ideaMaker Manual

www.raise3d.com
5.2.1 Setting Group
5.2.1.1 Add New Setting Group
5.2.1.2 Delete setting groups
5.2.1.3 Edit the selected setting group
5.2.1.4 Add Settings
5.2.1.5 Delete Settings
5.2.2 Per-Layer Settings
5.2.2.1 Add Per-Layer Settings
5.2.2.2 Delete Per-Layer Settings
5.2.2.3 Edit Per-Layer Settings
5.2.3 Import and Export Group and Layer Settings
5.3 Per-Model Extruder
6 Multiple Extruders
6.1 Calibrate XY offset
6.2 Advanced Settings
7 Filament Settings
7.1 Edit Filament Settings
7.2 Add Filament
7.3 Remove Filament
8 Printer Settings
8.1 Edit Printer Settings
8.2 Add Printer
8.3 Duplicate Printer
8.4 Remove Printer
1 Using ideaMaker

1.1 What is ideaMaker?

ideaMaker is a slicing software which prepares 3D models for printing and turns them into G-Code file for your Raise3D printer.

1.2 Where to download ideaMaker?

ideaMaker is available in the USB storage included in the accessory box with your printer. Or you can get the latest version on our website at: http://www.raise3d.com/pages/download
2 Install ideaMaker

1. Open the installer and select your language preference. Then click **Next** to move on to the next menu. If you are using an older version of ideaMaker or reinstalling ideaMaker, you will need to close all open processes of ideaMaker. So the installation can be completed without error. Please check your task manager to make sure that there is no ideaMaker process before installation.

Figure 2.1: Select a language for installing ideaMaker.
Figure 2.2: License Agreement.

2. Select a path to install ideaMaker and then click **Next** to move on to the next menu.

Figure 2.3: Select a path to install your ideaMaker.
3. Follow the instruction and click **Install**. The **Printer Driver** function is used for F-series printers. If you do not have one, you can uncheck the component. **Microsoft Visual C++ 2008 SP1 Redistributable** is auto-checked by the installation software. If you have installed that in your computer before, you don’t need to check it again.

![Choose Components](image)

Figure 2.4: You don’t need to select Printer Driver if your printer is N-series Printer.
4. After the installation is completed, click **Next** to move onto the next step.

Figure 2.5: Press "Next" to complete the installation.
5. Click **Finish** and start your first print.

![Figure 2.6: Complete the installation.](image-url)
3 Let’s Print!

As you have finished the installation, you can now begin to use ideaMaker and prepare files to print. Here are the first steps.

3.1 Import .STL files

Click the button "+" to import .STL, .OBJ or .3MF files. Click the **Repair** button to execute an auto-repair of your model if the box at bottom-right corner shows any error warnings.

![Figure 3.1: Press the "+" icon to import STL files. If it doesn’t display a green tick below, press the "Repair" button to execute an auto-repair.](image)

Figure 3.1: Press the "+" icon to import STL files. If it doesn’t display a green tick below, press the "Repair" button to execute an auto-repair.
3.2 Slice the model

Click the start button to slice the model.

![Figure 3.2: start a slice.](image)

3.2.1 Select your printer type and filament type

If you are using V2 hot end, please select both printer and filament as V2. If you are not using V2 hot end, make sure both are selected as standard profiles.

![Figure 3.3: Select the printer and filament you want to use.](image)
3.2.2 Choose a slicing template

Select a slicing template or create a new template yourself by duplicating one of the three existing templates.

Figure 3.4: Select a template to start with. Click "Edit" to adjust the settings.
3.2.3 Edit the selected slicing template

Click *Edit* button or double click the template (or not if you duplicate a new template). Select a *Raft* type and *Support* type, then click *Save and Close* button. (You can edit other parameters in *Advanced* as well if you want. We will talk about that in the following chapters.)

![Edit Template](image)

Figure 3.5: Select a suitable "Platform Addition" and "Support" type for your model.
3.2.4 Click "Slice" button to start slicing

![Select Template]

Figure 3.6: Click "Slice" to start slicing.
3.3 Estimated Print Result

After completing the slicing, ideaMaker will advise the estimated data for your reference as Figure 3.7.

![Estimated Print Result]

Figure 3.7: Here you can check estimated print time and amount of filament needed.

3.3.1 Check the sliced model by layers

Click Preview button so that you can check the sliced model by height as Figure 3.8.

![Preview how the model will be printed out]
In this page you can check the **Retraction** and **Travel move** of the nozzle by selecting the corresponding options. The blue lines refer to the moving paths of nozzle. The orange marks refer to the retraction points.

![Image of nozzle paths and retraction points]

Figure 3.9: Check the retraction points with "Show Retraction". Check one layer with "Only Current Layer".

It can also show different structures in different colors by selecting **Structure in drop list.** The cyan parts refer to support and Raft. The red part refers to outer shell. The green parts refer to the inner shells. The yellow parts refer to infill. The blue lines refer to the moving paths of nozzle.
Figure 3.10: Show different structures with different colors.

Figure 3.11: Enable "2D" to check the current layer with orthographic view.
3.4 Save the sliced files

Close the preview dialogue box after the confirmation.
Now you will have two options to load the files to the printer.

Option 1: Export the sliced files to USB storage or SD card.

![Figure 3.12: Click "Export" in "Estimated Print Result" window to save the sliced files.](image)

1. If you want to save the sliced files, you can export the files directly to your USB storage or to folders in your computer. Then copy the sliced files (G-Code file and .data file) to USB storage. It is important to copy both files.

![Figure 3.13: G-Code file and .data file are both necessary for N-series printers.](image)
2. Insert the USB or SD storage unit into your printer and select the file to start your first print.

Figure 3.14: If you are using USB driver, press the "USB storage" to check the files inside. If you are using SD card, press "SD Card" to check the files inside.
Option 2: Upload the sliced file via WLAN.

1. First you need to make sure the printer and your computer are connected to the same network.

For WLAN connection, there is a little gear button at the top-right corner of the screen. Press the little gear button to go to the setting page.

Figure 3.15: Press the gear button to enter the setting page.
2. Select **WLAN** tab. Enable **WLAN** and select your network from the list then input the password.

![Image of printer connection settings]

Figure 3.16: Connect the printer with your "WLAN".

3. After connecting WLAN for your printer, click **Upload** and then you will see the **Select Printer** page. You can select the printer you want to print with here. And you also can rename the model in **Select Printer** page.

![Image of estimated print result]

Note: Result above is only for reference.
Figure 3.17: Click "Upload" in "Estimated Print Result" page and select a printer you want to use from the drop list.

4. After you clicking Upload, the Uploading Queue will appear on the left side of you screen. You can check the uploading progress here.

Figure 3.18: Check the uploading progress at the left side of ideaMaker.
5. After the upload is completed, you can start a print. Select the print from the touch screen on the printer. The WLAN-uploaded files are placed in **Local storage**.

Figure 3.19: Uploaded files will be inside "Local Storage".
You can also connect to your printer through ideaMaker remotely. Select **Printer -> Connect to Printer (Raise3D N-series)**.

![Select Printer -> Connect to Printer (Raise3D N-series)](image)

Figure 3.20: Select Printer -> Connect to Printer (Raise3D N-series).

6. Select the printer you want to connect with in this page.

![Select the printer you want to connect in "Scanning" list. Click the arrow icon to enter.](image)

Figure 3.21: Select the printer you want to connect in "Scanning" list. Click the arrow icon to enter.
7. The connecting page.

8. Now you can control your printer remotely. ideaMaker has the same operation interface as the touch screen on your printer. You can control the printer directly from here as well. The uploaded files are placed in local storage.

Figure 3.22: Wait for connecting.

Figure 3.23: Click "Local storage" to check the uploaded files.
9. Select the file you want to print and press **Print** button to start it.

Figure 3.24: Select one file to print and check the file information.
Remote connect

Home:

L-Nozzle temp: the temperature of the left nozzle. Upper one is current temperature. Below one is target temperature.

R-Nozzle temp: the temperature of the right nozzle. Upper one is current temperature. Below one is target temperature.

Heated bed temperature: the temperature of the heating bed. Upper one is current temperature. Below one is target temperature.

Current: the name of the printing model as Figure 3.25.

![Figure 3.25: Current](image)

Time Est.: the total time and the remaining time of the printing model. The bigger one refers to the remaining time. The small below one refers to the total time.

![Figure 3.26: Time Est.](image)

Percentage: the percentage of completed model.

![Figure 3.27: Percentage](image)

Height: the height of the completed model. Click the values then you can check the layer information, the current layer and how many layers in total.

![Figure 3.28: Height](image)
pause or stop printing task.

Figure 3.29: Home.

Tune:

L-Nozzle temperature: the temperature of the left nozzle.

R-Nozzle temperature: the temperature of the right nozzle.

If your machine is a dual-extruder machine, it will show **L-Nozzle temperature** and **R-Nozzle temperature**.

If your machine is a single-extruder machine, it will only show Nozzle temperature here.

Heated bed temperature: the temperature of the heated bed.

Feed rate: the overall printing speed percentage.

Fan speed: the speed of the fan which in controlled slot.

Note: only the right side downward fan on single-extruder machine can be controlled.

L-Nozzle flow rate: the flow rate of the left nozzle.

R-Nozzle flow rate: the flow rate of the right nozzle.
Utilities:

Move Steps: the distance X/Y/Z will move per click, there are 3 types: 10.0mm, 1.0mm and 0.1mm.

