405	P-LASF50			808 409	MC-NBFD135	809 410	D-ZLaF81
810 409	P-LASF51					810 410	D-ZLaF52LA
				815 370	M-NBFD82		
		816 466	S-LAH59	816 466	TAF5	816 466	H-ZLaF69
834 373	N-LASF40	834 372	S-LAH60	834 373	NBFD10	834 372	H-ZLaF53A
835 431	N-LASF41	835 427	S-LAH55V	835 427	TAFD5F	835 427	H-ZLaF55C
				835 430	TAFD5		
		847 238	S-TIH53				
847 238	SF57	847 239	S-NPH53	847 238	FDS9	847 238	ZF52
847 238	N-SF57	847 238	S-TIH53	847 238	FDS90	847 238	H-ZF52A
						850 301	H-ZLaF76
850 322	N-LASF9	850 323	S-LAH71			850 323	H-ZLaF71
		857 406	L-LAH85	851 401	TAFD305	854 406	D-ZLaF85L
				855 366	TAFD13	855 366	H-ZLaF3
				882 372	M-TAFD307	884 372	D-ZLaF67
881 403	N-LASF31A						
883 410	N-LASF31	883 408	S-LAH58	883 408	TAFD30	883 408	H-ZLaF68B
						901 371	H-ZLaF78
904 313	N-LASF46A			904 313	TAFD25	904 313	H-ZLaF75A
904 313	N-LASF46B						
				911 353	TAFD35	911 353	H-ZLaF4LA
		923 189	S-NPH2			923 189	H-ZF72A
923 209	N-SF66			923 209	E-FDS1	923 209	H-ZF62
				946 180	FDS18	946 180	H-ZF88
		959 175	S-NPH3			959 175	H-ZF73
						2001 292	H-ZLaF92
		2003 283	S-LAH79			2003 284	H-ZLaF90

To ensure an accurate solution of these and other optical formulas, proper sign convention must be observed. The common illustrative convention (and the one used in this catalog) is to show light traveling from left to right. If this convention is used, then it follows that:

- The object distance, s_o, is + to a left of the lens and to the right
- The image distance, s_i, is + to a right of the lens and to the left
- A radius is + when its center of curvature is to the right of the surface, and is when its center of curvature is to the left
- Lens thicknesses and indices of refraction are always positive

The component of a ray of light transmitting from one optical medium into another is refracted according to Snell's Law,

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

where n_1 is the index of refraction of the first medium, θ_1 is the angle of the incident ray to the surface normal, n_2 is the index of refraction of the second medium, and θ_2 is the angle of the transmitted ray to the surface normal.

The equation above implies that when n_1 is greater than n_2 , no light will pass into the second medium beyond a critical angle, θ_C ; it will instead experience total internal reflection

$$\theta_C = \sin^{-1} \left(\frac{n_2}{n_1} \right)$$

The single surface reflectance p of a wave normal to an optical material is determined by the material's index of refraction, n

$$\rho = \left(\frac{n_1 - n_2}{n_1 + n_2}\right)^2$$

When absorption is negligible, the total transmittance T of a plane parallel plate in incoherent light is

$$T = \frac{2n}{\left(n^2 + 1\right)}$$

The portion of light that an optical material with some absorptance transmits internally (neglecting surface reflections) is its internal transmittance τ_i

 $\tau_i = e^{-\alpha t}$

where α is the absorption coefficient of the material and t is its thickness. Its total transmittance, T, is then given as

$$T = \frac{(1-\rho)^2 e^{-\alpha t}}{1-\rho^2 e^{-2\alpha t}}$$

When attenuation is desired (as in a neutral density filter) we use the term optical density (OD) to describe the ratio of the transmitted energy to the incident energy.

$$OD = \log\left(\frac{1}{T}\right)$$
 $T = 10^{-OD}$

where T is the total transmittance of the sample and 100% is expressed as 1. OD values of stacks of filters add algebraically, and for a given melt batch OD varies directly with thickness (neglecting surface reflections).

The following lens equations are paraxial, and neglect aberrations inherent in spherical-curve lenses; the best focal spot of a positive lens with low f/# will be closer to the lens than its paraxial effective focal length. Distances S and D in these equations refer to principal points, which have locations that are not coincident and not in general at the center or the surface of a lens. For simplicity we may approximate their locations as the center of a lens. Equations for the exact location of the principal points are at the end of this section.

22

The effective focal length, f, of a lens can be expressed as

$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} + \frac{(n-1)t_c}{nR_1R_2} \right)$$

where R_1 and R_2 are the radii of curvature, t_c is the center thickness, and n is the lens material's index of refraction.

The following approximation may be used for estimation purposes when t_c is small compared to the difference between the radii.

$$\frac{1}{f} = \left(n-1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

The back focal length, BFL, is the distance from the lens' rear surface to its focal point with object at infinite distance. It can be obtained from f by using

$$BFL = f\left(1 - \frac{(n-1)t_c}{nR_1}\right)$$

When both object and image are at finite distances s_1 and s_2 from the lens, the conjugate distances are related to f by the following

$$\frac{1}{f} = \frac{1}{s_1} + \frac{1}{s_2}$$

where s_1 is the distance from the object to the first principal point, and s_2 is the distance from the second principal point to the image. These principal points are not coincident, but for thin lenses we may use the lens center as a useful approximation to their locations. The resultant focal length of a system made up of multiple separated elements may be obtained by using

$$f_{ab} = \frac{f_a f_b}{f_a + f_b - d}$$

Where f_{ab} is the resultant focal length of the combination of lenses with focal lengths f_a and f_b , and d is the distance from the first lens' second principal point to the second lens' first principal point. For thin lenses, d may be approximated as the distance between the lens centers. For systems with more than two elements, f_{ab} can be used again as though it were the first element when combining with f_c , etc.

The magnification, m, of a finite conjugate system is given by

$$m = \frac{s_i}{s_o} = \frac{f}{s_o - f} = \frac{s_i - f}{f}$$

where s_i is the image distance and s_o is the object distance, measured from their respective principal points.

The f-number, f/#, of a lens is the ratio of its focal length f to the diameter D of its entrance pupil. The numerical aperture, NA, of a lens in air is the sine of the half cone angle of light approaching the focus.

$$f_{\#} = \frac{f}{D} \cong \frac{1}{2NA}$$
 $NA = n\sin\theta$

The sagittal height of a single lens surface, h, is

$$h = \frac{D^2}{4R\left(1 + \sqrt{1 - \frac{D^2}{4R^2}}\right)}$$

where R is the radius of the surface and D is the diameter of the lens.

The edge thickness of a lens, t_e, is then

$$t_t = t_c - h_1 + h_2$$

where h_1 and h_2 are the respective surface sagitta of R_1 and R_2 , maintaining our sign conventions, and t_c is the center thickness.

The total thickness, t_t , of a cylinder into which the entire lens would fit can be obtained by adding to t_c the absolute values of sagitta from only concave surfaces.

The volume of a lens with spherical surfaces and cylindrical edge is

$$V = \pi \left[\frac{D^2}{4} \left(t_c - h_1 - h_2 \right) + h_1^2 \left(R_1 - \frac{h_1}{3} \right) + h_2^2 \left(R_2 - \frac{h_2}{3} \right) \right]$$

where h_1 and h_2 are the properly signed sagitta of R_1 and R_2 , tc is the lens center thickness, and D is its diameter. Its mass can be calculated by multiplying its volume by the specific gravity of the lens material.

Principal point locations H and H" with respect to the lens vertex points V_1 and V_2 are found by

$$\overline{V_1H} = \frac{-f(n-1)t_c}{R_2n}$$
 $\overline{V_2H''} = \frac{-f(n-1)t_c}{R_1n}$

where the distances are positive when the principal points lie to the right of their respective vertices. Equivalent expressions not requiring the focal length are

$$\overline{V_1H} = \frac{-R_1t_c}{n(R_2 - R_1) + t_c(n-1)}$$

$$\overline{V_2H} = \frac{-R_2t_c}{n(R_2 - R_1) + t_c(n-1)}$$

Distances s_x and d in previous lens equations may be evaluated according to these expressions.

Aspheric surfaces are traditionally described according to their sagitta

$$z(r) = \frac{r^2}{R\left(1 + \sqrt{1 - (1 + \kappa)\frac{r^2}{R^2}}\right)} + \alpha_4 r^4 + \alpha_6 r^6 + \dots$$

Where z_r is the sagitta parallel to the optical axis, r is the radial distance from the optical axis, R is the vertex radius, κ is the conic constant, and α_n are coefficients of radial power terms.

The "best-fit sphere" to an (on-axis) asphere is that sphere from which the least volume of material must be removed to reach the asphere. For simplicity it is usually taken as the sphere having the same overall sagitta as the asphere

$$R_{BFS} = \frac{h^2 + \frac{D^2}{4}}{2h}$$

Where RBFS is the radius of the best-fit sphere, D is its diameter, and h is the aspheric sagitta at its full diameter. In some cases this may not represent the very least material removal.

Sight-glass burst pressure, P, is given as

$$P = \frac{3.48\sigma t^2}{kA}$$

where σ is the rupture strength of the material, t is its thickness, A is the unsupported area and k is the "safety factor." Good practice sets k \geq 10 especially where injury or substantial loss is possible.

NOTE: σ is rupture strength, not tensile strength. We put "safety factor" in quotes because many unknowns reduce the rupture strength of a given sample. We express no guarantees.

24

Esco Optics stocks most types and grades of UV, visible, and IR materials including, fused quartz and fused silica, optical glass, color filter glass, low expansion materials and display glasses.

Fused Quartz or Fused Silica?

A common optical material question is the difference between fused silica and fused quartz. Fused quartz is made by the melting of highly pure, crushed natural quartz. Fused silica is made by melting highly pure silica through a flame hydrolysis process where

it oxidizes and forms an amorphous (crystal-free) structure. Both materials provide a high and broad range of transmission, a low coefficient of thermal expansion, and excellent chemical resistance; however, quartz, due to metallic impurities in the crushed precursor material, does not transmit well in the ultraviolet spectrum.

UV Grade Fused Silica

Esco's material designation of UV grade fused silica is S1-UV. S1-UV is an excellent choice of material for visible applications as well.

S1-UV materials offer superior transmission and minimal fluorescence and discoloration when employed in UV applications as low as 190 nm. Their outstanding homogeneity makes them ideal for systems where internal wave front performance is critical while also providing the low coefficient of thermal expansion and chemical resistance that is a hallmark of fused silica.

Optimum Transmission Range:

- 170 nm 2.2 μm
- 2.9 µm 3.6 µm

Typical Applications:

- Deep UV transmission elements
- Minimum scattering systems
- Microlithography
- Low thermal expansion substrates

Infrared Grade Fused Silica

Esco's material catalog designation of IR grade fused silica is I2-IR. I2-IR is manufactured from Corning 7979 fused silica. Esco also supplies Heraeus Infrasil 301 and 302 when requested.

I2-IR grade fused silica is virtually free of OH- ions providing superior transmittance at the 2.7 μ m wavelength "water band" region where standard UV grade fused silica absorbs light. The low OH content (<1 ppm) expands the overall usable range of fused silica to 3.6 microns. As with other fused silica designations, I2-IR grade also shares the same outstanding homogeneity, bubble characteristics, low coefficient of thermal expansion and chemical resistance.

Optimum Transmission Range:

• 250 nm - 3.6 µm

Typical Applications:

- SWIR Imaging
- Machine Vision
- Remote Sensing

S)

Optical Materials

Commercial Grade Fused Quartz

Esco Optics material designation of commercial fused quartz is G1. G1 grade fused quartz is a commercial grade material not typically used in UV applications due to its fluorescence at UV wavelengths.

In thin, small pieces, G1 fused quartz is moderately bubble-free. Larger pieces will most likely contain bubbles. Your application should not be sensitive to these inclusions. G1 provides good visible transmission. In cases where simple light gathering and strong mechanical properties are the primary goals, G1 grade provides excellent performance at a low price.

Optimum Transmission Range:

• 270 nm - 2.5 µm

Typical Applications:

- Optical mirrors
- High temperature and pressure applications
- Low expansion/high purity substrates

Optical Grade Fused Quartz

A1 grade fused quartz is an optical grade material not typically used in UV applications due to its fluorescence at UV wavelengths.

A1 is ideal for all but the most demanding optical applications. All the materials used in this grade are guaranteed to be Grade B or better, providing excellent optical and physical properties at a reasonable price. A1 is an ideal material for larger-sized optical components.

Optimum Transmission Range:

• 270 nm - 2.5 µm

Typical Applications:

- Condenser optics not concerned with scatter or distortion
- High temperature and pressure applications
- Optical flats, microscope slides and sight glasses

	Wavelength (nm)	Fused Silica/Fused Quartz	N-BK7/S-BSL7	Sapphire
	213.86	1.53427		
	230.21	1.52005		
	239.94	1.51337		
	265.20	1.50000		1.83360
	280.35	1.49403		1.82427
	302.15	1.48719		1.81351
_	334.15	1.47976		1.80184
ior	346.62	1.47746		1.79815
act	365.02	1.47452	1.53626	1.79358
Indices of Refr	404.66	1.46962	1.53024	1.78582
	435.84	1.46669	1.52669	1.78120
	546.07	1.46008	1.51872	1.77078
	706.52	1.45516	1.51289	1.76303
	852.11	1.45247	1.50981	1.75885
	1013.98	1.45025	1.50731	1.75547
	1529.52	1.44427	1.50094	1.74660
	1970.09	1.43853	1.49500	1.73833
	2325.42	1.43293	1.48929	1.73055
	3243.90	1.41315		1.70437
	3507.00	1.40566		1.69504
	4954.00			1.62665
	5577.00			1.58638

N-BK7/S-BSL7 Optical Glass

For standard optical glass components, or when optical glass is generically requested for custom elements, Esco Optics uses a grade A fine annealed N-BK7/S-BSL7 or equivalent optical glass. This is a high quality optical material that is used whenever the additional benefits of fused silica are not required.

The refractive index of N-BK7/S-BSL7 is 1.51680 @ 587.6 nm and the dispersion is 64.18. Since N-BK7/S-BSL7 performs well in all manufacturing phases, no special handling is required, thus reducing manufacturing costs. It is a relatively hard material with extremely low bubble content, high homogeneity, low cost and easily available. Standard grade N-BK7/S-BSL7 provides excellent transmittance throughout the visible and near infrared spectra and to 350 nm in the ultraviolet. There is a UN-BK7/S-BSL7 material available for applications deeper into the UV region.

Optimum Transmission Range:

• 350 nm - 2.0 µm

Ideal Applications:

- Optical imaging in the visible spectrum
- Laser optics
- Stable temperature environments
- Low cost high quality windows and lenses

Optical Glass

Esco Optics stocks most available optical glass types. Ohara, Schott, CDGM, and Hoya are a few of the manufacturers. Please visit our website for information on the vast array of optical glass types offered by Esco Optics. If there is a specific glass that is better suited to your particular application, please contact sales@EscoOptics.com to discuss the design details.

