FLYBRIX

Learning to Code with Flybrix

Robb Walters, PhD
August 7, 2016
Version 0.1

Introduction

Did you know that the flight board included in your Flybrix kit is also a powerful computer that
you can learn to program? You'll need to install a few extra tools from the internet to get started,
but it shouldn’t take you more than an hour to create and run your first program - even if you've
never programmed before. If you do run into problems, just send us an email at
support@flybrix.com and we’ll help you sort it out. For those of you who are experts, we would
welcome your help in improving the quality of the lessons we’re sharing in this document - get in
touch!

Let’s be ambitious. Our goal for this document will be to guide a smart and motivated young
person (that’s you!) with no prior experience in either electronics or programming to an
advanced level of understanding of how Flybrix works on both a hardware and software level.
All you will need is your Flybrix kit, a personal computer, and an internet connection. If we'’re
successful, you’ll be able to imagine a new feature for Flybrix and add it to the source code
yourself.

We're really excited for you! The rabbit hole is as deep as you want it to be.

mailto:support@flybrix.com

Table of Contents

Introduction
Table of Contents
Chapter 1: From Zero to One Blinking LED
Introduction
Setting up your development environment
Installing the Arduino Development Environment
Installing the Teensyduino Libraries
Your First Program
Reinstalling the Flybrix Firmware
Method 1: Uploading the compiled firmware
Method 2: Compiling from the source code
Summary
Chapter 2: Terminal Velocity
Introduction
Receiving Data in the Arduino IDE Terminal
12C Communication
The MPU9250 Sensor
Estimating Velocity
Building a Simple Pendulum

Summary

Chapter 1: From Zero to One Blinking LED

Introduction

This chapter guides you through the installation of the tools you'll need to reprogram your flight
board and shows you how to write programs that interact with the indicator LEDs on your
flightboard.

Setting up your development environment

The most important chip on your Flybrix flightboard is the microcontroller that runs the code that
lets you fly. The microcontroller (MCU) is attached to the bottom of the flight board printed circuit
board (PCB). It's the chip in the middle of the board that is about 10 mm on each side. If you
read the markings on the top, you'll see the model number for this MCU (MK200X256) which
you can search on the internet to discover as a 32-bit ARM-based chip made by NXP. These
are all breadcrumbs for you to follow later when you're interested. For now, the important thing
to know is that the brain of your flight board speaks the language of ARM processors. We're
going to need to gather some tools together that will let you speak “ARM” too, so you can tell
your MCU what you want it to do.

Installing the Arduino Development Environment

The Arduino project has brought together a fantastic community of people interested in using
embedded systems (small cheap computers) to make cool stuff. It was an easy decision for us
to design our products to be compatible with the Arduino ecosystem. The most important benefit
of Flybrix being Arduino-compatible is that you'll be able to find a lot of information online if and
when you get stuck. Arduino maintains an entire website worth of tutorials. You’ll be able to run
through these tutorials with your Flybrix board after you complete all the setup steps in this
chapter. Let’s get started:

1. Read about the Arduino Integrated Development Environment (IDE) here

2. Download the IDE Installer version 1.6.9 for your computer from here. This is not the
most recent release! It takes awhile for us to verify that all of our code is compatible with
the newest features from Arduino so we’ll generally be a version or two behind them.
(We encourage those of you who are financially able to support the Arduino project to do
so when downloading their code, but note that there is also a free download option.)

3. Follow the installation instructions for your computer.

Installing the Teensyduino Libraries

For cost and simplicity reasons, the Arduino project is focused on lower performance
microcontrollers than the brain on your Flybrix flightboard. We will need to install some

http://lmgtfy.com/?q=MK200X256
https://en.wikipedia.org/wiki/Arduino
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/Main/OldSoftwareReleases#previous

additional software to use the Arduino IDE with the ARM processor core inside your MCU. One
of the great things about the open source software movement is that people can build on the
work of other talented programmers who have come before them. We hope you will aspire to
join this global effort by sharing code of your own someday!