- move the extruder in X direction.
- move the extruder in Y direction.
- home the extruder in X & Y directions.
- move the build plate in Z direction.
- home the build plate in Z direction.
- move the feeding gear to load or unload filament.
If your machine is a dual-extruder machine it will show L and R nozzle icon here.

If the value of X/Y/Z/E have moved.

Will back to 0 after homing or reboot.

: disable all the five motors. (If the machine is a single-extruder one, then there are four motors in total.) You can push the head by hands after trigger this function.

Figure 3.29: Utilities.
Print:

Local Storage: store files which be uploaded by Ethernet or WLAN.

USB Storage: the printing files which saved by USB disk.

Uploading Queue: the files which uploaded Ethernet or WLAN.

Temp task: the printing task which be disturbed by the power loss.

Dashboard: the completed printing task will be stored in here.

![Print Page](image)

Figure 3.30: Print.

- : WIFI connection status.
- : printing status icon, only shown when print starts.
- : exit icon.
- : settings icon.

Machine name: the name of the machine and you can change it to be whatever you like.

Model: the type of the printer.

Serial Number: the identity number of the printer.

Version: the version of Raise Touch- touchscreen firmware currently used on this machine.

Update: the update information of touchscreen firmware.

Firmware version: the version of the motion controller board firmware.
Storage Available: the remaining memory space can be used in the machine.

About: included the feedback address.

![Figure 3.31: Machine.](image1)

Camera: camera function for Pro2 or Pro2 Plus.

Step 1: Choose a camera on the printer **Figure 3.32.**

![Figure 3.32: Choose a camera on touch screen.](image2)
Step 2: Connect to this camera as Figure 3.33.

Figure 3.33: Connect to the chose camera.

Step 3: Take photo and save it in your computer as Figure 3.34.

Figure 3.34: Take photo.
Ethernet: connect printer and computer by net cable.
WLAN: connect printer and computer by WLAN.

![Figure 3.37: WLAN.](image1)

Other:

Brightness: control the brightness of the screen, you can adjust it by pressing the “+” or “-” button.

Language: the language applied to your printer.

Number of Nozzles: the number of the nozzle.

![Figure 3.38: Other.](image2)
4 Interface

When you open ideaMaker, the main screen is as shown below. We divide it into nine sections and we will go through them one by one.

Figure 4.1: An overview over the ideaMaker interface.
4.1 Menu Bar

Menu bar includes all the operation commands and advanced setting.

1>File

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>New (N)</td>
<td>Ctrl+N</td>
<td>Create a new empty workspace</td>
</tr>
<tr>
<td>Open Idea File (Q)...</td>
<td>Ctrl+O</td>
<td>Open a .idea file</td>
</tr>
<tr>
<td>Close (W)</td>
<td>Ctrl+W</td>
<td>Close current project</td>
</tr>
<tr>
<td>Save Idea File (S)</td>
<td>Ctrl+S</td>
<td>Save file</td>
</tr>
<tr>
<td>Save Idea File As...</td>
<td>Ctrl+Shift+S</td>
<td>Save project file as .idea</td>
</tr>
<tr>
<td>Import Model...</td>
<td>Ctrl+I</td>
<td>Import a .STL, .OBJ or .3MF file</td>
</tr>
<tr>
<td>Export Model...</td>
<td></td>
<td>Export a .STL, .OBJ or .3MF file</td>
</tr>
<tr>
<td>Examples</td>
<td></td>
<td>Example files</td>
</tr>
<tr>
<td>Open Print File...</td>
<td></td>
<td>Open a sliced code file, such as .idea or .gcode file</td>
</tr>
<tr>
<td>Recent Files</td>
<td></td>
<td>Files that have been used recently</td>
</tr>
<tr>
<td>Exit</td>
<td></td>
<td>Exit ideaMaker</td>
</tr>
</tbody>
</table>

Note:

New (N): When creating a new empty workspace, ideaMaker will close the current project first.
2> Edit

![Edit Window]

- **Undo** (Z) or Ctrl + Z
- **Redo** (Y) or Ctrl + Y
- **Cut** (X) or Ctrl + X
- **Copy** (C) or Ctrl + C
- **Paste** (V) or Ctrl + V
- **Delete** (Del)
- **Duplicate** (D) or Ctrl + D
- **Select All** (Ctrl + A)
- **Deselect All** (Ctrl + Shift + A)
- **Preferences...**

Note:
There are some special options in preferences.

(1) General

![Preferences Window]

Figure 4.2: The General tab of Preference.
Slice Multi-Threads Speedup refers to the speed of slicing, the greater the **Multi-Threads Speedup** value, the faster the slicing speed. This value depends on your computer’s CPU threads.

Languages refers that you can select a language for your software.

Currency refers that you can select a currency unit for your software.

Maximum Duplicate Copies refers that you can increase the maximum value for models duplication, the maximum value is 1000, and the minimum is 1.

Slice with unsaved templates refers to carrying out a slicing without saving the settings edited. With this function enabled, you can select **Restore Defaults** or **Restore to the Last Saved**.
Save and restore window state refers that the window state can be saved and restored with this function enabled.

Save and restore preview state refers that the preview state can be saved and restored with this function enabled.

Automatically check for new version refers that the new version will be checked with this function enabled.

Enable printer discovery refers that with this function enabled ideaMaker will automatically search for printers under the same LAN as computer.

Visualize Gcode by traces without emulating extrusion width in 2D mode refers that enabled this function the tool paths will not be displayed with emulating extrusion width. It shows traces clearly.

Figure 4.3: Enable “Slice with unsaved templates”.

Figure 4.4: Unable this function
(2) Files

Figure 4.5: Enabled this function

Figure 4.6: The Files tab of Preference.
Weld Vertices refers that the nearby points will be welded with this function enabled.

Place models on platform after rotating, scaling and mirroring refers that the model will be placed on the build platform after rotating, scaling and mirroring.

![Figure 4.7: The model is floating in mid-air before rotating.](image1)

![Figure 4.8: The model is placed on platform after rotating.](image2)
Automatically position import models refers that with this function enabled the models will be placed in the center of the build platform automatically.

Figure 4.9: Enable the function of "Automatically position import models".

Figure 4.10: Unable the function of "Automatically position import models".
(3) Shortcuts

Figure 4.11: The Shortcuts tab of Preference.

Click left button and move mouse to rotate model.

Click **Ctrl**, left button and move mouse to pan the view.

Click **Alt**, left button and move mouse to zoom the view.

Click **shift**, left button and move mouse the fine control of mouse’s movement.

Click **shift**, right button and move mouse to control the preview gcode file. Move mouse up/down is to control **layer** in **Slice Preview**, move mouse left/right is to control **Step** in **Slice Preview**.
3>Slice

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Slice...</td>
<td>Slice model to get .gcode file and .data file</td>
</tr>
<tr>
<td>Stop Slice...</td>
<td>Abort slicing</td>
</tr>
<tr>
<td>Slice Report...</td>
<td>After slicing, you can get some estimated information such as print time, filament amount, etc.</td>
</tr>
<tr>
<td>Slice Preview...</td>
<td>After slicing, you can get a simulation of your print for pre-check</td>
</tr>
<tr>
<td>Upload Current Print File...</td>
<td>Upload the sliced file to printer</td>
</tr>
<tr>
<td>Export Current Print File...</td>
<td>Export the sliced file to computer</td>
</tr>
<tr>
<td>Manage Templates...</td>
<td>Edit the slicing template even without importing a model</td>
</tr>
</tbody>
</table>

4>View

<table>
<thead>
<tr>
<th>Menu Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Home View</td>
<td>Views of model</td>
</tr>
<tr>
<td>Top View</td>
<td>Check the model with perspective view</td>
</tr>
<tr>
<td>Front View</td>
<td>Check the model with orthographic view</td>
</tr>
<tr>
<td>Back View</td>
<td>Show the edges of model</td>
</tr>
<tr>
<td>Right View</td>
<td>Show the wireframe of model</td>
</tr>
<tr>
<td>Left View</td>
<td>Show defective model in red</td>
</tr>
<tr>
<td>Perspective View</td>
<td>Show the tips and shortcuts in the interface</td>
</tr>
<tr>
<td>Orthographic View</td>
<td></td>
</tr>
<tr>
<td>Show Edges</td>
<td></td>
</tr>
<tr>
<td>Show Wireframe</td>
<td></td>
</tr>
<tr>
<td>Show Color for Invalid Meshes</td>
<td></td>
</tr>
<tr>
<td>Show Tips and Shortcuts</td>
<td></td>
</tr>
</tbody>
</table>

Note:
You can also change the model view freely by right clicking and dragging your mouse.
Model