Colored Filter Glass

Esco Optics offers colored glass filters from Schott, Hoya, and Isuzu. We manufacture and stock filters including long and short bandpass, multiband, or neutral density filters covering the UV, visible, and near-infrared wavelength regions. Color compensation, light balancing, and heat absorbing filters are also available.

Esco Optics provides our polished catalog filters in 12.7 and 25.40 mm diameter as well as square 50.80 mm filters. Neutral density filters are also offered. Esco also fabricates custom sized glass filters in any configuration. Specific manufacturer data sheets can be found on our website at EscoOptics.com

Low Expansion Materials

Borofloat-33:

Borofloat-33 is a heat-resistant, low-expansion industrial borosilicate glass. This low-cost material provides good transmission, excellent thermal stability in noncritical imaging applications, and is often employed as a substrate for reflective metallic and dielectric thin film coatings.

It should be noted that Borofloat-33 and Schott Supremax are essentially the same material and replace Pyrex, which has been discontinued. Borofloat-33 is manufactured by a float process similar to plate glass. This allows it to be used at thickness without further processing. Supremax is manufactured in thicker sheets up to 2¼" thick.

Optimum Transmission Range:

• 310 nm - 2.5 µm

Typical Applications:

- Non-imaging condensing systems needing a heat resistant material
- First surface mirror substrates

Ohara CCZ and ZERODUR (Schott)

Zerodur and CCZ are a highly homogeneous, glass-ceramic whose thermal and mechanical properties are extremely stable over a wide temperature range. These porous-free materials are a temperature-treated combination of glass, having a positive expansion coefficient, in tandem with a crystalline phase quartz structure with a negative expansion coefficient. The resultant mixture provides a material with a near zero coefficient of thermal expansion. These materials provide outstanding homogeneity, but due to absorption near the blue end of the visible spectrum, is rarely used in transmission applications.

Ideal Applications:

- High accuracy interferometer mirror substrates
- Large astronomical telescope mirrors
- Ring-laser gyroscope elements
- Any application requiring extremely stable substrates

Optical Grade Sapphire

Sapphire is an extremely hard material and has a very high modulus of rupture. It is highly resistant to scratching and is chemically inert. These factors make sapphire an excellent choice for high pressure viewport windows and very thin scratch resistant windows. Sapphire lenses are a good choice for harsh environments. The internal transmittance of optical grade sapphire is 150 nm to 6 microns. Esco supplies sapphire windows in many sizes.

This is a short list of the optical materials offered by Esco Optics. Please visit our website for a comprehensive list of materials and manufacturers data sheets.

You can be confident that Esco will select the optimal performing, most cost-effective materials for your components. In addition to the standard materials offered in this catalog, our website has a comprehensive selection of specific materials and manufacturer data sheets offered by Esco. Our technical sales department will be happy to suggest and offer alternate types and grades of materials that best meet the requirements of your unique application.

Optical Characteristics

Below is a brief description of common optical characteristics and properties associated with optical components. We hope this will assist you in your selection of the proper materials and grades.

		Up to 1.0" Diameter		From 1.0" to 2.0" Diameter		From 2.0" to 3.0" Diameter		
	Esco Material	Max Diameter	Max Quantity	Max Diameter	Max Quantity	Max Diameter	Max Quantity	
Bubbles & Inclusions	S1-UV	0.006 Inches	0	0.008 Inches	1	0.010 Inches	1	
	A1	0.010 Inches	1	0.015 Inches	1	0.020 Inches	2	
	G1	0.030 Inches	3	0.040 Inches	3	0.060 Inches	3	
	12-1R	0.010 Inches	3	0.015 Inches	3	0.020 Inches	3	
	N-BK7/S-BSL7	0.006 Inches	0	0.006 Inches	0	0.010 Inches	1	
	These specifications are worst case conditions. Materials can be selected and guaranteed to customer's requirements. Bubbles less than the maximum diameter count as a fraction of the allowed limit. Bubbles less than 0.004" are regarded as undetectable.							

Bubbles and Inclusions:

Bubbles and inclusions are the most common visible defects associated with optical materials. Bubbles are caused by air trapped inside the material during the melting process. Inclusions are often trapped particles of refractory. Modern manufacturing processes has all but eliminated these defects. Occurrences of either is limited to larger and thicker optics and Esco typically screens out most internal defects unless they are absolutely unavoidable.

Refractive Index and Dispersion

The refractive index (n) of an optical material is defined as the ratio of the speed of light in a vacuum "c" to the speed of light traveling through an optical material. A simple way to visualize refractive index is to consider how much a ray of light "bends" or refracts through a material. The refractive index of an optical material is usually specified by its index of refraction at 587 nm or the helium "d" line. For example, the refractive index or nd of N-BK7/S-BSL7 is 1.517. It is important to note that the refractive index of a material varies with wavelength.

The dispersion of an optical material can be defined as the rate of change of index within a material. A simple way to visualize this is the iconic prism drawing of white light entering one side of the prism and the rainbow of spectra exiting or dispersing from the prism. The dispersion or Vd of N-BK7/S-BSL7 is 64.2.

Optical glass types are defined by their international code. This is their Nd and Vd combined. The international code for N-BK7/S-BSL7 is 517-642. There are many optical glass types, each with a different international code. These glass types are considered by the optical designer when formulating the end use design of an optical system. Please visit Esco Optics website at EscoOptics.com for a complete and comprehensive list of optical glass types provided by Esco.

Optical Transmission

Optical transmission can be defined by the percentage of light that is transmitted through an optical material. The optical transmission varies dependent on the wavelength. Light may also absorbed and/or reflected when contacting the surface of an optical material. Light that passes through an optical material without being reflected or absorbed can be said to have 100% transmission. This is highly unlikely and not practical as all optical materials either absorb and/or reflect light.

The transmission of an optical material is one of the many factors in optical design. If an optical system is being used in the UV region of the spectrum, perhaps a UV grade fused silica will be the chosen material. If a designer needs a system to perform in the IR region, they may choose a material such as Sapphire or Germanium depending upon the application.

Optical Material Transmission Ranges

Refractive Index Homogeneity:

Homogeneity refers to the variation in the index of refraction across the entire aperture of the optic. Unless you have a critical imaging or high powered laser application requiring special material grade selection, this is generally not an issue with our standard materials. Esco does test and certify for high homogeneity in smaller block forms when required by the customer. Please visit Esco's website to find specific manufacturers homogeneity grades.

Stress Birefringence:

Stress Birefringence, or anneal as it is sometimes called, is the result of residual mechanical stress in an optical component. These stresses could result from cooling too quickly when the material is melted or molded. Optical materials are heated and cooled at tightly controlled rates to minimize the effect of stress birefringence. There are different grades of anneal. The units of measure are nm/cm.

Course annealed (>10 nm/cm) is the result of the material being cooled quickly. In most cases, the material will likely be molded into smaller components. *Fine annealed* (<10 nm/cm) is what most materials are supplied from the manufacturer.

Precision annealed (< 6 nm/cm) materials often go through a secondary annealing process and are cooled at a very slow rate.

There is a direct correlation between the level of anneal present in an optical material and its refractive index homogeneity. Annealing can also raise or lower the refractive index of a material.

Striae:

Striae refers to localized visible variations in the index of refraction and exhibits a shape like thin threads when viewing the cross section of a material. Grade A means no visible striae. Striae classes are also defined in ISO 10110. Modern manufacturing processes has eliminated striae in all but a few materials such as low expansion borosilicate and commercial grade fused quartz.

Fluorescence:

Fluorescence in an optical material is the emissive response of a given substrate material when exposed to ultraviolet light. Fused quartz and some optical glasses demonstrate a strong blue fluorescence under these circumstances. Ultraviolet grade fused silica exhibits minimal fluorescence unless subjected to intense UV radiation such as that from an excimer laser. UV laser applications require the use of excimer grade fused silica in order to minimize this problem.

Thermal Coefficient of Expansion (CTE):

The thermal coefficient of expansion (CTE) of an optical material is determined by its chemical composition. The units are expressed as 10^{-6} / 0° C. The range of temperature an optical component will be exposed to is the leading factor in determining an acceptable CTE.

N-BK7/S-BSL7 and most optical glasses have a CTE between 6 - 8 x 10^{-6} / 0° C. There are some materials that have a very low CTE such as fused silica (0.6×10^{-6} / 0° C) and Ohara CCZ (0.6×10^{-7} / 0° C). These materials are very stable and will maintain their physical properties across a wide range of temperatures. Some optical materials have an extremely high CTE such as CaF2 and Ohara S-FPL51. These materials are greatly affected by temperature variation. Extreme caution is needed when fabricating components from these materials.

Material Code	Туре	Striae per MIL-G-174A	Index Variation Δn(x10 ⁻⁶)	
S1-UVA	Fused Silica	А	6	
S1-UVB	Fused Silica	А	10	
A1	Fused Quartz or Fused Silica	В	10	
G1	Fused Quartz or Fused Silica	C-D	20	
I2-IR	Fused Quartz	A	4	
N-BK7/S-BSL7	Optical Glass	A	10	

100% of Esco Optics components are inspected prior to shipping.

34

Esco Optics offers the value-added service of thin film coatings to enhance the performance of your optics. Available options include a wide range of anti-reflective designs, interference filters, as well as metal and dielectric high reflectors. Each coating is applied using vacuum deposition technology. Below are descriptions of various standard design options and every effort is made to accommodate custom requests.

Anti-Reflective

Single layer Multilayer, narrowband Multilayer, broadband

Reflective

All-dielectric (MAX R) Metallic

Partially Reflective (Beamsplitter)

Filter Coatings

36

Anti-Reflection Coatings

Anti-Reflection or "AR" coatings are the most common type of optical coating in the world. Applied to both window and lens elements, these coatings are designed to maximize throughput while minimizing natural back reflections that could otherwise interfere with the preferred operation of an optical system. Esco provides a comprehensive range of AR types to meet the needs of our customers. To discuss the coating that is best suited to your application, please call Esco.

Single Layer MgF₂ (MGF2):

The index of refraction of magnesium fluoride is ideal for the task of providing minimum reflectance with only a single layer film. When applied at high temperatures, MgF_2 becomes a hard, durable coating that meets all standard MIL requirements. It exhibits broadband characteristics and can be applied on a variety of substrates for use in spectral regions from the UV to the NIR. MgF_2 has the best performance-to-cost ratio of any anti-reflection coating.

Typical MGF2 coating shown for visible spectrum

Reflectivity (per surface):	~1.3% for mid-visible on N-BK7/S-BSL7 2.00% max on N-BK7/S-BSL7 2.25% max on SiO ₂				
Practical Bandwidth:	~300 nm				
Wavelength Range:	200 nm to 1500 nm				
Substrates:	Fused Quartz/Fused Silica (all grades) Any optical glass Other materials on request				
Durability:	Per MIL-C-48497A				
Order As:	MGF2				
Please Specify:	Substrate material/Part no. Surface(s) to be coated Wavelength range Angle of incidence				

Narrowband AR ("V") Coating (AR-V):

Commonly called a "V" coating because of its spectral shape, narrowband AR coatings are the simplest of the multilayer coating designs and are used whenever the application involves a single wavelength. A "V" coating usually achieves reflectivity of <0.25% at the design wavelength.

Typical AR-V coating shown at 632.8 nm

Reflectivity (per surface):	<0.25% at design wavelength				
Practical Bandwidth:	Usually 12% of the design wavelength between 0.5% points				
Wavelength Range:	400 nm to 1500 nm				
Substrates:	Fused Quartz/Fused Silica (all grades) Any optical glass Other materials on request				
Durability:	Per MIL-C-48497A				
Variation:	"V" coatings that minimize reflections at two wave- lengths are also possible. For more info please call Esco				
Order As:	AR-V				
Please Specify:	Substrate material/Part no. Surface(s) to be coated Design wavelength Angle of incidence				

Broadband Multilayer AR Coating (BBAR):

Broadband anti-reflective coatings provide the low reflectivity of a "V" coating, combined with the broadband characteristics of a single layer coating. These designs are necessary when an optical system operates across a range of wavelengths such as those used in broad spectrum imaging. As broadband depositions are lengthier than a simple single-layer option, the trade-off for their added performance is increased cost.

Typical BBAR coating shown for visible spectrum

Reflectivity (per surface):	<1% absolute, within practical bandwidth, <0.5% average				
Practical Bandwidth:	~280 nm, (420 nm - 700 nm)				
Wavelength Range:	400 nm to 1500 nm				
Angle of Incidence:	0° ± 15°				
Substrates:	Fused Quartz/Fused Silica (all grades) Any optical glass Other materials on request				
Durability:	Per MIL-C-48497A				
Order As:	BBAR				
Please Specify:	Substrate material/Part no. Surface(s) to be coated Wavelength range Angle of incidence				

Maximum Reflecting Dielectric Coatings

Typically used with lasers, Max R coatings provide nearly complete reflection over a specific spectral range while absorbing negligible incident energy. These high-purity coatings are very durable and designed to meet all standard MIL requirements. On request, custom designs can also be tailored to meet specific laser damage threshold ratings. The trade-off for these high-performance coatings when compared to metal reflectors are cost and increased polarization sensitivity.

Reflectivity:	>99.5% at design wavelength		
Typical Bandwidth:	~20% of design wavelength at 99% points		
Wavelength Range:	300 nm to 3000 nm		
Angle of Incidence:	0 - 45°		
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Borofloat-33/Zerodur Other materials on request		
Order As:	MAX R (at specified wavelength)		
Please Specify:	Wavelength (narrowband) Substrate material/Part no. Surface to be coated Design wavelength Angle of incidence Polarization of incident energy		

Metallic Reflectors

For most mirror applications, metallic coatings offer the best performance:cost ratio of any reflective coating. Many different metals can be evaporated for use as reflectors. The three most common and effective types are listed below. In addition, several dielectric coatings are available as overcoats. These layers are used to enhance reflectivity, durability and/or longevity of the underlying metal.

Aluminum (Al-SiO, Enhanced Aluminum):

Bare aluminum provides excellent reflectivity from the UV to the IR. Unfortunately, it also oxidizes rapidly and use of a dielectric overcoat is usually required to prevent degradation. Since no overcoat is ideal for all applications, materials best suited to the intended application should be chosen.