We are grateful for the significant effort that Paul Stoffregen and Robin Coon have put into
creating the Teensyduino library that lets the Arduino IDE work with our MCU. Paul and Robin
make and sell a tiny computer called the Teensy. When we first started developing Flybrix, we
used the Teensy computer with external sensors and motor drivers. Because the Teensy is
open source hardware, we were able to incorporate the parts of the Teensy electronic circuit
that we wanted to keep into the circuit of the Flybrix flightboard. If you look on the top of your
board, you'll find a 3x3mm chip labelled on the circuit board as “Teensy 3.2”. This chip is a little
harder to identify by its markings than the main MCU (see if you can read them with a
magnifying glass!), but it is in fact a second microcontroller (also based on the ARM core).
These chips are installed on your flight board with some proprietary code written by Paul
pre-installed that allows the Flybrix flightboard to appear to your computer as a Teensy 3.2
board over the USB connection. (In principle you could reprogram this chip too, but it would be
extremely hard to reach all the electrical connections you would have to contact for this
purpose. We also wouldn’t be able to help you restore Paul’s software since we don’t have a
copy of it!) If you're curious, you can learn more about this chip on the “pjrc.com” website here.
You can safely ignore all of this detail, but we thought you might want to know why your
computer thinks a Teensy 3.2 is attached when you plug in the Flybrix flightboard.

The Teensyduino libraries provide the software you need to install to use the Arduino IDE with
the flightboard.

1. Read and follow the Teensyduino installation instructions here. You'll want to use
“Teensyduino Version 1.29”, which is matched to Arduino v1.6.9. Notice that the first
step is to install the Arduino IDE, so you’re already ahead of schedule!

Your First Program

We’'re going to write a very simple program using the Arduino IDE and upload it to your Flybrix
flightboard. Be aware that when you upload new firmware to your flight board, it will overwrite
the firmware that lets you fly your drones! But don’t worry, as soon as you’re done with a few
experiments, we’ll help you reinstall the Flybrix firmware.

1. Open up the Arduino IDE and create a New Project from the file menu. You should see a
window that looks about like this:

https://en.wikipedia.org/wiki/Open-source_software
https://www.pjrc.com/about/
https://www.pjrc.com/about/
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/schematic.html
https://www.pjrc.com/store/ic_mkl02.html
https://www.pjrc.com/teensy/teensyduino.html
https://www.pjrc.com/teensy/td_download.html

€9 sketch_aug02a | Arduino 1.6.9
File Edit Sketch Tools Help

sketch_augO&a

roid setup() {
// put your setup code here, to run once:

i

void loop() {
// put your main code here, to run repeatedly:

Teensy 3. ierial, 96 MHz aptimize US English on COM3

If this is the first time you’'ve seen code before, you might want to review some of the basic
syntax. There are a number of good tutorials online (like this one) that will explain the basics of
the “tokens” (symbols that have special meaning in the code). The file you see has two
functions “setup” and “loop” and a couple of helpful comments that explain what each will do

when we compile and run the code.

We’'re going to add some statements to make a green LED blink on the flightboard.

2. Type in the following code:

http://www.studytonight.com/c/c-syntax.php

& sketch_aug08a | Arduino 1.6.9 — O X

| Fil

Edit Sketch Tool

Help

sketch_auglsa g

void setup() | ~
pinMode (13, OUTEUT):

}

void loop() |

digitelWrite (13, HIGH):

3.1, Serial, 98 MHz optimized {overclock), US English an COM3

We’'re now using three new functions: “pinMode”, “delay”, and “digitalWrite”. We’re also using
the words “OUTPUT”, "HIGH”, and “LOW”, and the number “13”. We'll go over where these all
come from in a moment, but let's go ahead and run this code now just to see what happens.