<table>
<thead>
<tr>
<th>Command</th>
<th>Shortcut</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>Shift+V</td>
<td>Click left button and move mouse to rotate the view</td>
</tr>
<tr>
<td>Pan</td>
<td>Shift+N</td>
<td>Click left button and move mouse to pan the view</td>
</tr>
<tr>
<td>Move</td>
<td>Shift+M</td>
<td>Click left button and move mouse to move model</td>
</tr>
<tr>
<td>Rotate</td>
<td>Shift+R</td>
<td>Click left button and move mouse to rotate model</td>
</tr>
<tr>
<td>Scale</td>
<td>Shift+B</td>
<td>Click left button and move mouse to change size of model</td>
</tr>
<tr>
<td>Free Cut</td>
<td>Shift+C</td>
<td>Cut the model in two parts</td>
</tr>
<tr>
<td>Support Structure</td>
<td>Shift+U</td>
<td>Create your own support for the model</td>
</tr>
<tr>
<td>Cross Section</td>
<td>Shift+O</td>
<td>Check the model’s feature by layer with cross section</td>
</tr>
<tr>
<td>Mirror</td>
<td></td>
<td>Change model into a mirror shape</td>
</tr>
<tr>
<td>Center</td>
<td>Shift+E</td>
<td>Move model to the center of printing area</td>
</tr>
<tr>
<td>Lay Flat</td>
<td>Shift+L</td>
<td>Select a surface to lay the model flat on build platform</td>
</tr>
<tr>
<td>Auto Fit to Build Volume</td>
<td>Shift+F</td>
<td>Scale model into its maximum size which is able to be printed</td>
</tr>
<tr>
<td>Reset All</td>
<td>Shift+A</td>
<td>Reset settings of the model</td>
</tr>
<tr>
<td>Reset</td>
<td>Shift+R</td>
<td></td>
</tr>
<tr>
<td>Put All Models on Platform</td>
<td>Shift+T</td>
<td>Check that what is on the build platform</td>
</tr>
<tr>
<td>Auto Ungroup</td>
<td></td>
<td>Automatically ungroup the selected print</td>
</tr>
<tr>
<td>Merge Selected Models</td>
<td></td>
<td>Combine the selected models to one in order to keep their relative location to each other when rotating or scaling or moving</td>
</tr>
<tr>
<td>Align Selected Models</td>
<td></td>
<td>Aligned models which have been selected</td>
</tr>
<tr>
<td>Arrange All Models</td>
<td>Shift+A</td>
<td>Arrange models automatically</td>
</tr>
</tbody>
</table>

Note:

Many tools have been settled in tool bar so that you can use them conveniently.
Cross Section refers to check the model’s features by layer.

Cross Section will divide the model into two parts. Click on Reverse to remain the upper part of the model.

Figure 4.12: Cross Section in the Z axis direction.

Figure 4.13: Cross Section in "Reverse" of Z axis direction.
Show Plane will toggle the visibility of the cross section plane.

Inches will select the unit between inches or mm.

*Figure 4.14: Cross Section without *"Show Plane"*.

*Figure 4.15: Cross Section with *"Inches"*.

47 / 161
Note:

Cross Section will affect the slice result which will hide the part of model.

Figure 4.16: The slice preview with "Cross Section".
Lay Flat refers to selecting a surface to lay the model flat on the build platform. **Face Index** refers to the face you selected.

Figure 4.17: Click "Apply" to lay the model flat on the platform.

Figure 4.18: The model after "Lay Flat".
6> Repair

Note:
You can also find auto repair icon in tool bar.

Repair

- Remove Duplicate Faces
- Remove Isolated Faces
- Fix Face Orientation
- Fix Mesh Orientation
- Fix Holes
- Auto Repair...

Repair the selected model item by item

Automatically repair all the faults of the selected model(s)

7> Printer

Note:
Filament Settings: You can set type, diameter, density, price and compensation of the filament. Also you can build a new filament template for you own filament here.

Printer

- Current Type of Printer
- Connect to Printer (Raise3D N-series)...
- ideaPrinter F-series
- Printer Settings...
- Filament Settings...
- Configuration Wizard...

Select the type of your printer

Set a remote connection with your N-series printer(s)

Set a connection with your printer(s) via USB cable

Set your printer’s parameters

Set the filament that your printer is using

Wizard for set configuration

8> Help
4.2 Tool Bar

Tool buttons for slicing models, these buttons are shortcut of menu bar.

Figure 4.19: The tool bar.

Add: Add new .stl, .obj or .3mf file.

Delete: Delete the selected model.

When you enable this button, you can set model’s color and which nozzle to print it (if you have set your printer as a dual-extruder printer).
(Enabling this button also allows us to watch model in different angles by left-drag your mouse.)

: When you enable this button, you can pan the view by holding the left button and dragging your mouse.

: When you enable this button, you can move the selected model in Z direction by left-dragging the blue arrow above the model with your mouse. And move the model freely in X and Y directions by holding the left button and dragging the selected model. You can also set the exact X/Y/Z coordinate value to move the selected model in the operation property zone. **Make Center** refers to moving the model to the center of your build plate. **On Platform** refers to dropping the model on the build plate. **Arrange All Models** refers to arranging the models automatically by a specific order when you printing several models in one time.
Figure 4.21: Unable the function of the "Arrange All Models".

Figure 4.22: Enable the function of the "Arrange All Models".

Align Together refers to aligning the models to the default position in 3D designing software when printing several models in one time.
Figure 4.23: You can drag the selected model freely in X & Y directions with left-click. And click the blue arrow to drag the model in Z direction.

: When you enable this button, you can rotate the model to another angle by holding the left button and dragging the circle with your mouse. Or also set the exact angle value to rotate the model in the operation property zone, which is based on the aircraft principal axes. The **Roll** refers to longitudinal axis. **Pitch** refers to lateral axis. **Yaw** refers to vertical axis.

Figure 4.24: You can use both the color rings and left values to rotate the model.
When you enable this button, you can amplify model's size by holding the left button and dragging your mouse. You can also set the exact amplify rate value to change model in the operation property zone.

Inch refers to changing size display from mm to inch.

Uniform Scaling refers to scaling the width, depth and height in the same scale. The percentages at beside the size show the relative scale of the original size.

![Figure 4.25](image)

Figure 4.25: You can use both the color arrows and the spin boxes in the Dimension panel to scale the model.

When you enable this button, there will be a plane which you can move to cut the model into individual pieces.
Now you will have three options to cut the model you selected.

Option 1: Move the red, blue, green arrow.
Option 2: Rotate the red, blue, green circle.

Figure 4.28: Click red circle to rotate the "Cutting Plane".

Option 3: Input the exact value.

Figure 4.29: Input values to move the "Cutting Plane".
Figure 4.30: The selected model has been cut into two parts.

: Click on the **Support** icon in the tool bar, you can create supports in the operation property zone.

Auto Supports:

Pillar Size refers to the size of each pillar in support.

Note:

Pillar Size only works for the support type of **Pillar**.

Figure 4.31: Set "Pillar Size" to be 1mm.
Figure 4.32: Set "Pillar Size" to be 10mm.

Overhang Angle refers to the value which decides whether the model needs support or not. If the real overhang angle is smaller than this value, support will not be generated.

Touch Platform Only refers to only creating the supports which will touch the build platform.

Figure 4.33: You can set the "Pillar Size" and "Overhang Angle" first. And try "Create Auto Supports". Then adjust the support with "Manual Supports".
Manual Supports:

Add one support pillar, *Remove* one support pillar and *Edit* the support size.

Pillar Z-Pos refers to the start height of the selected support pillar.

Pillar Height refers to the full length of the selected support pillar.

![Manual Supports](image)

Figure 4.34: These two options will only appear after you click the "Edit" button.

- **Max Fit**: When you click this button, the selected model will be re-sized to maximum size that your printer can print.

- **Duplicate**: When you click this button, the selected model will be copied.

- **Reset**: Revoke all the settings of the selected model.

- **Repair**: Automatically repair model’s defects.
Start: Start to slice the model.

Stop: Abort slicing.

Preview: Show the sliced file in layers.

Connect: Connect to the printer with your computer via WLAN.
4.3 Operation property

Figure 4.35: The information shown here depends on which function you are using.

This section shows the information and settings of the selected model.
4.4 Model list

![Model list image](image)

Figure 4.36: You can also add or delete models here.

This section shows the basic information of models such as the quantity of the faces or the size of the models.

- Click "+" to add other models.
- Delete the model you have selected.

Figure 4.37: Right-click the blue section will display Delete, Duplicate, Export.
Delete refers to the model will be deleted via this button.
Duplicate refers to the model will be copied via this button.
Export refers to the model you have selected will be exported via this button.

Figure 4.38: Multiple models can be exported at a time.
4.5 Uploading queue

Figure 4.39: ideaMaker also can upload G-Code files sliced by other slicing software. Press "+" button to find the files you want to upload to your N-series printer from your computer.

This section shows the uploading list from ideaMaker to your printer. Press " -> " to check more information of the uploading gcode file such as layer height, shell width and so on, and you also can connect to the printer or delete the uploading task as figure 4.38.

Figure 4.40: detail information of the uploading task
4.6 Instant operation bar

: Add models.

: Start slicing directly.

: Export the gcode file to USB storage or SD card.
4.7 Model preview

![Figure 4.41: Preview your model.](image)

This section is designed for previewing the current model.
4.8 Perspective transformation

Figure 4.42: It will be set as perspective view by default. If you want to check your model with orthographic view, click View -> Orthographic View.

Check the model with the default views.
4.9 Detecting Information

![Model: rabbit.stl]
- Dimensions (mm): 180.2 x 196.1 x 177.6
- Triangles: 38240
- Edges: 834
- Non-Manifold Edges: 0
- Error Orientation Faces: 0

Figure 4.43: If here appears an error or a warning, try using the Auto-Repair function.

Check the correct or warning information of the model’s auto-detection.

Dimensions refers to the size of the model.

Triangles refers to the number of triangles in the model. A **Triangle** is a polygon with three edges and three vertices.

Edges refers to the number of edges in the model.

Non-Manifold Edges refers to the number of non-manifold edges in the model. Generally, there are two types of non-manifold errors, one is open objects which means the model has holes or loose edges, another one is extra faces such as internal faces, overlapping faces and so on.