Aluminum-Silicon Monoxide (AL SIO)				
Reflectivity:	>85% average, 400 nm - 800 nm			
Wavelength Range:	350 nm to 3000 nm			
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Borofloat-33/Zerodur Other materials on request			
Durability:	Per MIL-C-48497A			
Order As:	AL SIO			
Please Specify:	Substrate material/Part no. Surface to be coated			
Benefits				

- General purpose Aluminum coating for use in the visible spectrum
- Inexpensive

Trade-offs

Poor UV reflectance

Enhanced Aluminum (AL ENH)					
Reflectivity:	>93% average, 450 nm - 750 nm				
Wavelength Range:	400 nm to 800 nm				
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Borofloat-33/Zerodur Other materials on request				
Durability:	Per MIL-C-48497A				
Order As:	AL ENH				
Please Specify:	Substrate material/Part no. Surface to be coated				

Benefits

• Special Aluminum coating for higher reflectivity in the visible spectrum

Trade-offs

Poor out-of-band reflectivity

Aluminum-Magnesium Fluoride (AL MGF2)					
Reflectivity:	>85% average, 200 nm - 800 nm				
Wavelength Range:	200 nm to 3000 nm				
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Borofloat-33/Zerodur Other materials on request				
Order As:	AL MGF2				
Please Specify:	Substrate material/Part no. Surface to be coated				

Benefits

- General purpose Aluminum coating for use in the UV and visible spectrum
- Relatively inexpensive

Trade-offs

• Very poor durability, special care must be taken while handling or cleaning

Silver (Ag)					
Reflectivity:	>96% average, 400 nm - 1000 nm >98% absolute, 2.5 μm - 12 μm				
Wavelength Range:	400 nm to 12 µm				
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Pyrex/Zerodur Other materials on request				
Durability:	Per MIL-C-48497A				
Order As:	Ag				
Please Specify:	Substrate material/Part no. Surface to be coated Wavelength range				

Benefits

- Excellent reflectivity from the visible to the far infrared
- Durable overcoat allows front surface use without risk of silver oxidation
- Trade-offs
- Cost
- Poor UV reflectivity

	Gold (Au)				
Reflectivity:	>95% average, 650 nm - 1000 nm >98% absolute, 2.5 μm - 12 μm				
Wavelength Range:	650 nm to 12 μm				
Substrates:	Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Pyrex/Zerodur Other materials on request				
Order As:	Au				
Please Specify:	Substrate material/Part no. Surface to be coated (cannot be used as rear surface reflector)				
 Benefits Excellent reflectivity from the visible to the far infrared (best 2 - 12 μm) Low scatter surfaces Trade-offs 					

- Cost
- Poor UV, visible reflectivity
- Poor durability (Contact Esco for details)

Bi-convex lenses are symmetrical elements with positive focal lengths. They are designed for 1:1 finite conjugate imaging where aberrations such as coma and lateral chromatic distortion exactly cancel and spherical aberration is at a minimum. For more information concerning aberrations and other basic characteristics of lenses, please visit our website EscoOptics.com.

Esco's bi-convex lenses are ideal for finite conjugate imaging over a narrow spectral range. For imaging parallel light (infinite conjugate) or for collimation, plano-convex lenses should be used. For broadband situations where chromatic aberration would be a problem, achromats should be considered. For improved performance involving laser light, bestform lenses could be considered as well.

Esco manufactures bi-convex lenses from most of the optical grade materials listed in this handbook. They are CNC polished to provide superb surface quality and excellent low-cost imaging performance with a variety of light sources.

Focal Length Tolerance:	±3%				
Diameter Tolerance:	±0.125 nm				
Thickness Tolerance:	±0.5 mm				
Design Wavelength:	546 nm				
Centration:	<3'				
Surface Quality:	60-40, scratch-dig				
Edges: Fine ground and beveled					
Optical Materials, pages 25 - 34 Optical Coatings, pages 35 - 40 All dimensions are in mm unless otherwise specified.					

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₄₆	EFL ₂₅₀	BFL ₂₅₀
	A1BI05005	12.7	12.7	1.0	5.3	1.5	13.7	12.6	10.7
	A1BI05010	25.4	12.7	2.0	3.3	1.5	26.0	23.9	22.8
	A1BI10010	25.4	25.4	1.0	9.0	1.5	27.1	25.1	21.7
	A1BI05015	38.1	12.7	3.0	2.7	1.5	38.6	35.5	34.6
	A1BI10015	38.1	25.4	1.5	6.3	1.5	39.3	36.1	34.0
lica	A1BI15015	38.1	38.1	1.0	13.3	2.0	40.5	37.4	32.7
ed Sil	A1BI05020	50.8	12.7	4.0	2.4	1.5	51.2	47.1	46.3
: Fus	A1BI10020	50.8	25.4	2.0	5.0	1.5	51.8	47.7	45.8
irade	A1BI15020	50.8	38.1	1.3	10.1	2.0	52.6	48.5	45.0
DV 6	A1BI20020	50.8	50.8	1.0	17.0	2.0	53.9	49.8	43.7
S1-	A1BI10030	76.2	25.4	3.0	3.8	1.5	77.0	70.8	69.4
	A1BI15030	76.2	38.1	2.0	7.3	2.0	77.5	71.3	68.9
	A1BI20030	76.2	50.8	1.5	11.5	2.0	78.2	72.1	68.1
	A1BI10040	101.6	25.4	4.0	3.2	1.5	102.2	94.1	92.9
	A1BI15040	101.6	38.1	2.7	5.9	2.0	102.6	94.5	92.5
	A1BI20040	101.6	50.8	2.0	9.0	2.0	103.2	95.0	91.9
	A1BI20060	152.4	50.8	3.0	6.6	2.0	153.6	141.3	139.1

 \mathcal{O}

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₄₆	EFL ₂₅₀	BFL ₂₅₀
	A4BI05005	12.7	12.7	1.0	5.3	1.5	13.7	12.9	10.7
	A4BI05010	25.4	12.7	2.0	3.3	1.5	26.0	24.5	22.8
	A4BI10010	25.4	25.4	1.0	9.0	1.5	27.1	25.6	21.7
2	A4BI05015	38.1	12.7	3.0	2.7	1.5	38.6	36.4	34.6
uart	A4BI10015	38.1	25.4	1.5	6.3	1.5	39.2	37.0	34.0
o pa	A4BI15015	38.1	38.1	1.0	13.3	2.0	40.5	38.3	32.7
Fus	A4BI05020	50.8	12.7	4.0	2.4	1.5	51.2	48.3	46.3
rade	A4BI10020	50.8	25.4	2.0	5.0	1.5	51.7	48.7	45.8
al G	A4BI15020	50.8	38.1	1.3	10.1	2.0	52.6	49.7	45.0
nerci	A4BI20020	50.8	50.8	1.0	17.0	2.0	53.9	50.9	43.7
omn	A4BI10030	76.2	25.4	3.0	3.8	1.5	76.9	72.5	69.4
G1 C	A4BI15030	76.2	38.1	2.0	7.3	2.0	77.5	73.1	68.9
	A4BI20030	76.2	50.8	1.5	11.5	2.0	78.2	73.8	68.1
	A4BI10040	101.6	25.4	4.0	3.2	1.5	102.2	96.3	92.9
	A4BI15040	101.6	38.1	2.7	5.9	2.0	102.6	96.8	92.5
	A4BI20040	101.6	50.8	2.0	9.0	2.0	103.2	97.3	91.9
	A4BI20060	152.4	50.8	3.0	6.6	2.0	153.6	144.8	139.1

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₄₆	EFL ₃₀₀	BFL ₃₀₀
	A6BI05005	12.7	12.7	1.0	4.8	1.5	13.7	13.5	11.9
	A6BI05010	25.4	12.7	2.0	3.1	1.5	26.2	25.9	24.9
	A6BI10010	25.4	25.4	1.0	8.5	2.0	27.2	26.9	23.9
	A6BI05015	38.1	12.7	3.0	2.5	1.5	39.0	38.5	37.7
5	A6BI10015	38.1	25.4	1.5	6.2	2.0	39.6	39.2	37.1
Glas	A6BI15015	38.1	38.1	1.0	11.8	2.0	40.6	40.2	36.1
ical	A6BI05020	50.8	12.7	4.0	2.3	1.5	51.8	51.2	50.4
Opt	A6BI10020	50.8	25.4	2.0	5.1	2.0	52.3	51.7	49.9
BSL7	A6BI15020	50.8	38.1	1.3	9.2	2.0	53.0	52.4	49.3
-S/L2-	A6BI20020	50.8	50.8	1.0	15.1	2.0	54.0	53.4	48.2
N-BK	A6BI10030	76.2	25.4	3.0	4.1	2.0	77.8	76.9	75.5
	A6BI15030	76.2	38.1	2.0	6.7	2.0	78.2	77.3	75.1
	A6BI20030	76.2	50.8	1.5	10.4	2.0	78.9	78.0	74.4
	A6BI10040	101.6	25.4	4.0	3.5	2.0	103.4	102.2	101.0
	A6BI15040	101.6	38.1	2.7	5.5	2.0	103.7	102.5	100.7
	A6BI20040	101.6	50.8	2.0	8.2	2.0	104.2	103.0	100.2
	A6BI20060	152.4	50.8	3.0	6.1	2.0	155.2	153.4	151.4

Custom

In addition to our standard lines of bi-convex lenses, we also manufacture a variety of custom elements including bi-convex and biconcave lenses (negative focal length components with symmetrical concave radii of curvature). For more information on these and other custom products or applications, please contact Esco or visit our website at EscoOptics.com.

Sizes:

From 5.0 mm to 380.0 mm diameter

Materials:

Fused Quartz/Fused Silica (all grades) Borofloat/Supremax N-BK7/S-BSL7 Optical Glass Other materials upon request

Focal Lengths:

Any design greater than f/1.0 is possible. Research quantities of some custom focal lengths may be available off-the-shelf. Please contact Esco for more information.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply bi-convex elements with surface quality better than 10-5 laser grade and surface accuracies better than $\lambda/10$. An Esco sales engineer can assist with your custom requirements.

Tolerances:

The dimensional tolerances for bi-convex lenses shown on the preceding pages are the standard tolerances used for off-the-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. For more information, see pages 36 - 37 or call Esco.

Plano-Convex Lenses

Plano-Convex lenses are positive focal length elements with one spherical surface and one flat surface. They are designed for infinite conjugate (parallel light) use or simple imaging in non-critical applications.

Plano-Convex lenses are ideal all-purpose focusing elements. However, for finite conjugate imaging with limited off-axis aberrations, bi-convex lenses are often better suited. For broadband situations where chromatic aberrations would be a problem, or when spherical aberrations must be reduced to a minimum, achromats should be considered. For improved performance involving laser light, bestform lenses should be considered as well.

Plano-Convex Lenses

Standard

Esco manufactures plano-convex lenses from most of the optical grade materials listed in this catalog. They are pitch polished to provide good surface quality and excellent low-cost imaging performance with a variety of light sources.

Focal Length Tolerance:	±3%						
Diameter Tolerance:	±0.125 nm						
Thickness Tolerance:	±0.5 mm						
Design Wavelength:	546 nm						
Centration:	<3'						
Surface Quality:	60-40, scratch-dig						
Edges:	Fine ground and beveled						
Optical Materials, pages 25 - 34 Optical Coatings, pages 35 - 40 All dimensions are in mm unless otherwise specified							

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₂₅₀	BFL ₂₅₀
	A105010	25.4	12.7	2.0	3.3	1.5	23.9	21.7
	A105015	38.1	12.7	3.0	2.7	1.5	35.1	33.3
	A110015	38.1	25.4	1.5	6.9	1.5	35.1	30.4
	A105020	50.8	12.7	4.0	2.4	1.5	46.7	45.1
	A110020	50.8	25.4	2.0	5.3	1.5	46.7	43.2
	A115020	50.8	38.1	1.3	11.8	2.0	46.7	38.8
	A105030	76.2	12.7	6.0	2.1	1.5	70.1	68.7
	A110030	76.2	25.4	3.0	3.9	1.5	70.1	67.5
	A115030	76.2	38.1	2.0	7.6	2.0	70.1	65.0
	A120030	76.2	50.8	1.5	12.9	2.0	70.1	61.5
ច	A105040	101.6	12.7	8.0	1.9	1.5	93.5	92.2
ilic	A110040	101.6	25.4	4.0	3.3	1.5	93.5	91.3
d S	A115040	101.6	38.1	2.7	6.1	2.0	93.5	89.4
Se	A120040	101.6	50.8	2.0	9.5	2.0	93.5	87.1
E	A110050	127.0	25.4	5.0	2.9	1.5	116.8	114.9
de	A115050	127.0	38.1	3.3	5.2	2.0	116.8	113.4
ira	A120050	127.0	50.8	2.5	7.8	2.0	116.8	111.6
≥ ≥	A110060	152.4	25.4	6.0	2.7	1.5	140.2	138.4
2	A115060	152.4	38.1	4.0	4.6	2.0	140.2	137.1
Ň	A120060	152.4	50.8	3.0	6.8	2.0	140.2	135.7
	A110070	177.8	25.4	7.0	2.5	1.5	163.6	161.9
	A115070	177.8	38.1	4.7	4.2	2.0	163.6	160.7
	A120070	177.8	50.8	3.5	6.0	2.0	163.6	159.5
	A110080	203.2	25.4	8.0	2.4	1.5	186.9	185.4
	A115080	203.2	38.1	5.3	4.0	2.0	186.9	184.3
	A120080	203.2	50.8	4.0	5.5	2.0	186.9	183.3
	A110100	254.0	25.4	10.0	2.2	1.5	233.7	232.2
	A115100	254.0	38.1	6.7	3.6	2.0	233.7	231.3
	A120100	254.0	50.8	5.0	4.8	2.0	233.7	230.5
	A110120	304.8	25.4	12.0	2.1	1.5	280.4	279.0
	A115120	304.8	38.1	8.0	3.3	2.0	280.4	278.2
	A120120	304.8	50.8	6.0	4.3	2.0	280.4	277.5

0

Plano-Convex Lenses

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₃₀₀	BFL ₃₀₀
	A405010	25.4	12.7	2.0	3.3	1.5	24.5	22.3
	A405015	38.1	12.7	3.0	2.7	1.5	35.9	34.1
	A410015	38.1	25.4	1.5	6.9	1.5	35.9	31.2
	A405020	50.8	12.7	4.0	2.4	1.5	47.9	46.2
	A410020	50.8	25.4	2.0	5.3	1.5	47.9	44.4
	A415020	50.8	38.1	1.3	11.8	2.0	47.9	39.9
	A405030	76.2	12.7	6.0	2.1	1.5	71.8	70.4
	A410030	76.2	25.4	3.0	3.9	1.5	71.8	69.2
	A415030	76.2	38.1	2.0	7.6	2.0	71.8	66.7
	A420030	76.2	50.8	1.5	12.9	2.0	71.8	63.2
	A405040	101.6	12.7	8.0	1.9	1.5	95.8	94.5
N	A410040	101.6	25.4	4.0	3.3	1.5	95.8	93.6
Quari	A415040	101.6	38.1	2.7	6.1	2.0	95.8	91.7
sed	A420040	101.6	50.8	2.0	9.5	2.0	95.8	89.4
le Fu	A410050	127.0	25.4	5.0	2.9	1.5	119.7	117.8
Grad	A415050	127.0	38.1	3.3	5.2	2.0	119.7	116.2
ircial	A420050	127.0	50.8	2.5	7.8	2.0	119.7	114.5
um m	A410060	152.4	25.4	6.0	2.7	1.5	143.7	141.9
8 5	A415060	152.4	38.1	4.0	4.6	2.0	143.7	140.5
	A420060	152.4	50.8	3.0	6.8	2.0	143.7	139.1
	A410070	177.8	25.4	7.0	2.5	1.5	167.6	165.9
	A415070	177.8	38.1	4.7	4.2	2.0	167.6	164.7
	A420070	177.8	50.8	3.5	6.0	2.0	167.6	163.5
	A410080	203.2	25.4	8.0	2.4	1.5	191.5	190.0
	A415080	203.2	38.1	5.3	4.0	2.0	191.5	188.9
	A420080	203.2	50.8	4.0	5.5	2.0	191.5	187.8
	A410100	254.0	25.4	10.0	2.2	1.5	239.4	238.0
	A415100	254.0	38.1	6.7	3.6	2.0	239.4	237.0
	A420100	254.0	50.8	5.0	4.8	2.0	239.4	236.2
	A410120	304.8	25.4	12.0	2.1	1.5	287.3	285.9
	A415120	304.8	38.1	8.0	3.3	2.0	287.3	285.1
	A420120	304.8	50.8	6.0	4.3	2.0	287.3	284.4