3. Tell the Arduino IDE that you’re using a Teensy board:

&9 sketch_aug02a | Arduine 1.6.9 - O
File Edit Sketch Teols Help

Auto Format Ctrl+T
Archive Sketch

Fix Encoding & Reload

Serial Monitor Ctrl+ Shift+M
Serial Plotter Ctrl+Shift+L

Get Board Info

Burn Bootloader

S English on COR

Board: "Teensy 3.2/ 3.1" ;
USE Type: "Serial" E
CPU Speed: "96 MHz optimized (overclock)" |
Keyboard Layout: "US English” E
Port: "COM3" ;

Programmen: "AVRISP mkll" 3

Boards Manager...

Teensy Boards

Teensy 3.2/ 3.1

Teensy 3.0

Teensy LC

Teensy++ 2.0

Teensy 2.0

Arduino AVR Boards

Arduino Yan

Arduino/Genuine Uno

Arduino Duemilanove or Diecimila
Arduino Nano

Arduino/Genuino Mega or Mega 2380
Arduino Mega ADK

Arduino Leonardo
Arduino/Genuine Micro

Arduino Esplora

Arduino Mini

Arduino Ethernet

4. Plug a battery into your flight board and connect it to your computer with the USB
cable.Tell the Arduino IDE where the flightboard is connected:

€8 sketch_aug02a | Arduino 1.6.9 — O

File Edit Sketch Tools Help

Auto Format Ctrl+T

Archive Sketch

Fix Encoding & Reload

vold setup () Serial Monitor Ctrl+Shift+M £
pRERd= 3 oerial Plotter Ctrl+Shift+L

sketch_augla;

Board: "Teensy 3.2 / 3.1" >
USE Type: "Serial" b
CPU Speed: "% MHz cptimized (overclock)" >
Keyboard Layout: "US English” |
Port: "COM3" : Serial ports
Get Board Info COomM4a

¥ COM3

Programmer: "AVRISP mikll" 3

Burn Bootloader

rial, 98 MHz optimized {overclock), US English on COM3

5. Click the circle with the check mark to compile the code (“Verify”). You will probably be
prompted to save the file somewhere on your computer. You might also see another program
open automatically in the background called “Teensy Loader”, which you can leave open and
ignore for now. Note that Arduino files are called “sketches” and end with the file extension
“.ino”. The Arduino IDE also insists that each sketch is stored inside of a folder with the same
name.

You will see a bunch of text appear in the black box at the bottom of the window. This is the
output that is generated by the “Compiler” as it runs in the background. The compiler is a
program that translates the human readable code we’re writing into “machine code” that can be
uploaded to the microprocessor. Make the window a little wider so you can see the output more
clearly:

https://en.wikipedia.org/wiki/Compiler

File Edit Sketch Tools Help

Maximum is

There’s a lot of information in the output of the compiler and we’re going to pass over most of it
for now. The last few lines tell us where to find the machine code (the “-path=C:\Users...” part in
the third to last line), how big our compiled machine code turned out to be (14132 bytes =
113056 zeros and ones) and how that compares to the largest program we can run on the flight
board, and how much of the “dynamic memory” we’re using up. It's interesting to note that our
simple program was only about 130 characters long -- meaning that it would take up about 130
bytes to store on your computer - so it got about 870 times bigger when we compiled it into
machine code! The compiler does a lot of work for you in the background.