Error Orientation Faces refers to the number of error orientation faces in the model. In geometry the orientation of an object such as a line, plane or rigid body is part of the description of how it is placed in the space it is in. If your model shows in green which means you need to flip mesh orientation.
5 Slicing settings

5.1. Main Template

Main Template includes the printing settings inside and the default one can be selected to print your model directly.

Figure 5.1: The Main Template tab.

5.1.1 Create Template

Create refers to create a new template and in this page you can edit your template’s name, printer type, filament type and template.

For example: Create a new template as Figure 5.2 and named it PLA then press ok button, and the Select Template tab will show interface as Figure 5.3.

Template Name refers to the new template’s name which you create, and you also can rename it by yourself.
Copy Template From refers to from which current template this template will copy.

Printer Type refers to the printer type of the copied template.

Filament Type refers to the filament type of the copied template.

Template refers to the name of the copied template.

Note: the initial Printer type, filament type and template are same as the template which you selected in **Select Template** interface.

Figure 5.2: Create a new template.

Figure 5.3: The interface of creating a new template.
5.1.2 Duplicate Template

Duplicate refers to creating a duplicated template from the selected slicing template.

Note: ideaMaker will name the duplicate template as **New Template 1** automatically, and you also can rename it by yourself.

For example: Duplicate a new template as **Figure 5.4.**

Template Name refers to the name of your new template, and you also can rename it by yourself.

Copy Template From refers to from which current template this template will copy.

Printer Type refers to the printer type of the copied template.

Filament Type refers to the filament type of the copied template.

Template refers to the name of the copied template.

![Figure 5.4: Duplicate a new template.](image)
5.1.3 Edit Template

There are many settings you can change to optimize the print results in *Edit* when slicing.

Figure 5.5: Select a template and press "Edit" to enter the setting page.
Figure 5.6: Common parameters.

Infill Density refers to the density of infill inside the model, the more infill printed inside, the more solid the model will be.

Shells refer to the thickness of model’s wall.

Platform Addition refers to whether using Raft/Brim/Skirt or not.

The **Skirt** is loop(s) of plastic extruded around the first layer of the model to ensure a steady flow for model.

The **Raft** is composed by a few layers placed on the printing surface before the model is printed to help a model stick to the printing surface.

The **Brim** layer will only print a single layer placed on the first layer of the model which allow for better adhesion to the printing surface.

Figure 5.7: There are 6 types of “Platform Addition”.
Figure 5.8: Printed with 2 shells, 10% fill density and Brim.

Figure 5.9: Printed with 5 shells, 20% fill density and Raft.
Support means that the printer will print support structure for model’s overhang part.

The **None** setting refers to no support structure for the model.

The **Touch Platform Only** setting refers to only adding support structure which can touch the build platform. Those located from one surface of the model to another surface of the model will not be created.

The **All** setting refers to adding support structure to all the overhang part of the model.

Figure 5.10: There are 3 types of supports.

Figure 5.11: Printed with supports of "Touch Platform Only".
Figure 5.12: Printed with supports of "All".

Note: Advance Setting.

In *Edit Template*, click *Advanced* to go to *Advance Settings* interface which include *Layer*, *Extruder*, *Infill*, *Support*, *Platform Additions*, *Cooling*, *Advanced*, *Ooze*, *Other*, *Gcode* and we will go through them one by one.

Figure 5.13: There are more settings in Advanced.
5.1.3.1 Layer

General:

Layer Height refers to the thickness of every single layer. Someone call it resolution as well.

Shells refer to the thickness of model’s wall.

Maximum Shells overlap percentage refers to the max percentage of overlap between shells. When the overlap percentage of the lines from one single shell loop is larger than the set value, the shell will be replaced to be solid fill structure.

Speed:

Default Printing Speed refers to the speed of printing non-specified area.

Inner Shell Speed refers to the printing speed for the inner shell of the model.

Outer Shell Speed refers to the printing speed for the outer shell of the model.

Figure 5.14: Only the shell located at outer edge is the outer shell. No matter how many shells have you set, except the outer one, the remaining shells are inner shells.
X/Y Axis Movement Speed refers to the speed that the nozzle moves at from one place to another place without printing in X and Y directions.

Z Axis Movement Speed refers to the speed that the build plate moves at without printing in Z direction.

First Layer Settings:

First Layer Height refers to the thickness of the model’s first layer.

First Layer Speed refers to the printing speed for the model’s first layer.

First Layer Flowrate refers to setting the flowrate at the first layer. **Flowrate** refers to how much plastic the printer is told to extruder.

Layer Start Point refers to the position where the nozzle will start move from at each layer.

Layer Start Point Type has three options can be set as.

Nearest refers that the layer start point will be placed at an optimal position to save the time of movement.

Fixed refers that the layer start point will be placed as close as possible to the specified position.

Random refers that the layer start point will be placed randomly over the model.

![Layer Start Point Type: Nearest, Fixed, Random](image)

Figure 5.15: There are 3 types of Layer Start Point. If you select **Fixed** as your start point type, you can set X & Y’s value to define a position. **ideaMaker will set a closest position based on the position you set.**

Fixed Layer Start Point X refers to defining the X position of the layer start point.

Fixed Layer Start Point Y refers to defining the Y position of the layer start point.

Other:

Spiral Vase Mode means that the model will be printed out to be single outline corkscrew vase structure with no retraction. This mode will transfer the model to vase-like structure with only outer shell, no infill and open top surface. Z axis will move slowly by spiraling upwards.
Print External Shells First refers that with this function enabled software will print external shells first then print internal shells.

Print Parts in Sequential Order refers that the models will be printed under a specific order in each layer. And the specific orders depend on models import order.

Note: this function only works for multiple models.

Dimensional Compensation:

XY Size compensation refers to the compensation for the measured error, especial for the expanded or shrunken object.

Figure 5.16: The Layer tab.
5.1.3.2 Extruder

Note: If you have set the **Extruder Count** to be 2, the Extruder tab will show **Left Extruder** and **Right Extruder**. If you have set the **Extruder Count** to be 1, the Extruder tab will show **Primary Extruder** only. And we set the primary extruder as left extruder by default.

All of the **Settings** are independent which means the settings in Left Extruder only work for left extruder and the settings in right extruder interface only work for right extruder such as **Extrusion Width, Enable Retraction, Retraction speed, Retract Material Amount, Minimal Travel of Retraction, Minimal Amount of Retraction, Extra Restart Amount, Restart Speed** and **Z hop at Retraction**.

Left Extruder:

General:

Extrusion Width refers to the width of extruded line. The default extrusion width will be the same as diameter of the original 0.4mm nozzle. If you have changed your nozzle to be other size in **Printer Settings**, please also remember to edit **Extrusion width**.

Retraction:

Enable Retraction refers to enabling filament retraction to prevent stringing.

Retraction speed refers to the extruder speed for the retraction. A higher retraction speed works better. But it can lead to filament grinding when the speed is too high.

Retract Material Amount refers to the amount of retraction. Setting it as 0 means that there is no retraction at all.

Minimal Travel of Retraction refers to the minimum distance of extruder motor reserves that defines if the filament needs to be retracted. Set this item to make sure you do not get a lot of retractions in a small area.

Minimal Amount of Retraction refers to the minimal amount of extrusion that defines if the filament needs to be retracted. If the amount of extrusion for printing is less than the minimal amount of retraction, the retraction will be ignored by system automatically. This avoids retracting a lot on the same piece of filament which flattens the filament and causes grinding issues.

Extra Restart Amount refers to the amount of extrusion compensation after the retraction.
Restart Speed refers to the extruder speed when the filament is extruded out after the retraction.

Z hop at Retraction refers to the nozzle will lift from the surface of the model during retraction. Normally retraction is set before long-way movement which normally has faster moving speed than normal printing. So Z hop can reduce the affects of nozzle scratching during fast move.

Coasting Distance refers that with this function enabled the last part of the extrusion path will be replaced with a travel path only with no extrusion as *Figure 5.17*. The distance of the extrusion path’s last part is the **Coasting Distance**.

Enabling the function of **Coasting Distance** can decrease the filament leaking when nozzle travels from one point to another point.

Note: Please don’t set the **Coasting Distance** too large. Or it may cause gaps between layers.

Figure 5.17: Set Coasting Distance to be 2mm.

Figure 5.18: Set Coasting Distance to be 0.
Right Extruder:

Enable Right Extruder Configuration refers to enabling *Right Extruder’s Configuration* function the below settings will be activated such as *Retraction*. If not, the right extruder will continue to use the settings of left extruder.
Figure 5.20: The Right Extruder tab.

Figure 5.21: The Extruder tab.
5.1.3.3 Infill

Infill:

Infill Extruder refers to selecting which extruder to print infill. (If you have set number of extruder to be 1, then it will only show **Primary Extruder**; if you have set it to be 2, then it will show three functions: **All Extruder, Left Extruder and Right Extruder**. The **All Extruder** refers to the extruder is same as the model’s).

![Infill Extruder options](image)

Figure 5.22: Select an "Infill Extruder" for your model.

Infill Density refers to the density of infill inside the model, the more infill the more solid the model will be.

Infill Speed refers to the printing speed for the model’s infill structure.

Infill Overlap refers to the percentage of overlap between the infill and the shell.

Infill Flowrate refers to the flowrate of printing the infill structure. **Flowrate** refers to how much plastic the printer is told to extruder. 100% equals to default amount.

Infill Pattern Type refers to selecting the infill pattern for the interior of the model.

![Infill Pattern Type options](image)

Figure 5.23: Select an "Infill Pattern Type" depending on the model type.
Figure 5.24: Set "Infill Pattern Type" to be "Grid".