Plano-Convex Lenses

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₄₆	BFL ₅₄₆
	A605010	25.4	12.7	2.0	3.1	1.5	26.0	24.0
	A605015	38.1	12.7	3.0	2.6	1.5	38.1	36.4
	A610015	38.1	25.4	1.5	6.1	1.5	38.1	34.1
	A605020	50.8	12.7	4.0	2.3	1.5	50.8	49.3
	A610020	50.8	25.4	2.0	4.8	1.5	50.8	47.7
	A615020	50.8	38.1	1.3	10.2	2.0	50.8	44.1
	A605030	76.2	12.7	6.0	2.0	1.5	76.2	74.9
	A610030	76.2	25.4	3.0	3.6	1.5	76.2	73.8
	A615030	76.2	38.1	2.0	6.9	2.0	76.2	71.6
	A620030	76.2	50.8	1.5	11.3	2.0	76.2	68.8
	A605040	101.6	12.7	8.0	1.9	1.5	101.6	100.4
	A610040	101.6	25.4	4.0	3.1	1.5	101.6	99.6
S	A615040	101.6	38.1	2.7	5.6	2.0	101.6	97.9
l Gla	A620040	101.6	50.8	2.0	8.5	2.0	101.6	96.0
ptica	A610050	127.0	25.4	5.0	2.7	1.5	127.0	125.2
C11 0	A615050	127.0	38.1	3.3	4.8	2.0	127.0	123.8
/S-BS	A620050	127.0	50.8	2.5	7.1	2.0	127.0	122.3
I-BK7	A610060	152.4	25.4	6.0	2.5	1.5	152.4	150.7
z	A615060	152.4	38.1	4.0	4.3	2.0	152.4	149.5
	A620060	152.4	50.8	3.0	6.2	2.0	152.4	148.3
	A610070	177.8	25.4	7.0	2.4	1.5	177.8	176.2
	A615070	177.8	38.1	4.7	4.0	2.0	177.8	175.2
	A620070	177.8	50.8	3.5	5.6	2.0	177.8	174.1
	A610080	203.2	25.4	8.0	2.3	1.5	203.2	201.7
	A615080	203.2	38.1	5.3	3.7	2.0	203.2	200.7
	A620080	203.2	50.8	4.0	5.1	2.0	203.2	199.8
	A610100	254.0	25.4	10.0	2.5	1.5	254.0	252.6
	A615100	254.0	38.1	6.7	3.4	2.0	254.0	251.8
	A620100	254.0	50.8	5.0	4.5	2.0	254.0	251.0
	A610120	304.8	25.4	12.0	2.0	1.5	304.8	303.5
	A615120	304.8	38.1	8.0	3.2	2.0	304.8	302.7
	A620120	304.8	50.8	6.0	4.1	2.0	304.8	302.1

0

Plano-Convex Lenses

Custom

In addition to our standard lines of plano-convex lenses, we also manufacture a variety of custom elements including plano-concave lenses (negative focal length components with one concave surface). For more information on these and other custom products or applications, please contact Esco at 1-800-922-ESCO (3726).

Sizes:

From 5.0 mm to 380.0 mm diameter

Materials:

Fused Quartz/Fused Silica (all grades) Borofloat/Supremax N-BK7/S-BSL7 Optical Glass Other materials upon request

Focal Lengths:

Nearly any focal length is possible. Research quantities of some focal lengths may be available offthe-shelf. Please contact Esco for more information.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply plano-convex elements with surface quality better than 10-5 laser grade and surface accuracies better than $\lambda/_{10}$. An Esco sales engineer can assist with your custom requirements.

Tolerances:

The dimensional tolerances for bi-convex lenses shown on the preceding pages are the standard tolerances used for off-the-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. For more information, see pages 36 - 37 or call Esco.

Esco Optics has over 50 years of prototype and catalog lens experience.

Achromatic lenses are doublet systems consisting of one crown and one flint element cemented together along a matching curvature. They are designed to minimize spherical and chromatic aberrations for infinite conjugate, visible spectrum, imaging applications.

These Achromats provide diffraction-limited performance over nearly their entire clear aperture. To achieve this performance, the individual lens elements are precision ground and polished to provide minimum wavefront distortion. Each surface is optically centered to ensure optimum alignment.

The lens designs are optimized to ensure that chromatic and spherical aberrations are simultaneously minimized. This optimization, combined with careful machining, also limits many off-axis aberrations such as coma.

52

Standard

Esco Achromatic Lenses are suitable for use in most high resolution imaging systems or any application where spherical and chromatic aberrations must be minimized. Their performance is superior to that of all single element lenses, even in monochromatic applications.

Because achromats are asymmetric elements, they must be used in the proper orientation to ensure optimum performance. A general rule of thumb is that the flattest side should face toward the image.

Focal Length Tolerance:	±2% at 546 nm					
Clear Aperture:	80%					
Diameter Tolerance:	+0/-0.15 mm					
Thickness Tolerance:	±0.25 mm					
Centration:	<3'					
Surface Quality:	60-40, scratch-dig					
Surface Accuracy:	Better than 1λ over clear aperture					
Edges:	Fine ground and beveled					
Coating:	MGF2, single layer MgF ₂					
All dimensions are in mm unless otherwise specified.						

The crown and flint glasses that compose our achromats are Grade A optical quality materials. Since more than just a few glass types are necessary to provide a complete line of optimized designs, it is not possible to list here the specifications of all those that are used. If you require details about the specific glass types used in the achromats listed below, please contact Esco.

All standard achromatic lenses are supplied with single layer MgF₂ anti-reflection coatings on both outside surfaces. The total energy throughput exceeds 98% average across the visible spectrum.

P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₈₈	BFL ₅₈₈	h ₅₈₈
A912025	25	12.7	2.0	5.5	4.2	25.3	22.4	2.9
A912030	30	12.7	2.4	5.0	3.9	30.2	27.6	2.6
A912050	50	12.7	4.0	4.5	3.8	50.9	48.8	2.1
A925050	50	25.4	2.0	9.8	5.9	51.5	46.4	5.1
A912075	75	12.7	6.0	5.0	4.6	76.0	73.5	2.5
A925075	75	25.4	3.0	7.5	5.8	76.2	72.4	3.8
A938075	75	38.1	2.0	14.1	8.8	76.8	69.6	7.2
A912100	100	12.7	8.0	3.8	3.3	99.7	98.1	1.6
A925100	100	25.4	4.0	7.2	5.8	100.0	96.5	3.5
A938100	100	38.1	2.7	12.7	8.3	100.6	94.3	6.3
A950100	100	50.8	2.0	20.5	12.5	101.4	91.1	10.3
A912150	150	12.7	12.0	5.2	5.0	150.0	147.8	2.2
A925150	150	25.4	6.0	6.2	5.3	150.0	147.1	2.9
A938150	150	38.1	4.0	10.8	7.9	150.5	145.5	5.0
A950150	150	50.8	3.0	14.3	9.1	150.8	143.7	7.1
A925175	175	25.4	7.0	6.3	5.5	175.0	172.1	2.9
A938175	175	38.1	4.7	10.4	7.9	175.5	170.8	4.7
A950175	175	50.8	3.5	12.8	8.3	175.7	169.4	6.3
A925200	200	25.4	8.0	8.1	7.2	200.1	194.7	5.4
A938200	200	38.1	5.3	9.5	7.3	200.4	196.1	4.3
A950200	200	50.8	4.0	11.9	8.0	200.6	194.8	5.8
A925250	250	25.4	10.0	5.3	4.5	249.5	247.2	2.3
A938250	250	38.1	6.7	8.8	7.1	249.9	246.1	3.8
A950250	250	50.8	5.0	10.5	7.4	250.0	245.1	4.9
A925500	500	25.4	20.0	6.5	6.1	499.6	496.6	3.0
A938500	500	38.1	13.3	10.0	9.1	500.0	495.5	4.5
A950500	500	50.8	10.0	13.0	11.9	500.4	494.7	5.7

Custom

In addition to our standard lines of achromatic lenses, we are often called upon to design and manufacture a variety of custom elements including:

- Negative achromats
- Lenses designed for finite conjugate systems
- Lenses whose designs have been optimized for other wavelength regions such as the ultraviolet or near infrared.

For more information on these and other custom products or applications, please contact Esco at 1-800-922-ESCO (3726).

Sizes:

Up to 152.4 mm diameter

Focal Lengths:

Any focal length greater than about f/2.0 is possible. Research quantities of some focal lengths may be available off-the-shelf. Please contact Esco for more information.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply elements with surface quality better than 10-5 laser grade and surface accuracies better than $\lambda/_{20}$. To provide such precision, however, these systems often must be air-spaced rather than cemented. Please contact Esco for more information.

For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Tolerances:

The dimensional tolerances for achromatic lenses shown on the preceding pages are the standard tolerances used for off-the-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. Yet because of the high index of the flint element, coatings more sophisticated than single-layer MgF₂ often provide only an incremental improvement. To discuss your particular needs, please contact Esco.

Ordinary lenses have one or more spherical surfaces, yet a curved surface on a cylindrical lens is shaped (as the name suggests) like a cylinder. Instead of a focal point, their performance is characterized by a focal line that lies parallel to the cylindrical axis. The same lens formulas that describe the behavior of common spherical elements also apply to cylindrical lenses, but in one dimension only.

Cylindrical lenses are useful in applications such as optical data storage and retrieval systems for imaging linear arrays, spectroscopic instrumentation for imaging slits, and other processes involving scanning techniques. In addition, they are frequently used with lasers to generate a narrow line of light that is used for measurement or alignment.

Standard

Esco manufactures a variety of standard plano-convex cylindrical lenses. All are CNC polished to provide excellent surface quality and accuracy.

Focal Length Tolerance:	±3%					
Thickness Tolerance:	±0.5 mm					
Design Wavelength:	546 nm					
Axis Linearity:	<6'					
Surface Quality:	60-40, scratch-dig					
Edges:	Fine ground and beveled					
Optical Materials, pages 25 - 34 Optical Coatings, pages 35 - 40						

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₂₅₀	BFL ₂₅₀
	B110015	38.1	25.4	1.5	6.9	1.5	35.1	30.4
	B110020	50.8	25.4	2.0	5.3	1.5	46.7	43.2
	B115020	50.8	38.1	1.3	11.8	2.0	46.7	38.8
	B110030	76.2	25.4	3.0	3.9	1.5	70.1	67.5
ca	B115030	76.2	38.1	2.0	7.6	2.0	70.1	65.0
d Sili	B120030	76.2	50.8	1.5	12.9	2.0	70.1	61.5
Fuse	B110040	101.6	25.4	4.0	3.3	1.5	93.5	91.3
irade	B115040	101.6	38.1	2.7	6.1	2.0	93.5	89.4
۹ ۱۰	B120040	101.6	50.8	2.0	9.5	2.0	93.5	87.1
S1	B110060	152.4	25.4	6.0	2.7	1.5	140.2	138.4
	B115060	152.4	38.1	4.0	4.6	2.0	140.2	137.1
	B120060	152.4	50.8	3.0	6.8	2.0	140.2	135.7
	B110100	254.0	25.4	10.0	2.2	1.5	233.7	232.2
	B115100	254.0	38.1	6.7	3.6	2.0	233.7	231.3
	B120100	254.0	50.8	5.0	4.8	2.0	233.7	230.5

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₃₀₀	BFL ₃₀₀
7	B410015	38.1	25.4	1.5	6.9	1.5	35.9	31.2
	B410020	50.8	25.4	2.0	5.3	1.5	47.9	44.4
	B415020	50.8	38.1	1.3	11.8	2.0	47.9	39.9
	B410030	76.2	25.4	3.0	3.9	1.5	71.8	69.2
Quart	B415030	76.2	38.1	2.0	7.6	2.0	71.8	66.7
sed 0	B420030	76.2	50.8	1.5	12.9	2.0	71.8	63.2
le Fu	B410040	101.6	25.4	4.0	3.3	1.5	95.8	93.6
Grad	B415040	101.6	38.1	2.7	6.1	2.0	95.8	91.7
tical	B420040	101.6	50.8	2.0	9.5	2.0	95.8	89.4
1 Op	B410060	152.4	25.4	6.0	2.7	1.5	143.7	141.9
G	B415060	152.4	38.1	4.0	4.6	2.0	143.7	140.5
	B420060	152.4	50.8	3.0	6.8	2.0	143.7	139.1
	B410100	254.0	25.4	10.0	2.2	1.5	239.4	238.0
	B415100	254.0	38.1	6.7	3.6	2.0	239.4	237.0
	B420100	254.0	50.8	5.0	4.8	2.0	239.4	236.2

	P/N	f _{nom}	Diameter	f/#	СТ	ET	EFL ₅₄₆	BFL ₅₄₆
	B610015	38.1	25.4	1.5	6.1	1.5	38.1	34.1
	B610020	50.8	25.4	2.0	4.8	1.5	50.8	47.7
	B615020	50.8	38.1	1.3	10.2	2.0	50.8	44.1
	B610030	76.2	25.4	3.0	3.6	1.5	76.2	73.8
ilass	B615030	76.2	38.1	2.0	6.9	2.0	76.2	71.6
ical G	B620030	76.2	50.8	1.5	11.3	2.0	76.2	68.8
Opti	B610040	101.6	25.4	4.0	3.1	1.5	101.6	99.6
BSL7	B615040	101.6	38.1	2.7	5.6	2.0	101.6	97.9
K7/S-	B620040	101.6	50.8	2.0	8.5	2.0	101.6	96.0
N-B	B610060	152.4	25.4	6.0	2.5	1.5	152.4	150.7
	B615060	152.4	38.1	4.0	4.3	2.0	152.4	149.5
	B620060	152.4	50.8	3.0	6.2	2.0	152.4	148.3
	B610100	254.0	25.4	10.0	2.1	1.5	254.0	252.6
	B615100	254.0	38.1	6.7	3.4	2.0	254.0	251.8
	B620100	254.0	50.8	5.0	4.5	2.0	254.0	251.0

Custom

In addition to our standard lines of cylindrical lenses, we also manufacture a variety of custom elements including negative cylindrical lenses and lenses made of other optical materials. We're also pleased to announce the manufacturing capability of Aspheric Cylindrical Lenses (see page 61). For more information on these and other custom products or applications, please contact Esco at 1-800-922-ESCO (3726).

Sizes:

Rectangular or round, maximum and minimum sizes vary depending on other dimensions. Please inquire.

Materials:

Fused Quartz/Fused Silica (all grades) Borofloat/Supremax N-BK7/S-BSL7 Optical Glass Other materials upon request

Focal Lengths:

Nearly any focal length is possible. Research quantities of some focal lengths may be available offthe-shelf. For certain OEM applications, looser tolerances may lead to cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply cylindrical elements with improved surface accuracy and quality. Please inquire.

Tolerances:

The dimensional tolerances for cylindrical lenses shown on the preceding pages are the standard tolerances used for off-the-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. For more information, see pages 36 - 37 or call Esco.

Aspheric Lenses

An aspheric lens is a single optical element with one aspheric convex surface and one plano or spherical convex surface. Characterized by f-numbers less than 1.0, aspheres provide maximum energy throughput over a limited path length. An aspheric lens' complex surface profile can reduce or eliminate spherical aberration as well as other aberrations, such as astigmatism.

Aspheric Lenses

Standard

Esco manufactures aspheric lenses from high quality optical crown glass. They are precision CNC generated and polished to provide excellent performance in critical condenser applications.

P/N	f _{nom}	Diameter	f/#	СТ
C118150	15.0	18.0	0.83	7.4
C124180	18.0	24.0	0.75	10.6
C134240	24.0	34.0	0.63	14.0
C150355	35.5	50.0	0.71	21.1
C160390	39.0	60.0	0.65	27.0

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. Because of the steepness of the aspheric surface, however, multilayer coatings may not perform properly. Single layer MgF₂ is recommended for most applications. For more information, see pages 36 - 37 or contact an Esco Sales Engineer.

Aspheric Lenses

Esco Optics Is Now Fabricating Aspheric Cylindrical Lenses

Esco Optics is pleased to announce the manufacturing capability of Aspheric Cylindrical Lenses. With the use of OptiPro CNC UFF Polishing machines, Esco is producing and repeating precision A-Cylinders of various materials and sizes. This product is currently is being offered as a new line of custom optics, and Esco is quoting both prototype and production quantities.

How do Acylindrical Lenses differ from Aspherical Lenses?

A plano-convex aspherical lens focuses an incident ray in two dimensions to a precise focal point, while A-Cylindrical Lenses focus the incident ray in one dimension along a linear axis parallel to the cylindrical or acylindrical surface. The resultant focused beam is a line instead of a single point.

The typical configuration of an aspherical cylinder (or acylinder) is plano-convex. The non-plano surface is polished using aspheric coefficients in relation to a best fit cylinder radius, thus reducing spherical aberration in one dimension. Plano-concave Acylinders are also possible but not as common. Acylindrical lenses can be manufactured using high index materials to aid in the reduction of chromatic aberration.

Benefits and applications of an acylindrical lens include:

- Collimation of laser diode fast axis
- Optimum in line focus by reducing spherical aberration on one dimension
- Increase the performance of a system requiring magnification in one dimension
- A plano-convex acylindrical lens can be optimized for infinite conjugate configurations
- Create a thin line profile when using a monochromatic light source
- Short focal length, thus reducing the optical path length of a particular system

Esco Optics fabricates A-Cylindrical components from virtually any material, with cylinder lengths upwards of 200mm. To ensure the high accuracy that is generally required with Aspheric Cylinders, Esco uses an OptiPro OptiTrace 3D Profilometer. Esco is able to polish A-Cylinders to an RMS wavefront error of less than 0.5 microns, and surface quality of 10-5 depending on the material. Please contact sales@EscoOptics.com for more information regarding your A-Cylindrical needs.

Esco Optics works closely with our customers in developing custom optical element configurations and solutions.

 \bigcirc

Bestform (Laser) Lenses

To ensure that only minimum spherical aberration is introduced by an optical element, it is necessary to consider its shape. For each condition there is a preferred lens shape that minimizes spherical aberration. For example, in 1:1 imaging applications, the best shape is a symmetric bi-convex lens.

In the infinite conjugate case of focusing a laser beam to a minimum spot, the shape of a single element lens that most effectively reduces spherical aberration is called Bestform. The front and back radii of these lenses are chosen to be of a specific ratio. This ratio is determined by the proper shape factor, which is governed by the lens material.

Bestform (Laser) Lenses

Standard

Esco manufactures Bestform lenses from the highest quality optical grade materials. Only materials with superior homogeneity should be used in laser applications. CNC polishing provides excellent surface quality which is a necessary characteristic for limiting scatter.

Focal Length Tolerance:	±3%					
Diameter Tolerance:	±0.15 mm					
Thickness Tolerance:	±0.2 mm					
Centration:	<3'					
Surface Quality:	20-10, scratch-dig					
Surface Accuracy:	$^{\lambda}$ / ₁₀ or better over 80% of clear aperture					
Edges:	Fine ground and beveled					
Coating:	AR-V Multilayer AR coating at the design wavelength available upon request					
Optical Materials, pages 25 - 34						

Optical Coatings, pages 35 - 40

All dimensions are in mm unless otherwise specified.

	P/N	f _{nom}	Diameter	λ _{des}	СТ	ET	EFL _{des}	BFL _{des}	Beam Diameter	Spot Diameter
a a	A610510	10	5.0	325 nm	2.6	1.5	11.1	9.6	1.0	4.6 µm
	A611220	20	12.7	325 nm	5.6	1.5	19.4	16.1	2.0	4.0 µm
ilic	A612510	100	25.4	325 nm	4.4	1.5	100.4	97.9	8.0	5.2 µm
s d s	A612525	250	25.4	325 nm	2.6	1.5	248.5	247.0	15.0	6.8 µm
'A Fuse	A615011	1100	50.8	325 nm	3.1	2.0	1087.8	1086.0	45.0	9.9 µm
1 <u>-</u>	A650510	10	5.0	1064 nm	2.6	1.5	11.6	10.1	1.0	15.7 µm
<u>ک</u>	A651220	20	12.7	1064 nm	5.6	1.5	20.1	16.8	2.0	13.5 µm
	A652510	100	25.4	1064 nm	4.5	1.5	102.4	99.8	8.0	18.6 µm
	A652525	250	25.4	1064 nm	2.7	1.5	248.9	247.4	15.0	23.4 µm
	A655011	1100	50.8	1064 nm	3.0	2.0	1109.5	1107.8	45.0	33.4 µm

ilass	P/N	f _{nom}	Diameter	λ_{des}	СТ	ET	EFL _{des}	BFL _{des}	Beam Diameter	Spot Diameter
ical G	A630510	10	5.0	633 nm	2.6	1.5	10.5	9.0	1.0	8.6 µm
K7/S-BSL7 Opti	A631220	20	12.7	633 nm	5.6	1.5	20.4	17.4	2.0	8.2 µm
	A632510	100	25.4	633 nm	4.2	1.5	101.2	98.8	8.0	10.2 µm
	A632525	250	25.4	633 nm	2.6	1.5	244.0	242.5	15.0	13.1 µm
N-B	A635011	1100	50.8	633 nm	2.9	2.0	1133.5	1131.9	45.0	20.3 µm

Bestform (Laser) Lenses

Custom

In addition to our standard lines of Bestform lenses, we also manufacture a variety of custom designs. For more information on these and other custom products or applications, please contact Esco at 1-800-922-ESCO (3726).

Sizes:

Up to 50 mm diameter

Materials:

S1-UV Fused Silica (both grades) I2-IR Fused Quartz A1 Optical Grade Fused Quartz N-BK7/S-BSL7 Optical Glass Other materials upon request

Focal Lengths:

Although f/#s greater than approximately f/1.33 are physically possible, very little is gained by using 'fast' Bestform lenses. Since the intention of this design is to minimize aberrations, focal lengths as long as possible should be considered to maximize the lens' performance. Research quantities of some focal lengths may be available off-the-shelf. For more information, please contact Esco.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply Bestform lenses with surface quality better than 10-5 laser grade and surface accuracies better than $\lambda/_{20}$. An Esco sales engineer can assist with your custom requirements.

Tolerances:

The dimensional tolerances shown on the preceding pages are the standard tolerances used for offthe-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Anti-Reflection coatings that allow efficient energy throughput are available. For more information, see pages 36 - 37 or call Esco.

66

Optical mirror blanks being beveled on 1 of 4 robotic chamfering stations.

Industrial Laser Lenses

Nd:YAG lasers are used in manufacturing for engraving, etching, or marking a variety of metals and plastics. They are extensively used in manufacturing for cutting and welding steel, semiconductors, and various alloys. Esco manufactures catalog and custom plano-convex lenses as replacement elements for industrial Nd:YAG laser systems that operate at 1.06 µm.

Industrial Laser Lenses

Standard

Esco industrial laser lenses are guaranteed to meet or exceed the performance requirements of the original laser equipment. They are manufactured from high purity fused silica and are multilayer AR coated.

Material:	S1-UV Grade Fused Silica				
Design Wavelength:	1.06 µm				
Focal Length Tolerance:	±2%				
Diameter:	1.1" (27.94 mm) ±0.125 mm				
Clear Aperture:	1" (25.4 mm)				
Edge Thickness:	1.5 mm ±0.5 mm				
Surface Quality:	20-10, scratch dig				
Coating:AR-V Multilayer AR coatingfor <0.25% R per surface a1.06 μm					
Optical Materials, pages 25 - 34 Optical Coatings, pages 35 - 40 All dimensions are in mm unless otherwise specified.					

P/N	f _{nom}	f/#	СТ	
A711020	50.8 (2")	1.8	6.3	
A711040	101.6 (4")	3.6	3.7	
A711060	152.4 (6")	5.5	2.9	
A711080	203.2 (8")	7.3	2.6	
A711100	254.0 (10")	9.1	2.4	
A711120	304.8 (12")	10.9	2.2	

Industrial Laser Lenses

Custom

Besides our standard line of industrial laser lenses, we also manufacture custom elements designed specifically for individual applications. To discuss your custom specifications or applications, please contact Esco at 1-800-922-ESCO (3726).

Materials:

Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Other precision quality materials upon request

Focal Lengths:

Nearly any focal length is possible. Research quantities of some non-standard focal lengths may be available off-the-shelf. Please contact Esco for more information.

Surface Quality:

Because of the high power nature of most industrial lasers, Esco strongly recommends using lenses whose surface characteristics are conducive to scatter-free operation.

Tolerances:

The dimensional tolerances for industrial laser lenses shown on the preceding pages are the standard tolerances used for off-the-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Because of the high power nature of most industrial lasers, Esco strongly recommends using lenses with AR-V coatings to minimize the potential for system damage due to back reflections.

70

Esco supplies aspherical, acylindrical, and free form components to satisfy the most demanding requirements.

Optical Flats

Optical flats are most commonly used as test plates to evaluate the accuracy of flat optical surfaces. Holding the precision face of an optical flat against a test surface under monochromatic light creates a fringe pattern that is visible through the back surface of the flat. This fringe pattern describes the contour of the test surface.

Optical Flats

72

Esco manufactures optical flats out of fused quartz. The low thermal expansion, abrasion resistance and general stability of this material allow continuous use with minimum degradation over time.

Optical flats are available with either one or two precision surfaces. The fringe pattern that is visible through an optical flat is not affected by the accuracy of the rear surface. Some users, however, require the versatility and extended lifetime that two precision surfaces offer.

Material:	G1 Optical Grade Fused Quartz				
Diameter Tolerance:	±1.0 mm				
Thickness Tolerance:	±1.0 mm				
Parallelism:	<15'				
Surface Quality:	60-40, scratch-dig				
Clear Aperture: 90%					
All dimensions are in mm unless otherwise specified.					

Flatr			, One Precision	Surface	Flatness, Two Precision Surfaces			
Diameter	Thickness	^λ / ₂₀ (0.000001")	^λ / ₁₀ (0.000002")	^λ / ₄ (0.000005")	^λ / ₂₀ (0.000001")	^λ / ₁₀ (0.000002")	^λ / ₄ (0.000005")	
25.4 (1")	12.7 (.5")	F101001	F101002	F101005	F201001	F201002	F201005	
50.8 (2")	12.7 (.5")	F102001	F102002	F102005	F202001	F202002	F202005	
76.2 (3")	15.9 (.625")	F103001	F103002	F103005	F203001	F203002	F203005	
Larger optical	Larger optical flats are also available upon request.							

Esco offers flat windows made from a wide variety of optical materials. A wide range of optical quality and configurations are available to suit any application.

Commercial Quality Flat Windows

Esco Optics is one of the largest American suppliers of commercial quality flat windows. Our standard product line is perhaps the most complete listing available. These windows are commonly used for a variety of applications including sight glasses, instrument windows, beamsplitter substrates, and vacuum windows to name a few. All products listed are available in single or large OEM quantities. For more information, please visit our website at EscoOptics.com

Diameter Tolerance:	±0.125 mm
Length/Width Tolerance:	±0.125 mm
Thickness Tolerance:	±0.125 mm
Surface Accuracy:	-5λ per inch
Surface Quality:	60-40, scratch-dig or better
Parallelism:	≤ 3 arc min
Edges:	Fine ground and beveled

Material:

Esco manufactures commercial quality windows out of every material listed in this handbook. For your reference, apply the prefixes shown below to the part numbers in the table.

PREFIXES

Circular Windows:

S1-UVP1	
I2-IRP2	
A1 Fused QuartzP3	

N-BK7/S-BSL7	. P9
G1 Fused Quartz	P6
Borofloat	. P7

Square Windows:

S1-UVQ1	G1	. Q6
N-BK7/S-BSL7Q9	A1	. Q3
I2-IRQ2	Borofloat	. Q7

EXAMPLE

S1-UV window, 2" diameter, 1/4" thk: N-BK7/S-BSL7 window, 4" x 4", 1/8" thk: P1 + 20250 = P/N: P120250 Q9 + 40125 = P/N: Q940125

All dimensions are in mm unless otherwise specified.