Figure 5.25: Set "Infill Pattern Type" to be "Rectilinear".

Figure 5.26: Set "Infill Pattern Type" to be "Honeycomb".
Figure 5.27: Set "Infill Pattern Type" to be "Triangles".

Figure 5.28: Set "Infill Pattern Type" to be "Cubic".

Infill Extrusion Width Percentage refers to the percentage of infill extrusion width. For example: If your extrusion width is 0.4mm, and you set this value to 120% then the infill extrusion width is 0.48mm.

Top and Down Solid Part:
- **Bottom Solid Fill Layers** refers to the number of solid layers at the bottom of the model.
- **Top Solid Fill Layers** refers to the number of solid layers at the top of the model.
- **Bottom Solid Fill Speed** refers to the printing speed for solid bottom layers.
- **Top Solid Fill Speed** refers to the printing speed for solid top layers.
- **Bottom Solid Fill Flowrate** refers to the flowrate of printing the interior of the solid part at the bottom of the model.
- **Top Solid Fill Flowrate** refers to the flowrate of printing the interior of the solid part at the top of the model.
- **Solid Fill Pattern Type** refers to the infill pattern for the solid layers of the model.
Figure 5.29: Select a Solid Fill Pattern Type depending on the model type.

Figure 5.30: Set "Solid Fill Pattern Type" to be "Lines".

Figure 5.31: Set "Solid Fill Pattern Type" to be "Rectilinear".
Figure 5.32: Set "Solid Fill Pattern Type" to be "Concentric".

Figure 5.33: The Infill tab.
5.1.3.4 Support

Generate Support refers to selecting which structure for overhang part.

<table>
<thead>
<tr>
<th>Generate Support:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
</tr>
<tr>
<td>Zero</td>
</tr>
<tr>
<td>Touch Platform Only</td>
</tr>
<tr>
<td>All</td>
</tr>
</tbody>
</table>

Figure 5.34: Selecting support structure for overhang part.

The *None* setting refers to no support structure for the model. The *Touch Platform Only* setting refers to only adding support structure which can touch the build platform. Those located from one surface of the model to another surface of the model will not be created.

Figure 5.35: Printed with supports of "Touch Platform Only".

The *All* setting refers to adding support structure to all the overhang part of the model.
Support Extruder refers to selecting which extruder to print support. (If you have set number of extruder to be 1, then it will only show Primary Extruder; if you have set it to be 2, then it will show then it will show two functions: Left Extruder and Right Extruder.).

Support:

Support Type refers to the structure of support.

Normal refers to the support which is computed based on locality which may cause random hang.

Pillar refers to the support which is entirety based on and computed based only pillars.

Support Infill Type refers to the infill pattern for the support structure.

Figure 5.36: Printed with supports of "All".

Figure 5.37: Two types of support structure.

Figure 5.38: Two types of Support Infill pattern.
Figure 5.39: Set "Support Infill Type" to be "Lines".

Figure 5.40: Set "Support Infill Type" to be "Grid".

Support Speed refers to the printing speed for the support structure.

Infill Ratio refers to the density of support structure.

Max Overhang Angle defines which parts of the model will be added support onto. When the real overhang angle on model is greater than this set value, support structure will be generated. Overhang Angle refers to the angle between the overhang surface and Z axis as **Figure 5.41**. (Set 0 means all overhang parts of the model will be added with support. Set 90 means no support will be added to the model).
Horizontal Offset refers to the distance between the support structure and the model parts in X/Y direction.

Vertical offset Top Layers refers to the offset between the top of support structure and the model parts in Z direction.

Vertical offset Down Layers refers to the offset between the bottom of support structure and the model parts in Z direction.

Support Flowrate refers to the flowrate of printing the support structure.

Horizontal Expansion refers that with this function enabled the support would be larger in the Horizontal direction and it can be removed easier.

![Figure 5.41: Overhang angle.](image)

Figure 5.42: Set "Horizontal Expansion" to be 0.
Figure 5.43: Set "Horizontal Expansion" to be 2.

Solid Base Layer refers to increasing adhesion of support structure of below layers as **Figure 5.44**.

Figure 5.44: Set "Support Base Layer" to be 5.
Dense Support:

Dense Support Layers refers to the number of layers for dense support structure. It will only exist in the layers approaching to the model surface which can make the support connecting points smoother after removing the supports.

Dense Support Infill Ratio refers to the infill density of the dense support layers.

Dense Support Infill Type refers to selecting the infill pattern for the dense support layers. **Grid** type is more solid to be the basement. **Line** type is easier to peel.

```
Dense Support Infill Type: Line ▼ Grid ▼ Line
```

Figure 5.45: Two types of dense support infill pattern.

Dense Support Extruder selecting which extruder to print dense support. (If you set number of extruder to 1, then it will only show **Primary Extruder**; if you set it to 2, then it will show **Left Extruder** and you can switch to **Right Extruder**).

```
Dense Support Extruder: All Extruder ▼ All Extruder
```

Figure 5.46: Selecting an extruder for dense support.

```
Interlaced Support Infill Angle
```

Figure 5.47: Set "Dense Support Infill Type" to be "Lines".
Figure 5.48: Set "Dense Support Infill Type" to be "Grid".

Interlaced Support Infill Angle: You can define the direction of each layer of the infill structure which can decrease the potential of hangs in corners due to all support at the same direction. If you add 30, 60, 90deg, the angle of the first layer of support will be 30deg. The second layer will be 60deg. The third layer will be 90deg. The forth layer will be back to 30deg and the angle of the following layers changes in the order.

Angle refers to the directional angle of infill structure.

Add Infill Angle refers to adding a value.

Remove Infill Angle refers to removing the selected value.

Figure 5.49: Set "Interlaced Support Infill Angle" to be 30 degrees.
Figure 5.50: Set "Interlaced Support Infill Angle" to be 0 degree.

Pillar Size refers to the size of each support pillar. This value only works with Pillar type support.

Sparse Connection refers that disable retraction between support structures, which will cause some oozing strings, look like sparse connection.

Figure 5.51: The Support tab.
5.1.3.5 Platform Additions

Platform Addition refers to whether the *Raft/Brim/Skirt* needs to be added or not, there are six options in all.

The *None* refers to not printing *Raft/Brim/Skirt* for model.

The *Skirt* is loop(s) of plastic extruded around the first layer of the model to ensure a steady flow for model.

The *Raft* is composed by a few layers placed on the printing surface before the model is printed to help a model stick to the printing surface.

The *Brim* layer will only print a single layer placed on the first layer of the model which allow for better adhesion to the printing surface.

![Platform Addition Options](image)

Figure 5.52: Select a structure for "Platform Addition".

Raft:

Note: It will only exist when the platform addition is set as *Raft only* or *Raft and Skirt* or *Raft and Brim*.

Raft Extruder refers to selecting which extruder to print raft. (If you have set number of extruder to be 1, then it will only show *Primary Extruder*; if you have set it to be 2, then it will show *Left Extruder and you can switch to Right Extruder*).

Raft Offset refers to the distance between the model and extra raft area around it.

Raft Gap from Model refers to the gap between the last layer of the raft and the first layer of model.

First Layers refers to the number of layers as the base layers of the raft.

Surface Layers refers to the number of surface layers at the top of the raft, which are fully filled layers.

First Layer Speed refers to the printing speed for the first layers of the raft.

Interface Layer Speed refers to the printing speed for the interface layers of the raft.

Surface Layer Speed refers to the printing speed for the surface layers of the raft.
Surface Layer Infill Ratio refers to the infill density for the surface layers of the raft.

Raft Lines Type refers to infill pattern for the raft.

Lines refer to the segments at the same direction.

Rectilinear refers to the fill structure printed with a continuous moving path.

Raft Lines Type: Lines

Figure 5.53: Two types of Raft Lines.

Figure 5.54: Set "Raft Lines Type" to be "Lines".

Figure 5.55: Set "Raft Lines Type" to be "Rectilinear".
Keep Holes in raft structure refers to generating the raft with holes inside according to the shape of your model. With being unchecked, there will be generating a whole piece of *Raft* without holes inside in case overlapping lines between different printing sections on *Raft*.

![Figure 5.56 Normal Raft. Figure 5.57 Keep Holes in raft structure.](image)

Skirt and Brim:

Note: It will only exist when the platform addition is set to be *Skirt only* or *Brim only* or *Raft and Skirt* or *Raft and Brim*.

Skirt /Brim extruder refers to selecting an extruder for skirt or brim part. (If you have set number of extruder to be 1, then it will only show *Primary Extruder*; if you have set it to be 2, then it will show *Left Extruder and you can switch to Right Extruder*).
Skirt Loop Lines refers to the number of skirt circle.

![Skirt Loop Lines](image)

Figure 5.58: Set "Skirt Loop Lines" to be 2.

Brim Loop Lines refers to the number of brim circle.

![Brim Loop Lines](image)

Figure 5.59: Set "Brim Loop Lines" to be 4.
Skirt Offset Distance refers to the distance between skirt and model.

Figure 5.60: Set "Skirt Loop Lines" to be 5mm.

Figure 5.61: The Platform Additional tab.
5.1.3.6 Cooling

Cooling:

Minimal Layer Print Time refers to the minimum time spending in a layer to provide enough cooling time for the just printed out features in this layer before the next layer starts.

Default Fan Speed refers to the speed of the fan in the unspecified condition.

Maximum Fan Speed refers to the maximum speed of the extra cooling fan. If the cooling setting slows down the speed of, the fan could be adjusted between the min and max speed.