	Thickness, mm (Inches)									
	Diameter	1.0 (.04")	1.59 (.0625")	3.18 (.125")	4.76 (.1875")	6.35 (.25")	9.53 (.375")	12.7 (.5")		
	12.7 (.5")	+05040	+05063	+05125	+05188	+05250	+05375	+05500		
	19.05 (.75")	+07040	+07063	+07125	+07188	+07250	+07375	+07500		
	25.4 (1")	+10040	+10063	+10125	+10188	+10250	+10375	+10500		
S	31.75 (1.25")	+12040	+12063	+12125	+12188	+12250	+12375	+12500		
Mobr	38.1 (1.5")	+15040	+15063	+15125	+15188	+15250	+15375	+15500		
ar Wii	44.45 (1.75")	+17040	+17063	+17125	+17188	+17250	+17375	+17500		
ircula	50.8 (2")	+20040	+20063	+20125	+20188	+20250	+20375	+20500		
Ü	63.5 (2.5")	+25040	+25063	+25125	+25188	+25250	+25375	+25500		
	76.2 (3")	+30040	+30063	+30125	+30188	+30250	+30375	+30500		
	88.9 (3.5")	+35040	+35063	+35125	+35188	+35250	+35375	+35500		
	101.6 (4")	+40040	+40063	+40125	+40188	+40250	+40375	+40500		
	127.0 (5")	+50040	+50063	+50125	+50188	+50250	+50375	+50500		
	152.4 (6")	+60040	+60063	+60125	+60188	+60250	+60375	+60500		

	Thickness, mm (Inches)									
	Square	1.0 (.04")	1.59 (.0625")	3.18 (.125")	4.76 (.1875")	6.35 (.25")	9.53 (.375")	12.7 (.5")		
	25.4 (1")	+10040	+10063	+10125	+10188	+10250	+10375	+10500		
	31.75 (1.25")	+12040	+12063	+12125	+12188	+12250	+12375	+12500		
S	38.1 (1.5")	+15040	+15063	+15125	+15188	+15250	+15375	+15500		
wopu	44.45 (1.75")	+17040	+17063	+17125	+17188	+17250	+17375	+17500		
e Wir	50.8 (2")	+20040	+20063	+20125	+20188	+20250	+20375	+20500		
quar	63.5 (2.5")	+25040	+25063	+25125	+25188	+25250	+25375	+25500		
S	76.2 (3")	+30040	+30063	+30125	+30188	+30250	+30375	+30500		
	88.9 (3.5")	+35040	+35063	+35125	+35188	+35250	+35375	+35500		
	101.6 (4")	+40040	+40063	+40125	+40188	+40250	+40375	+40500		
	127.0 (5")	+50040	+50063	+50125	+50188	+50250	+50375	+50500		
	152.4 (6")	+60040	+60063	+60125	+60188	+60250	+60375	+60500		

NOTE: To specify a Window's material when ordering, add the appropriate Material Prefix in front of these Part Numbers.

Precision Flat Windows

These elements are ideal for applications such as:

- Interferometer flats
- Laser windows
- Beamsplitter substrates
- Parallel plates, etc.

Material:	N-BK7/S-BSL7 Optical Glass or S1-UV Fused Silica				
Diameter Tolerance:	±0.125 mm				
Thickness Tolerance:	±0.125 mm				
Surface Quality:	20-10, scratch-dig				
Clear Aperture:	90%				
Edges: Fine ground and beveled					
All dimensions are in mm unless otherwise specified.					

Diameter	Thickness	Parallelism	Flatness	N-BK7/ S-BSL7 P/N	S1-UV P/N
25.4	6.35	10′	$\lambda_{/4}$	E610250	E210250
25.4	6.35	5″	λ _{/10}	E810250	E410250
38.1	6.35	10′	λ_{4}	E615250	E215250
38.1	6.35	5″	λ/ ₁₀	E815250	E415250
50.8	9.53	10′	$\lambda_{/4}$	E620375	E220375
50.8	9.53	5″	λ/ ₁₀	E820375	E420375

Wedge Windows

These elements are similar to the precision flat windows described above, but have a deliberate wedge of 30' ±5'. They are ideal for applications where direct back reflections would usually be a problem.

Material:	N-BK7/S-BSL7 Optical Glass or S1-UV Fused Silica				
Diameter Tolerance:	±0.125 mm				
Thickness Tolerance:	±0.125 mm				
Surface Quality:	20-10, scratch-dig				
Clear Aperture:	90%				
Edges: Fine ground and beveled					
All dimensions are in mm unless otherwise specified.					

Diameter	Thickness	Parallelism	Flatness	N-BK7/ S-BSL7 P/N	S1-UV P/N
25.4	6.35	30′	$\lambda_{/4}$	V210250	V510250
25.4	6.35	30′	λ _{/10}	V310250	V610250
38.1	9.53	30′	λ_{4}	V215375	V515375
38.1	9.53	30′	λ/ ₁₀	V315375	V615375
50.8	9.53	30′	$\lambda_{/4}$	V220375	V520375
50.8	9.53	30′	λ/ ₁₀	V320375	V620375

Sapphire Windows

Because of its wide spectral transmission, extreme hardness and excellent durability, sapphire makes an ideal window material for many applications. Due to reduced scatter losses and high polarization uniformity, it has easily twice the life span of other crystals used in high power laser applications.

Material:	Optical Grade Sapphire			
Diameter Tolerance:	±0.05 mm			
Thickness Tolerance:	±0.05 mm			
Surface Quality:	1 micron-inch, RMS			
Surface Accuracy:	~15λ per inch			
Clear Aperture:	90%			
Edges:	Fine ground and beveled			

All dimensions are in mm unless otherwise specified.

	Thickness, mm (Inches)					
Diameter	0.5 (0.020") 1.0 (0.040") 2.0 (0.080") 3.0 (0.1					
6.35 (.25")	G102020	G102040	G102080	G102125		
9.53 (.375")	G103020	G103040	G103080	G103125		
12.7 (.5")	G105020	G105040	G105080	G105125		
15.88 (.625")	G106020	G106040	G106080	G106125		
19.05 (.75")	G107020	G107040	G107080	G107125		
22.23 (.875")	G108020	G108040	G108080	G108125		
25.4 (1")	G110020	G110040	G110080	G110125		
28.58 (1.125")	G111020	G111040	G111080	G111125		

Custom Windows - All Types

In addition to our catalog offerings of windows, we also manufacture a variety of custom windows and machined plano components.

Sizes:

Over 24" diagonal measure on more common materials and sapphire up to 6" diameter.

Materials:

Esco manufactures standard and custom windows out of every material listed in this catalog. Additional materials are readily available upon request. Please contact Esco for more information.

Aspect Ratio:

Flatness and parallelism are greatly impacted by the aspect ratio of the component. It is often necessary to use a window whose aspect ratio (overall diagonal : thickness) is as low as possible. All materials act differently, however a good rule of thumb for λ /₁₀ surface accuracy is about a 6:1 aspect ratio.

Parallelism:

Esco can manufacture windows to <1 arc second parallelism. The tighter the requirement, the more costly the window is to manufacture. If you are unsure about your needs or requirements, please contact Esco for assistance.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply windows with surface quality better than laser grade, 10-5 or surface accuracies better than $\lambda/_{20}$.

Surface Roughness:

In keeping with today's high power laser and growing multi layered coating requirements, Esco polishes fused silica and other optical materials to very low surface roughness. Esco employs our state of the art manufacturing equipment coupled with a Zygo New View 8300 to inspect and certify our components to <1 Angstrom RMS.

Tolerances:

The dimensional and optical tolerances shown on the preceding pages are the standard tolerances used for our catalog components. These tolerances are usually in line with the typical uses for these components. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Esco will apply AR or beamsplitter coatings to any window. For more information concerning coatings, please see pages 35 - 40 or contact Esco.

Laboratory Supplies

Esco offers a special line of flat optical elements for use with various laboratory applications such as preparing samples for viewing under a microscope. These parts provide optical characteristics not found in ordinary glass slides and cover slips. Their above average material and surface quality can dramatically enhance image quality.

Laboratory Supplies

Microscope Slides

Esco provides microscope slides made from a variety of optical materials and in several different convenient sizes. This assortment, like that of our standard optical windows, is the most comprehensive on the market. Although they possess excellent surface quality, the aspect ratio of these elements is very high and good surface accuracy is not achievable.

Diameter Tolerance:	±0.125 mm		Size	Thickness	S1-UV	A1	Pyrex
Thickness Tolerance:	±0.125 mm	25.	.4 x 25.4	1.0	Q110040	Q310040	Q710040
Surface Quality:	60-40, scratch-dig	50.	.8 x 25.4	1.0	R320110	R120110	R220110
Clear Aperture:	90%	76.	.2 x 25.4	1.0	R330110	R130110	R230110
Edges:	Fine ground and beveled	101	.6 x 25.4	1.5	R340115	R140115	R240115
All dimensions are in mm unless otherwise specified.			2.4 x 25.4	2.0	R360120	R160120	R260120

Cover Slips

These ultra-thin elements are made from high quality materials and provide above average optical characteristics to enhance image quality.

Thickness:	0.16 ±0.01 mm		Diamete
Dimensional Tolerance:	±0.125 mm 60-40, scratch-dig 90%		12.0
Surface Quality:			25.0
Clear Aperture:			Size
		12.0 x 12.	
All dimensions are in mm	unless otherwise specified.		25.0 x 25.

Diameter	S1-UV	A1	Pyrex
12.0	R412000	R512000	R612000
25.0	R425000	R525000	R625000
Size	S1-UV	A1	Pyrex
12.0 x 12.0	R412012	R512012	R612012
25 0 v 25 0	D425025	P525025	R625025

Esco offers a variety of flat mirror substrates using sodalime, Borofloat and Zerodur to suit a wide range of applications. Available stock coatings include UV-Enhanced Aluminum, Standard Enhanced Aluminum and Protected Silver. All mirrors are over-coated with silicon monoxide to improve durability. For detailed information concerning the characteristics of optical coatings, see pages 35 - 40.

For higher reflectivity or in cases where high laser energy requires the use of nonmetallic thin films, Esco provides dielectric laser-quality mirror coatings customized to meet the demanding requirements of your system. Order as UNCOATED and add the desired coating specifications from pages 38 - 40 or contact an Esco sales representative to discuss your custom application.

Precision (Laser) Quality Flat Mirrors

Materials:	G1 Optical Grade Fused Quartz			
Surface Quality:	40-20, scratch-dig			
Dimensions:	±0.15 mm			
Rear Surface:	Fine ground			
Edges: Fine ground and beveled				
All dimensions are in mm unless otherwise specified.				

Laser Quality Mirrors:

	Diameter	Thickness	Surface Accuracy	Uncoated	AI-SiO	AI-MgF ₂	MAX R 488/514.5 nm	MAX R 532 nm	MAX R 633 nm
	12.7	3.2	λ _{/10}	D405000	D405100	D405200	D405488-0	D405532-0	D405633-0
uartz	12.7	3.2	λ _{/10}				D405488-45	D405532-45	D405633-45
וע b≞	25.4	6.4	λ_{4}	D310000	D310100	D310200			
: Fuse	25.4	6.4	λ _{/10}	D410000	D410100	D410200	D410488-0	D410532-0	D410633-0
irade	25.4	6.4	λ _{/10}				D410488-45	D410532-45	D410633-45
ical G	50.8	12.7	λ_{4}	D320000	D320100	D320200			
Opti	50.8	12.7	λ/ ₁₀	D420000	D420100	D420200			
6	76.2	19.1	λ _{/10}	D430000	D430100	D430200			
	101.6	25.4	λ _{/10}	D440000	D440100	D440200			
	152.4	38.1	λ/ ₁₀	D460000	D460100	D460200			

NOTE: The spectral performance of an all dielectric coated mirror depends on the angle at which it is used. For your convenience, Esco provides off-the-shelf MAX R coated mirrors at three common wavelength areas, designed for use at either 0° (normal) or 45° incidence, as indicated above by the section of the part number following the dash.

Ultra-Stable Laser Quality Mirrors:

Materials:	Zerodur		Diameter	Thickness	Surface	Uncoated	AI-SiO	AI-MgF ₂
Surface Quality:	20-10, scratch-dig		12 7	3.2	λ/20	D205000	D205100	D205200
Dimensions:	±0.15 mm	5	25.4	6.4	³⁷ 20 λ/20	D210000	D210100	D210200
Rear Surface:	Fine ground	Prod	50.8	12.7	λ/20	D220000	D220100	D220200
Edges:	Fine ground and beveled	2	76.2	19.1	λ/ ₂₀	D230000	D230100	D230200
All dimensions are in mm unless otherwise		-	101.6	25.4	λ/20	D240000	D240100	D240200
specified.			152.4	38.1	λ/ ₂₀	D260000	D260100	D260200

Commercial Quality Flat Mirrors

Material:	Soda-lime Float Glass			
Coating:	Al-SiO			
Surface Quality:	80-50, scratch-dig			
Dimensions:	±0.5 mm			
Rear Surface:	Commercial Polish			
Edges:	Fine ground and polished			
All dimensions are in mm unless otherwise				

All dimensions are in mm unless otherwise specified.

	P/N	Length (L)	Width (W)	Thickness
gular	D610010	25.4	25.4	6.0
sctan	D610020	25.4	50.8	6.0
re/Re	D620030	50.8	76.2	6.0
Squa	D620060	50.8	152.4	9.5
	D630050	76.2	127	9.5

	P/N	Diameter	Thickness
	D502500	25.0	6.0
tound	D505000	50.0	6.0
~	D507500	75.0	6.0
	D510000	100.0	6.0

Custom Mirrors - All Types

In addition to our standard lines of mirrors, we also manufacture a variety of custom elements. For more information on these and other custom products or applications, please contact Esco at 1-800-922-ESCO (3726).

Shapes:

Concave and convex spherical, ellipsoidal, flat, square, round or custom.

Sizes:

Concave, <12" diameter. Flat, nearly any size is possible. Please contact Esco to discuss your particular application.

Aspect Ratio:

If good surface accuracy is required, it is often necessary to use a mirror whose aspect ratio (diameter : thickness) is as low as possible. Although all materials act differently, a good rule of thumb for $\lambda/10$ surface accuracy is about a 6:1 aspect ratio.

84

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply elements with surface quality better than 10-5 laser grade and surface accuracies better than $\lambda/10$.

Tolerances:

The dimensional tolerances shown on the preceding pages are the standard tolerances used for offthe-shelf elements. If your application requires modified tolerances, Esco can typically accommodate for such changes. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Materials:

Fused Quartz/Fused Silica (all grades) Borofloat Any optical glass Other materials upon request

Thermal Expansion:

For thermal environments that may affect the surface accuracy of a mirror, we suggest using a substrate material with good thermal expansion properties. Contact Esco to discuss which material is best for your application.

Rear Surface:

For metallized front surface mirrors, such as our standard lines, an unpolished rear surface presents a cost savings and does not interfere with the performance of the mirror. For dielectrically coated mirrors, however, a fine ground rear surface can be a source of scatter of any transmitted radiation and may degrade the mirror or the system's performance. Back reflections from this surface cannot only interfere with the desired wavefront, but can (in the case of high power lasers) heat the substrate, causing deformation of the reflecting surface. In these cases, Esco recommends a polished rear surface with an anti-reflection coating.

Coatings:

Al-SiO Silver Gold Dielectric High Reflectors Other coatings upon request

Esco Optics offers a complete selection of colored glass, neutral density, and bandpass filters. Our filter materials are manufactured from Schott, Hoya and Isuzu materials. If you cannot find the particular filter to satisfy your specific application, our sales engineers will be happy to assist you in selecting a custom filter to meet your needs. A complete list of data sheets and specifications are available on our website.

Color Filter Glass

Esco is pleased to offer Schott color filter glasses in standard 2" squares. Although we stock the most common thickness for each type, other thicknesses and sizes are available upon request. For more information concerning the specific transmission characteristics, properties, or applications, please contact Esco.

Dimensional Tolerance:	±0.25 mm
Surface Accuracy:	<5λ per 25 mm
Surface Quality:	60-40, scratch-dig
Parallelism:	<10'
Edges:	Fine ground and beveled

50.8 mm x 50.8 mm

All dimensions are in mm unless otherwise specified.

	Schott Designation	Thickness	P/N		Schott Designation	Thickness	P/N
	UG 1	1.0	S284001		GG 420	2.0	S244420
	UG 3	1.0	S284003		GG 435	2.0	S244435
	UG 5	1.0	S284005		GG 455	2.0	S244455
	UG 11	1.0	S284011		GG 475	2.0	S244475
					GG 495	2.0	S244495
	BG 3	1.0	S224003				
	BG 7	1.0	S224007		OG 515	3.0	S264515
	BG 18	1.0	S224018		OG 530	3.0	S264530
	BG 25	1.0	S224025		OG 550	3.0	S264550
	BG 38	1.0	S224038		OG 570	3.0	S264570
	BG 39	1.0	S224039		OG 590	3.0	S264590
	BG 40	1.0	S224040				
ion	BG 42	1.0	S224042	ion	RG 610	3.0	S274610
gnat				gnat	RG 630	3.0	S274630
esig	WG 280	1.0	S294280	esig	RG 645	3.0	S274645
L L	WG 295	1.0	S294295	t D	RG 665	3.0	S274665
cho	WG 305	1.0	S294305	cho	RG 695	3.0	S274695
S	WG 320	1.0	S294320	S	RG 715	3.0	S274715
					RG 780	3.0	\$274780
	KG 1	2.0	S254001		RG 830	3.0	\$274830
	KG 2	2.0	S254002		RG 850	3.0	\$274850
	KG 3	2.0	S254003		RG 1000	3.0	5274100
	KG 4	2.0	S254004		NC 1	1.0	5261001
	KG 5	2.0	S254005		NG 1	1.0	5261001
					NG 3	1.0	5261003
	FG 3	1.0	\$234003		NG 4	1.0	5261004
	FG 6	1.0	\$234006			1.0	5261005
	FG 13	2.0	\$234013		NG 11	1.0	5261011
		2.0	010.0.0			1.0	5201011
	GG 395	1.0	S244395		VG 9	1.0	S281009
	GG 400	2.0	S244400		VG 20	1.0	S281020

Size:

Custom Colored Glass Filters

In addition to our standard line of Schott color filter glass, we also supply a range of colored glasses from other manufacturers. Esco can provide you with custom machined and polished shapes and configurations.

Sizes:

Color glass is only available in sheets up to 165 mm. Maximum thickness varies with glass-type. Please contact Esco for more information.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply color filter glass with surface quality 10-5 or surface accuracies better than λ /20. In these cases, glass types with excellent homogeneity and no visible striae should be used.

Tolerances:

The dimensional tolerances shown on the preceding pages are the standard tolerances used for catalog components. To discuss your particular needs, please contact Esco at 1-800-922-ESCO (3726).

Neutral Density Filters

Neutral density (ND) filters are used to attenuate incident radiation without altering its spectral distribution. The neutral density value (D) of an ND filter is related to the transmittance (T) by:

$$T = 10^{-OD}$$
 or $OD = log\left(\frac{1}{T}\right)$

If two or more filters are placed in sequence, the resultant density value is calculated from either the sum of the individual density values or the product of the transmittances. This holds true if no multiple reflections occur between elements. ND filters are available in two types. The first uses neutral density color filter glass such as the NG types made by Schott.

- These filters can be AR coated to prevent back reflections.
- They can handle higher input energy, especially if actively cooled.
- Very accurate ND values are possible by controlling the thickness of the color glass.

The second type of ND filter is a glass or quartz substrate with a precision metallic coating (Inconel) that provides uniform attenuation across a wide spectral range. Some advantages of metallic coated ND filters include:

- Coating on quartz allows controlled attenuation in the UV.
- Coating provides attenuation with greater linearity over a wide spectral range.
- The filter can handle higher intensity light sources because part of the beam is reflected rather than absorbed.

The Inconel film is comprised of a very hard alloy material that is resistant to degradation under normal conditions. Use at high temperatures can cause oxidation however, and is not recommended.

NOTE: Use of any of these neutral density filters with high power lasers or other extreme light sources can cause catastrophic failure and is not recommended.

Size:	50.8 mm x 50.8 mm	
Dimensional Tolerance:	±0.25 mm	
Density Tolerance:	±4% at 550 nm	
Surface Accuracy:	<5λ per 25 mm	
Surface Quality:	60-40, scratch-dig	
Parallelism:	<10′	
Edges:	Fine ground and beveled	
All dimensions are in mm u	nless otherwise specified.	

Neutral Density Color Glass Filters:

Nominal Density	Transmission	Glass Type	P/N
0.1	79.4%	NG12	S301000
0.2	63.1%	NG11	S302000
0.3	50.1%	NG11	S303000
0.4	39.8%	NG11	S304000
0.5	31.6%	NG11	S305000
0.6	25.1%	NG5	S306000
1.0	10.0%	NG5	S310000
2.0	1.0%	NG4	S320000
3.0	0.1%	NG3	S330000
4.0	0.01%	NG3	S340000
Set of all 10			S300000

Substrate Materials:	K5 Crown Glass and S1-UV Ultraviolet Grade Fused Silica		
Size:	50.8 mm x 50.8 mm		
Thickness:	1.0 mm		
Density Tolerance:	±10% of density for values <0.5 and ±5% for values >0.5		
Dimensional Tolerance:	±0.25 mm		
Surface Accuracy:	<5λ per 25 mm		
Surface Quality:	60-40, scratch-dig		
Parallelism:	<10'		
Edges:	Fine ground and beveled		
All dimensions are in mm unless otherwise specified.			

Transmission (internal) measured at 550 nm. For a small charge, Esco will provide curves showing the actual transmission characteristics of any standard or custom neutral density filter.

Nominal Density	Transmission	N-BK7/S-BSL7	Fused Quartz
0.1	79.4%	S701000	S501000
0.2	63.1%	S702000	S502000
0.3	50.1%	\$703000	S503000
0.4	39.8%	S704000	S504000
0.5	31.6%	S705000	S505000
0.6	25.1%	S706000	S506000
1.0	10.0%	S710000	S510000
2.0	1.0%	S720000	S520000
3.0	0.1%	\$730000	S530000
4.0	0.01%	S740000	S540000
Set of all 10		S700000	S500000

Transmission measured at 550 nm. For a small charge, Esco will provide curves showing the actual transmission characteristics of any standard or custom neutral density filter.

Custom Neutral Density Filters

In addition to our standard lines of neutral density filters, we also manufacture a variety of custom elements. For more information on these and other custom products or applications, please contact Esco.

Sizes:

Up to 165 mm for color filter glass, larger for metallic coated.

NOTE: Coating thickness variations can occur on larger substrates. This can lead to non-linear attenuation across the face of the filter. Please contact Esco if you are considering neutral density filters larger than 50 mm.

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply neutral density filters with surface quality better than laser grade, 10-5 or surface accuracies better than $\lambda/20$. In these cases, materials with excellent homogeneity should be used. For more information, please contact Esco.

Materials:

Fused Quartz/Fused Silica (all grades) Borofloat N-BK7/S-BSL7 Optical Glass Other materials upon request

Tolerances:

The dimensional tolerances shown on the preceding pages are the standard tolerances used for offthe shelf elements. Esco can manufacture custom products with different tolerances upon request. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Although AR coatings cannot be used on metallic coated ND filters, they are available for color filter glass models. Please see pages 36 - 37 for more information or contact Esco.

Bandpass Filters

Thin film bandpass filters are optical elements that are designed to transmit a specific spectral band with high efficiency, while rejecting, by both absorption and reflection, all unwanted energy outside that region. The characteristics of the passband are controlled by multilayer dielectric coatings. Blocking is usually achieved with a combination of color filter glass and specially designed metallic films. The bandpass and blocking elements are laminated (epoxied) together to form a single unit and then edge sealed to prevent degradation due to moisture.

Bandpass filters are used in any application requiring the isolation of a narrow spectral bandwidth and a high signal-to-noise ratio. Esco supplies bandpass filters that provide transmission bands from the ultraviolet to the near infrared.

Esco provides standard bandpass filters that are designed for use at several common wavelengths. All models provide out of band blocking of better than 10-4. Two sizes are available: 0.5" and 1.0" diameter. Each filter is provided sealed in metal (aluminum) rings. These rings provide additional protection against degradation due to water absorption, as well as, a more accurate edge that can often help in mounting situations. Upon request, Esco will provide individual curves showing the actual transmission characteristics of any filter.

For a small charge, Esco will provide individual curves showing the actual transmission characteristics of any filter.

NOTE: Bandpass Filters will be shipped as RING-MOUNTED unless unmounted filters are requested at the time of the order.

Sizes (Clear Aperture):	12.7 mm (8.1 mm) diameter 25.4 mm (20.3 mm) diameter	
Dimensional Tolerance:	+0/-0.13 mm	
Thickness:	<6.4 mm	
Center Wavelength Tolerance:	254-313 nm: ±3 nm 340-1064 nm: ±2 nm	
Bandwidth Tolerance:	254-313 nm: ±2.5 nm 340-1064 nm: ±2 nm	
Surface Accuracy:	Not applicable	
Surface Quality:	80-50, scratch-dig	
Blocking:	Better than 10 ⁻⁴ from X-ray to far infrared	
Temperature Limits:	-50°C to +80°C	

Wavelength (nm)	Bandwidth	Minimum Transmission	12.7 mm Diameter	25.4 mm Diameter
254.0	10	17	S912540	S902540
265.0	10	17	S912650	S902650
280.0	10	17	S912800	\$902800
289.0	10	17	S912890	S902890
297.0	10	17	S912970	\$902970
308.0	10	17	S913080	\$903080
313.0	10	17	S913130	S903130
334.0	10	20	S913340	\$903340
337.1	10	20	S913371	S903371
340.0	10	35	S913400	\$903400
350.0	10	35	S913500	\$903500
360.0	10	35	\$913600	\$903600
370.0	10	35	\$913700	\$903700
378.0	10	35	5913780	5903780
380.0	10	35	5913800	5903800
390.0	10	35	5913900	5903900
394.0	10	35	5913940	5903940
400.0	10	40	S91/000	5904000
405.0	10	40	5914050	5904050
405.0	10	40	5914050	5904050
410.0	10	40	5914700	5904700
420.0	10	40	5914200	5904200
430.0	10	40	5914300	5904300
435.8	10	45	5914358	5904358
440.0	10	45	5914400	5904400
441.6	10	45	5914416	5904416
450.0	10	50	5914500	5904500
457.9	10	50	5914579	5904579
460.0	10	50	5914600	5904600
470.0	10	50	5914700	5904700
480.0	10	50	5914800	5904800
488.0	10	50	5914880	5904880
490.0	10	50	5914900	5904900
500.0	10	50	5915000	5905000
510.0	10	50	5915100	5905100
514.5	10	50	5915145	\$905145
520.0	10	50	\$915200	\$905200
530.0	10	50	\$915300	\$905300
532.0	10	50	\$915320	\$905320
540.0	10	50	\$915400	\$905400
546.1	10	50	S915461	S905461
550.0	10	50	\$915500	\$905500
560.0	10	50	S915600	S905600
570.0	10	50	S915700	S905700
577.7	10	50	S915777	S905777
580.0	10	50	S915800	S905800
589.6	10	50	S915896	S905896
590.0	10	50	S915900	\$905900
600.0	10	50	S916000	\$906000
610.0	10	50	S916100	S906100
620.0	10	50	S916200	S906200
630.0	10	50	S916300	S906300

Wavelength (nm)	Bandwidth	Minimum Transmission	12.7 mm Diameter	25.4 mm Diameter
632.8	10	50	S916328	S906328
640.0	10	50	S916400	\$906400
650.0	10	50	S916500	\$906500
656.3	10	50	S916560	S906560
660.0	10	50	\$916600	\$906600
670.0	10	50	\$916700	\$906700
671.0	10	50	\$916710	\$906710
680.0	10	50	\$916800	\$906800
690.0	10	50	5916900	5906900
694.3	10	50	5916943	5906943
700.0	10	50	\$917000	\$907000
710.0	10	45	\$917100	\$907100
710.0	10	45	\$917200	5907200
720.0	10	45	\$917200	\$907200
730.0	10	45	5917/00	5907/00
740.0	10	45	5917400	5907500
750.0	10	45	5917500	5907500
765.0	10	45	5917650	5907650
705.0	10	45	5917050	5907050
770.0	10	45	5917700	5907700
700.0	10	45	5917600	5907600
790.0	10	45	5917900	5907900
810.0	10	45	5918000	5906000
810.0	10	45	5918100	5908100
820.0	10	45	5916200	5906200
830.0	10	45	5918300	5908300
850.0	10	45	5916400	5906400
852.0	10	45	5910500	5906500
860.0	10	45	5918520	5908520
870.0	10	45	5918000	5908000
890.0	10	45	5918700	5908700
800.0	10	45	5918800	5908000
000.0	10	45	5918900	5908900
905.0	10	45	5919000	5909000
905.0	10	45	5919050	5909050
910.0	10	45	5919100	5909100
920.0	10	45	5919200	5909200
930.0	10	45	5919500	5909500
940.0	10	45	5919400	5909400
950.0	10	45	5919500	5909500
960.0	10	45	5919600	5909600
970.0	10	45	5919700	5909700
960.0	10	45	5919600	5909600
990.0	10	45	5919900	5909900
1010.0	10	40	5911000	5001000
1010.0	10	45	\$011020	5901010
1020.0	10	45	5911020	5901020
10/0 0	10	45	S911030	5901030
1050.0	10	-5	5911050	5901040
1060.0	10	45	5911060	5901050
1064.0	10	45	S911064	\$901064

94

Esco manufactures custom windows, mirrors and head up display substrates. Shown here is our Zeiss O-Inspect measuring a machined window.

A beamsplitter is any optical component that is used to split light into, or recombine from, two separate beam paths. Esco provides two different types of beamsplitters: plates and cubes. Each has certain advantages and disadvantages depending on the intended application. Please call Esco to discuss the form that is best suited to your application.