Minimal Printing Speed refers that we need to reduce print speed to increase print time when layer print time less than **Minimal Layer Print Time**.

Note: Default printing speed can’t less than **Minimal Printing Speed**.

Fan Control:

Fan Control: only the downward model fan on single extruder printer is controllable. The side extruder cooling fan is constant on. We don’t suggest you to switch the extruder cooling fan to the controllable slot which may cause filament in throat tube be melted before get into the hot zone due to improper cooling for cold end.

![Image of a 3D printer with a cooling fan highlighted.](image)

Figure 5.62: The right one is the downward model cooling fan.

Layer refers to selecting at which layer to change the fan speed.

Fan Speed refers control the speed of the downward model fan on single extruder printer.
You can add the specific layer where you want to change the fan speed at by clicking the **Add Fan Point** button and input the speed in right box. And delete it by selecting the value you want to remove in right box and clicking the **Remove Fan Point** button.

Note: If you want to change the fan’s speed, Enable the function of **Use PWM-Controllable fans** which is under the **Printer Settings** as Figure 5.63. If not, this tab will be disabled and cannot be edited as Figure 5.64.

![Figure 5.63: Use PWM-Controllable fans](image)

![Figure 5.64: Fan speed](image)
Temperature:

Heated Bed Temperature refers temperature of heated bed when printing.

Primary Extruder refers to the temperature of the primary extruder when printing. We default set the left extruder as the primary extruder when you select *Extruder Count* as 1 in *Printer Settings*.

Left Extruder refers to the manual control temperature of the left extruder.

Right Extruder refers to the manual control temperature of the right extrude.

The *Left Extruder* and *Right Extruder* settings can only be seen after selecting *Extruder Count* as 2 in *Printer Settings*.

Use Temperature Control List refers that you can set different temperature values for specific layers with this option enabled.

Changing the temperature by clicking the *Add Temperature* button and input the temperature in right box. And delete it by selecting the value in right box and clicking the *Remove Temperature* button.

![Figure 5.65: The Cooling tab.](image-url)
5.1.3.7 Advanced

Enable Acceleration Control refers to enabling *Acceleration Control* function. The below settings will be activated such as *Printing Acceleration*.

Acceleration is the rate of velocity changing of an object with respect to time.

Printing Acceleration refers to the printing acceleration speed for the non-specified area of the model.

Inner Shell Acceleration refers to the printing acceleration speed for the inner shell of the model.

Outer Shell Acceleration refers to the printing acceleration speed for the outer shell of the model.

Infill Acceleration refers to the printing acceleration speed for the infill structure of the model.

Bottom Solid Fill Acceleration refers to the printing acceleration speed for the bottom solid fill structure of the model.

Top Solid Fill Acceleration refers to the printing acceleration speed for the top solid fill structure of the model.

Travel Acceleration refers to the printing acceleration speed that the nozzle moves at from one place to another place without printing in X and Y directions.

Enable Jerk Control refers to enabling *Jerk Control* function. The below settings will be activated such as *Printing Jerk*.

Jerk is the rate of acceleration changing.

Printing Jerk refers to the printing jerk speed for the non-specified area of the model.

Inner Shell Jerk refers to the printing jerk speed for the inner shell of the model.

Outer Shell Jerk refers to the printing jerk speed for the outer shell of the model.

Infill Jerk refers to the printing jerk speed for the infill structure of the model.

Bottom Solid Fill Jerk refers to the printing jerk speed for the bottom solid fill structure of the model.

Top Solid Fill Jerk refers to the printing jerk speed for the top solid fill structure of the model.

Travel Jerk refers to the printing jerk speed that the nozzle moves at from one place to another place without printing in X and Y directions.
Override Filament Settings:

Enable this function, you can edit the filament flowrate. If you set the Flowrate to be 95% in Filament Settings, but you enable this function and set it to be 90%, the Flowrate will change to 90%.

Note: If you want to print the PLA by Raise pro series printer, you may need to change the Flowrate to be 90%

Figure 5.66: The Advanced tab.
5.1.3.8 Ooze

Other:

Force Retraction On Layer Change refers that the retraction will automatically be triggered when the current layer print completes and the next layer starts.

Avoid Retraction Inside Model refers to disabling retraction when printing the inner structures of the model.

Extruder Switch Ooze Control refers to the retraction settings for extruder when one nozzle completes printing of one layer and the other nozzle starts printing.

Retraction Speed Of Extruder-Switch refers to the speed of retraction when extruder switch.

Retraction Amount of Extruder-switch refers to the amount of filament retraction for an extruder change. 0 refers to no retraction at all.

Restart Speed of Extruder-switch refers to the extrusion speed after the retraction for an extruder change.

Extra Restart Amount of extruder-switch refers to the amount of additional filament compensation after the retraction for an extruder change.

Enable Wipe Wall means when printing a model with dual-extrusion, a nozzle will print a number of extra shells around the model. This wipe wall will help to clean the nozzle while printing.

Wipe Wall Offset refers to the distance between the outline of the model and the wipe wall.

Wipe Wall Angle refers to the maximum allowed angle change which the wipe wall will generate (from 0 to 90).
Figure 5.67: Set "Wipe Wall Angle" to be 90.

Figure 5.68: Set "Wipe Wall Angle" to be 0.
Wipe Wall Loop Lines refers to the quantity of the shells of wipe wall.

Figure 5.69: Set "Wipe Wall Loop Lines" to be one.

Figure 5.70: Set "Wipe Wall Loop Lines" to be two.
Wipe Wall Type refers to the shape of the wipe wall shells. The primary difference is the distance of model and wipe wall.

Contoured is the one which is closest to the origin model shape. *Water fall* is the type which will follow the origin shape, but a vertical drop if the lower structure is narrow that the above one. *Vertical* will find the widest part of the model and generate a vertical type wipe wall.

![Wipe Wall Type dropdown menu](image)

Figure 5.71: Three types of Wipe Wall.

![Wipe Wall example](image)

Figure 5.72: Set "Wipe Wall Type" to be "Contoured".
Figure 5.73: Set "Wipe Wall Type" to be "WaterFall".

Figure 5.74: Set "Wipe Wall Type" to be "Vertical".

Wipe Tower refers to a cube created outside of the model which is used for wiping the nozzle which is going to start print.

Wipe Tower Offset X refers to the distance between Wipe Tower and the model in the direction of X.
Wipe Tower Offset Y refers to the distance between Wipe Tower and the model in the direction of Y.

Wipe Tower Width refers to width of the wipe tower.

Wipe Tower Infill Ratio refers to the density of wipe tower structure.

![Figure 5.75: Wipe Tower.](image)

![Figure 5.76: The Ooze tab.](image)
5.1.3.9 Other

Repair:
Merge Open Segments of Model Parts means merging the non-closed polygons in the model parts.

Merge Internal Overlapping Parts means merging the parts which are overlapped in interior of the model.

Thin Wall:
Check Thin Wall (Single Extrusion Width) means that check if the width of the model parts is less than the defined thin wall width and extrude one single extrusion width to instead.

Minimal Extrusion Width Percentage refers to the minimal percentage of extrusion width.

Maximum Extrusion Width Percentage refers to the maximum percentage of extrusion width.

For Example, if the extrusion width is 0.4mm, set *Minimal Extrusion Width Percentage* to be 25% then the minimal thin wall will be 0.1mm. Set *Maximum Extrusion Width Percentage* to be 200%, then the minimal thin wall will be 0.8mm.

If item’s width is less than 0.1mm, it will print nothing as the width has less than minimal extrusion width. If item’s width is larger than 0.1mm, but less than 0.8mm, the system will extrude one single extrusion path instead. And the width of the single path will be adapted to the size of space dynamically.

Gap Filling:
Fill Gaps in shells refers that with this function enabled, there will no gaps between shells as *Figure 5.77 and 5.78*.

Gap Fill Speed refers to the speed of printing the gap filling.

Allow Filling Gaps using Single Extrusion Filling refers that with this function enabled the gap will be filled by single extrusion filling.

Minimal Single Extrusion Width Percentage refers to the minimal percentage of minimal single extrusion width.

Maximum Single Extrusion Width Percentage refers to the maximum percentage of maximum single extrusion width.

For example: if the extrusion width is 0.4mm, set the minimal single extrusion width percentage to be 50%, which means the single extrusion width is 0.2mm. Set the maximum single extrusion width percentage to be 200%, which means the maximum single extrusion width is 0.8mm. If the gap is less than 0.2mm, it will not fill the gap. If the gap is larger than
0.2mm and less than 0.8mm, the system will print the gap filling. And the width of the single extrusion filling will be adapted to the size of space dynamically.

![Figure 5.77: Enable the "Fill Gaps in shells".](image)

![Figure 5.78: Unable the "Fill Gaps in shells".](image)

Travel:

Avoid Traveling Through Holes refers to the printer will pass around the hole parts automatically to avoid leaving strings inside the holes.

Bridging:

Extrusion Width Percentage refers to the percentage of bridging extrusion width. For Example, if the extrusion width is 0.4mm, and you set this value to be 120% then the bridging extrusion width will be 0.48mm.

Bridging Speed refers to the speed of printing the bridging.

Global Offset means that means you can apply X/Y/Z offset to all coordinates in the gcodes. You can separately set *X-Offset*, *Y-Offset* and *Z-Offset*.