Beamsplitter Plates

Esco manufactures general purpose beamsplitter plates for use in the visible and UV spectra. If you require elements with different spectral or physical characteristics, please contact Esco.

General

For Visible

Features:

- Compact, lighter than cubes with similar apertures
- No epoxy is used, so use with higher power lasers is possible
- Transmitted and reflected wavefronts are easier to manipulate
- Beams travel different optical paths
- R/T ratio is dependent on the state of polarization
- Internal reflection from second surface produces ghost image in reflected path
- Can be built with custom wedge to divert back reflections from beam path
- Beam can be shifted angularly by controlling the wedge or, laterally by controlling the thickness

Dimension Tolerance:	±0.125 mm
Thickness Tolerance:	±0.125 mm
Parallelism:	10′
Surface Quality:	60-40, scratch-dig
Edges:	Fine ground and beveled

Material:	N-BK7/S-BSL7 Optical Glass	
Coatings		
First Surface:	BEAMSPLITTER (All-dielectric)	
Angle of Incidence:	45°	
Polarization:	Unpolarized	
Wavelength Range:	400-700 nm	
R/T Ratio:	50/50 ±5%	
Back Surface:	ANTI-REFLECTION	
Single layer MgF ₂ :	<1.5% R average 400-700 nm	

All dimensions are in mm unless otherwise specified.

	Material:	S1-UV Grade Fused Silica
FOL UV	Coatings First Surface: Angle of Incidence: Polarization: Wavelength Range: R/T Ratio: Back Surface: Single layer MgF ₂ :	BEAMSPLITTER (Metallic) 45° Unpolarized 200-700 nm 30/30 ±5% (200-400 nm) ANTI-REFLECTION <1.5% R average 200-400 nm
	All dimensions are in mr	n unless otherwise specified.

luare	Size	Thickness	Surface Accuracy	For Visible	For UV
	25.4 × 25.4	1.0	^{3λ} / ₂₅ mm	0101010	0201010
	50.8 × 50.8	1.0	^{3λ} / ₂₅ mm	0102020	0202020
Ň	25.4 × 25.4	5.0	λ/ ₁₀	0111010	0211010
	50.8 × 50.8	10.0	^۸ / ₁₀	0112020	0212020

	Size	Thickness	Surface Accuracy	For Visible	For UV
q	25.4	1.0	^{3λ} / ₂₅ mm	0101000	0201000
uno	50.8	1.0	^{3λ} / ₂₅ mm	0102000	0202000
æ	25.4	5.0	λ/ ₁₀	0111000	0211000
	50.8	10.0	λ/ ₁₀	0112000	0212000

Beamsplitter Cubes

Standard:

Beamsplitter cubes are constructed by cementing two right angle prisms together along their hypotenuses. They are supplied with one of the beamsplitter coatings described below applied to the hypotenuse of one of the prisms. The leg faces are uncoated, but can be AR coated upon request. Esco manufactures general purpose beamsplitter cubes for use in the visible and UV spectra. If you require elements with different spectral or physical characteristics, please contact Esco.

Features:

- Transmitted beam is neither displaced nor deflected
- Reflected and transmitted beams travel identical optical path lengths
- No ghost images
- Less susceptible to mechanical stress

- R/T ratio dependent on the state of polarization
- Designed for use with collimated beams
- Contains cemented interface that may not be suited for high power laser applications
- Cemented interface may introduce undesired wave front distortion in larger cubes

General	Dimension Tolerance:	±0.5 mm	
	Surface Quality:	60-40, scratch-dig	
	Edges:	Fine ground and beveled	

For Visible	Material:	N-BK7/S-BSL7 Optical Glass		
	Coating:	Beamsplitter (Hybrid metal- dielectric)		
	Polarization:	Unpolarized		
	Wavelength range:	400-700 nm		
	R/T ratio:	45/45 ±5%		
	Absorption:	~10%		

For UV	Material:	S1-UV Grade Fused Silica	
	Coating:	Beamsplitter (metallic)	
	Polarization:	Unpolarized	
	Wavelength range:	200-700 nm	
	R/T ratio:	30/30 ±5% (200-400 nm)	

For Laser	Material:	S1-UV Grade Fused Silica	
	Coating:	Beamsplitter (All-dielectric)	
	Angle of Incidence:	45°	
	Polarization:	Unpolarized	
	Wavelength range:	SPECIFY	
	R/T ratio:	45/45 ±5%	

	Size (mm)	Flatness	For Visible	For UV	For Laser*	
. Cubes	15	1λ	0315015	0415015	0515015	
	20	1λ	0320020	0420020	0520020	
	15	^λ / ₁₀	0315115	0415115	0515115	
litter	20	^λ / ₁₀	0320120	0420120	0520120	
Beamsp	25	1λ	0325025	0425025	0525025	
	38	1λ	0338038	0438038	0538038	
	50	1λ	0350050	0450050	0550050	
	*IMPORTANT: Specify laser wavelength when ordering. Call Esco for more information.					

Custom

In addition to our standard beamsplitters, we also manufacture a variety of custom elements including custom plates and cubes. For more information concerning beamsplitter variations or applications, please contact Esco at 1-800-922-ESCO (3726).

Sizes:

Plates: nearly any size is possible. Cubes: up to 100.0 mm

Size may limit the choice of coating. Please contact Esco to discuss your particular application.

Materials:

Fused Quartz/Fused Silica (all grades) Any optical glass Other materials upon request

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply beamsplitters with surface quality better than 10-5 laser grade or surface accuracies better than $\lambda/_{20}$. Please inquire.

Wavefront Distortion:

If higher quality wavefront distortion is required, it is necessary to use a beamsplitter plate whose aspect ratio (diameter:thickness) is as low as possible. Although all materials act differently, a good rule of thumb for $\lambda/10$ surface accuracy is about a 6:1 aspect ratio.

It is often difficult to achieve good wavefront distortion with large beamsplitter cubes, despite the surface accuracy of the constituent prisms. Many optical epoxies cause stress that can adversely affect wavefront performance in cubes larger than about 30 mm. Please contact Esco for more information.

Tolerances:

The dimensional tolerances shown above are the standard tolerances used for off-the-shelf elements. Although Esco feels that these tolerances are in line with the typical uses for these parts, we can manufacture custom products with different tolerances upon request. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Whenever specifying a custom beamsplitter, it is important to know:

- Wavelength, or wavelength range
- Angle of incidence
- State of polarization

Esco can provide custom beamsplitter coatings for almost any combination of these conditions. Three basic types of coatings can be used:

1. All dielectric beamsplitter coatings provide good R/T characteristics with negligible absorption. They are extremely sensitive to polarization and angle of incidence and are designed for use over a narrow spectral region.

2. Metal (Inconel) beamsplitter coatings are not sensitive to polarization or angle of incidence. They provide steady R/T characteristics over a wide spectral range but can absorb as much as 35% of the incident energy.

3. Hybrid beamsplitter coatings are a combination of metal and dielectric films and therefore share many of their properties. They tend to be less absorptive than metal coatings and have a wider spectral response than an all dielectric coating.

Polarizing beamsplitter coatings are narrowband coatings that separate the S and P states of the incident light. These coatings are extremely angle sensitive but highly effective with collimated beams.

AR coatings for the side faces of cubes or the rear surface of plates are always available and encouraged. For information concerning availability please contact Esco.

A prism is an optical element whose purpose is to deflect or deviate a beam of light. Literally dozens of basic prism types exist. Esco's standard product line consists of three elementary shapes:

- Right angle prisms: Typically used to deflect beams either 90° or 180°
- Equilateral prisms: Used to spectrally disperse polychromatic light.
- Laser prisms: Used to select a discrete wavelength from multi-wavelength lasers.

Right Angle Prisms

In many situations involving collimated light, prisms are superior to mirrors for deflecting light. Prisms, because of their shape accuracy, require less positioning than mirrors. Light is always reflected within the plane parallel to the ground face of the prism. Also, because light is reflected by total internal reflection, prisms can be used to reflect high power laser beams that might otherwise damage sensitive coatings.

		Commercial	Laser Quality	
Specifications	Dimensional Tolerance:	±0.25 mm	±0.125 mm	
	Angle Tolerance:	±10′	±30"	
	Surface Accuracy:	λ_{2} per inch	λ _{/10}	
	Surface Quality:	60 - 40, scratch-dig	20 - 10, scratch-dig	
	Edges:	Fine ground and beveled	Fine ground and beveled	

		Comm	nercial	Laser Quality	
Product Information	Size (L)	N-BK7/S-BSL7	S1-UV	N-BK7/S-BSL7	S1-UV
	5.0	1405050	1105050	1405151	I105051
	10.0	I410100	I110100		
	15.0	1415150	I115150	1415151	1115151
	20.0	1420200	1120200	1420021	1120201
	25.0	1425250	1125250	1425251	1125251
	38.1	1438380	1138380	1438381	1138381
	50.0	1450500	1150500	1450501	I150501

Equilateral Prisms

These elements, also called dispersion prisms, are commonly used to separate multiple wavelengths of a polychromatic source. The direction of the exit beam is dependent on the wavelength, the angle of incidence and the shape of the prism. The equilateral shape of these prisms takes full advantage of the dispersive properties of the optical materials to provide maximum separation between wavelengths.

For visible light incident at a 60° angle of incidence to one face of an equilateral prism, the following angular separations between the h (404.7 nm) and r (706.5 nm) lines can be realized for the materials listed below.

S1-UV	1° 5′
N-BK7/S-BSL7	1° 22′
SF10	7° 9′

		Commercial	Laser Quality	
ions	Dimensional Tolerance:	±0.25 mm	±0.125 mm	
Angle Tolerance:		±10'	±10'	
Speci	Surface Accuracy:	λ1 per inch	λ/ ₁₀	
Surface Quality:		60 - 40, scratch-dig	20 - 10, scratch-dig	
Prod	Edges:	Fine ground and beveled	Fine ground and beveled	

			Commercial			Laser Quality	
	Size (L x L)	N-BK7/S-BSL7	SF10	S1-UV	N-BK7/S-BSL7	SF10	S1-UV
ion	20 x 20	L420200	L520200	L120200	L420201	L520201	L120201
Product Informati	25 x 25	L425250	L525250	L125250	L425251	L525251	L125251
	30 x 30	L430300	L530300	L130300	L430301	L530301	L130301
	40 x 40	L440400	L540400	L140400	L440401	L540401	L140401
	45 x 45	L445450	L545450	L145450	L445451	L545451	L145451
	50 x 50	L450500	L550500	L150500	L450501	L550501	L150501

Laser Prisms

Brewster & Littrow Prisms:

These prisms are used to select a particular wavelength from a multi-wavelength laser. The apex angle of a Brewster laser prism is designed to deviate a ray of a particular wavelength by Brewster's angle, thus minimizing reflection losses when used with linearly polarized light. Only light that travels within the prism parallel to the base will be perfectly transmitted. Since other wavelengths will experience high losses, the Brewster prism can be used interacavity to suppress their gain.

A Littrow laser prism is the result of cutting a Brewster prism in half. The plane of the cut divides the apex angle and is perpendicular to the base of the prism. By adding a reflective coating to the new leg face, the Littrow is used like the Brewster prism, but the output exits back toward the source.

Each of these elements can be used to tune a variety of laser systems efficiently. Tuning is performed by tilting the prism in the path of the beam. The apex angle has been carefully chosen to allow maximum performance at any desired wavelength within the visible spectrum. For assistance with these or other similar custom products, please contact Esco at 1-800-922-ESCO (3726).

Brewster Prism

Material:	S1-UV Grade Fused Silica	
Surface Accuracy:	$^{\lambda}$ / ₂₀ over clear aperture	
Surface Quality:	10-5, scratch dig	
Clear Aperture:	Central 80% diameter	
Dimensional Tolerance:	±0.5 mm	
Apex Angle Tolerance:	±5′	
Edges:	Fine ground and beveled	
Width of Bevel	<5 mm	
Coating:	Uncoated, specify optional coating on Littrow prisms	
All dimensions are in mm unless otherwise specified.		

Туре	Size (L)	Apex Angle	P/N
Brewster	15	68° 56′	1515015
Brewster	25	68° 56′	1525025

15

25

Littrow Prism

34° 28'

34° 28'

1615015

1615015

Esco Optics, Inc. 95 Chamberlain Road, Oak Ridge, NJ 0743	1-800-922-3726	sales@EscoOptics.com	EscoOptics.com	104
--	----------------	----------------------	----------------	-----

Littrow

Littrow

Custom Prisms

In addition to our standard lines of prisms, we are often called upon to design and manufacture a variety of custom elements. For more information on custom products or applications, please contact Esco.

Sizes:

There is almost no size limitation for prisms that we can build. There is, however, usually a trade-off between size and angular accuracy. Please call Esco to discuss your particular application.

Materials:

Fused Quartz/Fused Silica (all grades) N-BK7/S-BSL7 Optical Glass Other materials upon request

Surface Quality:

Some applications may require surface qualities better than that of commercially available products. Esco can supply elements with surface quality better than laser grade, 10-5 or surface accuracies better than $\lambda/_{20}$. Please contact Esco for more information.

Tolerances:

The dimensional tolerances shown above are the standard tolerances used for off-the-shelf elements. Although Esco feels these tolerances are in line with the typical uses for these parts, we can manufacture custom products with other tolerances upon request. For certain OEM applications, looser tolerances may lead to a cost savings, while many critical applications may require much tighter tolerances. To discuss your particular needs, please contact Esco.

Coatings:

Unless otherwise specified, all standard Esco prisms are supplied uncoated. Coatings can, however, greatly enhance a prism's performance. To discuss your specific coating needs, please contact Esco

Custom and catalog prisms of any configuration can be supplied.

Visit the new EscoOptics.com

Check out our recently launched website featuring an improved user experience, searchable product catalog, and mobile-friendly, responsive design!

Designed With You In Mind

Our redesigned website better serves current and prospective customers through clear navigation, lighting fast search, and helpful conversion tools.

Secure Online Store

We have gone to great lengths to ensure your information is kept secure throughout your online purchase with 256-bit bank level encryption.

New Optical Designer

Purchase catalog optics or design custom optics with our new Optical Designer. It brings everything you need for custom optics calculations to one place.

Interactive Catalog

Browse our full catalog of more more than 1,800 optical components or search for parts instantly.

A Message From Our President

"We are excited to start the next chapter in Esco's long history. The misfortune of the 2014 fire has given rise to numerous backward blessings and has strengthened Esco to its core. The entire Esco Optics family is working hard to assure all of our customers the continuation of world class quality products and renewed partnerships in the coming years. With the support of our exceptional employees, our families, and our dearest friends in the industry, Esco is rising above this tragedy and continuing to excel at being a premier optics manufacturer in the United States."

Lee Steneken President

ITAR Registered

Made in the USA

EscoOptics.com