Pause at Height means that the printer will automatically suspend a print job at the defined height. You can do several operations such as changing filament, and resume the print then. You can define the height by clicking the *Add Pause Point* button. And delete the defined height by selecting the value in right box and clicking the *Remove Pause Point* button.
Note: This height doesn’t include **Raft**.

Figure 5.79: The Other tab.

5.1.3.10 GCode

Start GCode refers that custom gcodes which will be executed at the start of a print job (after the preheating extruders and the heat bed).

Start Gcode when the number of extruder is refers to selecting extruder’s number to choose its start Gcode. There are two options. 1 refers to the start gcode when the number of extruders is set to be 1. 2 refers to the start gcode when the number of extruders is set to be 2. Single-extruder print and dual-extruder print have difference in Start Code.

Start GCode when the number of extruders is 1

Insert Heatup GCode Automatically in Start 2

Figure 5.80: Selecting extruder’s number for your Start Gcode.
Insert Heatup Gcode Automatically in Start Gcode refers that the heatup gcode will be inserted into start gcode automatically. Heatup code should be inserted to the start gcode, if not the printer will start print without heating nozzle and heating heated bed. If you want to change the heatup gcode to be customer code, please disable this option and input your codes.

You can add more slice settings by clicking the Add More button, a dialog will pop-up as Figure 5.81 and click ok to add the slice setting into right box. And delete it by selecting the value in right box and clicking the Remove Selected button. You can add the Placeholder to left code box by double-clicking the slice settings from the right list.

![Diagram](image.png)

Figure 5.81: Adding more slice settings to placeholders.

Post-process Command refers that the gcode can be delete or replace in batches. Add refer to inserting the gcode into the Post –process command. Replace SOURCE with TARGET refers that the occurrences under the TARGET tab will be replaced with the occurrences which is under the SOURCE tab.
For example: Insert "G92 E0" into **Source** tab, and insert "G1 X20 Y0 F140 E30" into **Target** tab as **Figure 5.82**, then set the Command type to be **Replace SOURCE with TARGET**. Then press **OK** button the Post-process Command will be edit as **Figure 5.83**.

![Figure 5.82: Insert the occurrences into Source and Target tab.](image)

Figure 5.82: Insert the occurrences into Source and Target tab.

![Figure 5.83: The Post-process Command tab.](image)

Figure 5.83: The Post-process Command tab.

Remove all occurrences of Source refers that with this function enabled the occurrences will be removed which is under the SOURCE tab.

For example: Insert "G92 E0" into **Source** tab, and insert "G1 X20 Y0 F140 E30" into **Target** tab as **Figure 5.84**, then set the Command type to be **Remove all occurrences of Source**. Then press **OK** button the Post-process Command will be edit as **Figure 5.85**.

![Figure 5.84: The Post-process Command tab.](image)

Figure 5.84: The Post-process Command tab.
Figure 5.84: Insert the occurrences into Source and Target tab.

Remove refers to deleting the gcode from **Post-process Command** tab.

Figure 5.85: The Post-process Command tab.

Figure 5.86: The Post-process Command tab.
End gcode refers to the gcodes being executed at the end of a print job. Select the extruder number you want to check by selecting Number of Extruders. 1 refers to the end gcode when the number of extruders is set to be 1. 2 refers to the end gcode when the number of extruders is set to be 2.

Extruder Switch gcode refers that custom gcodes will be executed when extruder change.

Layer Change Gcode refers that custom gcodes will be executed when layer change.

Retraction Gcode refers to the gcodes being executed when filament retracted.

Figure 5.87: The GCode tab.
5.1.4 Delete Template

Delete refers to removing selected template.

Note: delete function only work for the template which was added by *Create* or *Duplicate* or *Import*, the 3 default template cannot be deleted.

![Figure 5.88: Delete slice template.](image-url)
5.1.5 Import Template

Import refers to importing a slice template (.bin or .date file) from your computer as *Figure 5.89.*

Template Name refers to the template’s name which you import, and you also can rename it by yourself.

![Import Slicing Template](image)

Figure 5.89: Import Slicing Template.

If you want to import a slicing template whose printer type or filament type does not currently exist in ideaMaker, ideaMaker will ask you whether you want to create a new type or not. If yes, it can directly create a new filament or printer type for your template during importing.

![Import Slicing Template](image)

Figure 5.90: Import Slicing Template.
Check **No, I want to import the new printer included in the template** to import its Printer Type and Filament Type together as **Figure 5.91**.

![Import Slicing Template](image)

Figure 5.91: Whether to import the information of printer and filament type.

Click **Details** button to check or edit the name and setting of the template as **Figure 5.92**.

![Edit - RAISE3D Pro2 copy](image)

Figure 5.92: Details of "Import Slicing Template".
5.1.6 Export Template

Export refers to export one selected template from ideaMaker to your computer. When export a slicing template, ideaMaker will ask if you want to export the group and layer settings together as Figure 5.93.

![Export Template Dialog]

Figure 5.93: Export the slicing template.
5.2. Group and Layer Settings

Group and Layer Settings refers that you can divide models to be several printing groups to carry out different printing settings during one printing or different settings for different height.

5.2.1 Setting Group

Settings Group refers that you can set several setting groups for your model. You can set different settings for each setting group. One group can include several models and one model can only be assigned to one setting group.

Figure 5.94: The Group and Layer Settings tab.
5.2.1.1 Add New Setting Group

refers to add a new setting group.

A dialog will pop-up after pressing "+" button as Figure 5.95, please select models from Setting Groups list and press right-arrow button to move it to New Setting Group list, or select a model in New Setting Group and press left-arrow button to move it to Setting Groups list.

![Add New Setting Group](image)

Figure 5.95: Add New Setting Group

Setting Group Name refers to the new settings group’s name, you also can rename it by yourself.

refers to add selected model to new setting group.

refers to remove the selected model from new setting groups.
5.2.1.2 Delete setting groups

refers to deleting setting groups.

Note: this function only works when there are more than two setting groups in Setting Groups and only works to empty settings group which has no model inside.

5.2.1.3 Edit the selected setting group

refers to editing the selected setting group.

Select a setting group and press Edit button, the interface will be shown as Figure 5.96, you can delete (or add) models from (or to) the selected setting group.

Setting Group Name refers to the name of the setting group you are editing, you also can rename it by yourself.

Figure 5.96: Edit Setting Group.
5.2.1.4 Add Settings

+ refers to adding settings for the setting group which you selected.

There are several settings you can add into setting group and modify.

![Add Settings](image)

Figure 5.97: Add Settings.

For example: Add Layer settings into setting group 1. There are 15 functions you can edit, such as *Layer Height*, *Shells* and so on.
Figure 5.98: The Add Settings tab.

5.2.1.5 Delete Settings

 refers to deleting the selected settings, such as Layer or Layer Height, Shells and so on.
5.2.2 Per-Layer Settings

Per-Layer Settings refers that you can apply different slice settings for different height ranges of the model(s) in the setting group.

5.2.2.1 Add Per-Layer Settings

![Add Button]

refers to adding settings for the setting group which you select.

<table>
<thead>
<tr>
<th>Setting Group 2</th>
<th>Per-Layer Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting1</td>
<td>0.00 - 0.00, 0.15 mm, 100%</td>
</tr>
<tr>
<td>Start Z</td>
<td>0.00 mm</td>
</tr>
<tr>
<td>End Z</td>
<td>0.00 mm</td>
</tr>
<tr>
<td>Layer Height</td>
<td>0.15 mm</td>
</tr>
<tr>
<td>Speed Multiplier</td>
<td>100 %</td>
</tr>
</tbody>
</table>

Figure 5.99: Set the layer height for different layers.

5.2.2.2 Delete Per-Layer Settings

![Delete Button]

refers to deleting selected Per-Layer settings.

5.2.2.3 Edit Per-Layer Settings

![Edit Button]

refers to editing the selected Per-Layer settings. In *Figure 5.100* you can edit the layer height for the define height range in setting1.
Figure 5.100: Edit the layer height for the "Per-Layer Settings".

Add Settings refers to adding more settings into the Per-Layer Settings such as Left Extruder, Right Extruder, Infill and so on.

Figure 5.101: Add other settings into the Per-Layer setting.

Remove Selected refers to deleting the selected settings from the Per-Layer Settings.
5.2.3 Import and Export Group and Layer Settings

Import from Last Used Group and Layer Settings refers to resetting the Group and Layer Settings to the ones you have used last time.

Import from .idea refers to importing the group and layer settings from the idea file.

Import from Local Disk refers to importing the group and layer settings from the local disk.

Clear Group and Layer Settings refers to deleting all groups and layer settings which you importing before.

Export the Local Disk refers to exporting the group and layer settings to the local disk.

![Import and Export Group and Layer Settings]

Figure 5.102: Import and export group and layer settings.
5.3 Per-Model Extruder

Per-Model Extruder refers to choosing an extruder for your model. If you have set the *Extruder Count* to be 2, this interface will show *Left Extruder* and *Right Extruder*. If you have set the *Extruder Count* to be 1, this interface will show *Primary Extruder* only. And we define the left extruder as primary extruder by default.

Figure 5.103: Choose an extruder for your model.
6 Multiple Extruders

6.1 Calibrate XY offset

Printer- > *Printer Settings* > *Extruders Count*

Figure 6.1: Select "Printer" -> "Printer Settings" from menu bar.

Select 2 in *Extruder Count*, and assign the filament type to each nozzle.

Figure 6.2: Set the "Extruder Count" to be 2. And set filament type for each extruder.
Extruder offset X refers to the offset between two nozzles in the direction of X. And we set left extruder as default nozzle. So when it comes to calculate the right extruder’s position is to minus 25mm offset (which you set for X offset) in X direction.

Extruder offset Y refers to the offset between two nozzles in the direction of Y. And we set left extruder as default nozzle. So when it comes to calculate the right extruder’s position is to minus 0mm offset (which you set for Y offset) in Y direction.

We may meet four cases:

First, there is a gap between two calibration boxes as **Figure 6.3:**

![Figure 6.3: There is a gap between two calibration boxes.](image)

That means the right nozzle needs to be closer to the left nozzle, and the default distance between right and left nozzle is 25mm.

So we need to measure how big the gap is and figure out the exact value which should be more than 25mm then refill it into the page below.
Figure 6.4: Fill the value of "Extruder Offset X".

Second, there is a superposition between two calibration boxes as Figure 6.5:

Figure 6.5: There is a superposition between two calibration boxes.

That means the right nozzle needs to be further to the left nozzle, and the default distance between right and left nozzle is 25mm.
So we need to measure the superposition’s value and figure out the exact value which should be less than 25mm then refill it into the page below.

![Printer Settings]

Figure 6.6: Fill the value of "Extruder Offset X".

Third, the right calibration box is backward more than the left calibration box as **Figure 6.7:**

![Right Calibration Box Backward](image)

Figure 6.7: The right calibration box is backward than the left calibration box.

That means the right nozzle’s position needs to be forward more to match the left nozzle. So we need to measure the value of offset and figure out the exact value which should be less than 0 then refill it into below interface.
Fourth, the right calibration box is more forward than the left calibration box as Figure 6.9:

Figure 6.9: The right calibration box is more forward than the left calibration box.

That means the right nozzle’s position needs to be backward more to match the left nozzle.
So we need to measure the value of offset and figure out the exact value which should be more than 0 then refill it into below interface.

Figure 6.10: Fill the value of "Extruder Offset Y".

Please double check your model and calibrate it until the two calibration boxes reach the same X, Y position.

6.2 Advanced Settings

If you want to print a multiple-filament model, you need to arrange which extruder should print which part of the model, and then assemble the model in ideaMaker before slicing.

Option 1: Enter Select Template tab and click Per-Model Extruder for your model.
Figure 6.11: Select the different extruders to print different parts of the model.

Option 2: Click View in menu bar and click model then choose extruder for your model.

Figure 6.12: Select the different extruders to print different parts of the model.
Figure 6.13: Try "Align Together" to align the models with "Move" enabled. If it doesn’t work well, try to move the models manually.

You can enable Show Extruder’s Printing Range to check whether your model is at correct range for each extruder when moving the models.

Figure 6.14: Check Right Extruder’s printing range.

2. When slicing the model, if you want to use specific filament to print support and raft (such as soluble filament), you need to set the extruder for printing support and raft.
3. If you use different filament while printing in multiple-extruder-mode, you need to set the extruders’ temperature separately. We usually suggest set the right nozzle a little higher than the left nozzle (if you are printing the same filament in left and right) due to the much longer loading path of right extruder).

5. In order to print a better model that printed by multiple extruders, you also need to control multiple extruders’ ooze. These settings as follows:

Force Retraction On Layer Change refers that the retraction will automatically be triggered the current layer print completes and the next layer starts.

Avoid Retraction Inside Model refers to disabling retraction when printing the inner structures of the model.

Extruder Switch Ooze Control refers to the retraction settings for extruder when one nozzle completes printing of one layer and the other nozzle starts printing.
Retraction Speed of Extruder-Switch refers to the speed of retraction when extruder switch.

Retraction Amount of Extruder-switch refers to the amount of filament retraction for an extruder change. 0 refers to no retraction at all.

Restart Speed of Extruder-switch refers to the extrusion speed after the retraction for an extruder change.

Extra Restart Amount of extruder-switch refers to the amount of additional filament compensation after the retraction for an extruder change.

Enable Wipe Wall means when printing a model with dual-extrusion, a nozzle will print a number of extra shells around the model. This wipe wall will help to clean the nozzle while printing.

Wipe Wall Offset refers to the distance between the outline of the model and the wipe wall. **Wipe Wall Angle** refers to the maximum allowed angle change which the wipe wall will generate (from 0 to 90).

![Figure 6.18: Set "Wipe Wall Angle" to be 90.](image-url)
Figure 6.19: Set "Wipe Wall Angle" to be 0.

Wipe Wall Loop Lines refers to the quantity of the shells of wipe wall.

Figure 6.20: Set "Wipe Wall Loop Lines" to be one.
Figure 6.21: Set "Wipe Wall Loop Lines" to be two.

Wipe Wall Type refers to the shape of the wipe wall shells. The primary difference is the distance of model and wipe wall.

Contoured is the one which is closest to the origin model shape. *Waterfall* is the type which will follow the origin shape, but a vertical drop if the lower structure is narrow that the above one. *Vertical* will find the widest part of the model and generate a vertical type wipe wall.

Figure 6.22: Three types of Wipe Wall.
Figure 6.23: Set "Wipe Wall Type" to be "Contoured".

Figure 6.24: Set "Wipe Wall Type" to be "WaterFall".
Figure 6.25: Set "Wipe Wall Type" to be "Vertical".

Wipe Tower refers to a cube created outside of the model which is used for wiping the next nozzle which is going to start print.

Wipe Tower Offset X refers to the distance between Wipe Tower and the model in the direction of X.

Wipe Tower Offset Y refers to the distance between Wipe Tower and the model in the direction of Y.

Wipe Tower Width refers to width of the wipe tower.

Wipe Tower Infill Ratio refers to the density of wipe tower structure.
Figure 6.26: Wipe Tower.

Figure 6.27: Wipe Wall will help decrease the effect of ooze from the other nozzle. But it is hard to totally avoid the ooze.
7 Filament Settings

7.1 Edit Filament Settings

When you want to edit the parameters of your filament, check the steps below:

Option 1: Edit the existing template.

Printer -> Filament Settings

Figure 7.1: Select "Printer" -> "Filament Settings" from menu bar.

Figure 7.2: Select a filament from the drop list and edit its parameters.

In this page, you can edit the parameters of your filament. The default settings are for Raise3D own filament and Raise3D certificated filament.
Remove refers to deleting the current filament template.
Note: remove function only work for the template which was added manually, the default template cannot be removed.

Export refers to exporting filament template from ideaMaker to your computer.

Reset refers to resetting parameters to default settings.
Note: reset function only work for default template.

Override Slicing Settings in Template Linked to the Filament refers that with this function enabled, below setting will be used to override setting in slicing template which is linked to current filament.
Press "+" to add more settings as **Figure 7.3**.

![Figure 7.3: Override Slicing Settings](image)

Import refers to importing a filament template from your computer.
Option 2: Enter into **Select template** tab and click setting button.

Figure 7.4: Clicking "setting button" and click "Add" button.

7.2 Add Filament

Press Add button to add a new Filament Settings

Figure 7.5: Set parameters for the new filament.
If you want to build a new filament, select **Add Filament** in last page. Here we have a little tip, in most cases filament doesn't need flowrate compensation. But PLA and flexible materials need to have flowrate compensation. PLA material has a default setting of flowrate at 94%. Print other materials with a PLA setting G-Code file may cause wrong extrusion.

7.3 Remove Filament

In this version, the customer’s filament template can also be removed. Choose the filament template you want to remove from the Filament Type drop list and select Remove button to remove it.

Note: This function only works for the template which was added by duplicate.

![Figure 7.6: Remove the selected filament settings.](image)
8 Printer Settings

8.1 Edit Printer Settings

Option 1: Edit the existing template in *Printer—>Printer Settings*

Figure 8.1: Select "Printer"—>"Printer Settings" from menu bar.

Figure 8.2: Select a printer from the drop list and edit its parameters.
Option2: Enter into Select template tab and click setting button.

In this page, you can edit the parameter of your printer. The default settings are for Raise3D own printer.

Figure 8.3: Clicking "Setting" button and click "Add" button.
8.2 Add Printer

Option 1: Add printer in *Printer->Printer Settings*

![Printer Settings window](image)

![Add Printer window](image)

Figure 8.4: Set parameters for the new printer.
Option 2: Enter into Select template tab and click setting button.

Figure 8.5: Add new printer.
8.3 Duplicate Printer

Duplicate refers to creating a duplicate object of selected *Printer Settings*.

Figure 8.6: Duplicate a selected Printer Settings.
8.4 Remove Printer

Remove refers to deleting selected **Printer Settings**. Choose the printer template you want to remove from the Printer Type drop list and click **Remove** button.

Note: This function only works for the template which was added by duplicate.

![Figure 8.7: Remove the selected Printer Settings.](image)

If you want to remove the slicing templates under this printer as a group, then check the ones you want to remove from the list on the left side. Then select "**OK**". The selected slicing templates and the printer templates will be removed all together.

![Figure 8.8: Remove the slicing templates.](image)
If you do not want to keep any slicing template under this printer type, check **Remove All templates** below. It will check all the slicing templates above. Then click **"OK"** button. All the slicing templates under this printer type will be removed together with this printer template.

![Figure 8.9: Remove All Templates.](image)

If you want to keep one slicing template, please first make sure that it has been unchecked.

![Figure 8.10: Remove the selected Templates.](image)

Select it and choose the **Printer** and **Filament** at right side for it. Then press **"OK"** button.
below. The printer template will be removed, but this slicing template will be saved under "Raise3D N1V2 Hot end – PETG 1.75mm" in this case.

Figure 8.11: Remove the selected Templates.