It's kind of fun to dig up the compiled source code file to see what it looks like. In the third to last
line, you can find the path that the output file was generated at. In this example, the path was
“C:\Users\Robb\AppData\Local\Temp\builde3f61397894fb2e54b99c7ebeaf0c550.tmp”. Let's
take a look inside the compiled “.hex” file that we see there:

https://en.wikipedia.org/wiki/Intel_HEX

“ Home Share View o
- { + F) P Ty 2 "
ey CU 1f Mew item ~ o Select all

-Tj Easy access * Ee Select none
Pin to Quick Copy Move Copy Delete Rename Mew Properties . -
access ut to - folder - &) History EFIn\rertseIectlon
g Open Select
& v > Robb » AppData » Local 3 Temp » builde3f61397894fb2e54b%9c7 ebeaf0c550.tmp v | & Search builde3f... ©
e MName Date modifiec
core
£3 Dropbox L
libraries
¢& OneDrive preproc
ketch
= ThisPC T L
= M build.options.json
|_j Metwork ;j sketch_aug02%a.inoc.eep

i sketch_aug0Ba.ino.elf
g
| | sketch_aug0Ba.ino.hex

*$ Homegroup

Qf’ Ch\Uszers\Robb'\AppDatat\Local\Temp\builde3f61357894fb2e54b99c Tebeaf0c330.tmpsketch_augl8a.ino.hex - Motepad++

File Edit Search View Encoding Language Settings Macro Run TextFX Plugins Window 7
cHHEEGa| i abh| oty 2% |EE|EHT FEERa® DENRHE 2avs

[= sketch_aug08a ino hex]

:1000000000800020BD01000005150000C51400009B
10001000C5140000C5140000C5140000C51400006C
10002000C5140000C5140000C5140000051500001F
1000300005150000C514000005150000B3140000E2
:100040000515000005150000051500000515000048
:100050000515000005150000051500000515000038
7 1000&0000515000005150000051500000515000028
8 :100070000515000005150000051500000515000018
9 :100080000515000005150000051500000515000008
10 :1000900005150000051500000515000005150000F8
1% z1000A00005150000051500000515000005150000E8

R

o

Mormal text file

Neat, right? This is the file that we will copy over to the memory inside the microcontroller on
your flight board to run the program we compiled.

6. Next to the “Verify” button, you should see a circle with an arrow in it (“Upload”). Press it
to recompile the code again and upload the result directly to the flightboard.

You might get a message in the compiler output area like this:

Teensy did not respond to a USB-based request to automatically reboot.

Please press the PROGRAM MODE BUTTON on your Teensy to upload your sketch.
If you do, go ahead and press the small program mode button. You'll find it on the top of the
flight board next to the USB connector, marked “program” on the circuit board silkscreen layer.

You should see the “Teensy Loader” application pload the code to the flightboard:

myT. - b
File Operation Help

Pregrameming

Programming

|sketch_aug'|}33.ino.hex, 5% use ‘él

Take a look at your flightboard. Do you see the green indicator LED?

Let’s look again at the code we wrote in the “loop” part of our sketch:

void loop() {
digitalWrite (13, HIGH):
delayv(l):
digitalWrite(13, LOW):
delavy (1) :

1

What exactly this this code supposed to do anyway? Well, let’s go one function at a time and
search for more information online.

Let’s start by searching for information on digitalWrite. The first result is a tutorial page from the
official Arduino site. It explains that “digitalWrite” is a function that takes two arguments:

http://lmgtfy.com/?q=arduino+digitalWrite
https://www.arduino.cc/en/Reference/DigitalWrite

digitalWrite(pin, value)

pin: the pin number

value: HICH or LOW

If you read the entire page, you'll also learn that HIGH and LOW mean two different voltage
levels. For our board “HIGH” will be 3.3V and “LOW” will be ground (0V). We also learn from the
tutorial page that the “13” in our code specifies the particular pin that is being set at these
voltage levels. Let’s look at part of the electrical circuit schematic for the Flybrix flightboard:

DN
seeie R29 GR{“///

AN

330
u1 e -
MK2@DX256VLH7 Da
RED
REDLED [27] 2 A R,6, 1 1[: I//‘
330

UART@_CTS [20]

PTD5 82
PTB2 FL>12¢_cLk [19]
PTB3 [28>12¢_DAT [18]
PTB1 FEE>MPu INT [17]
PTBO 22~

GRNLED [13] |

PTCS |22

When we change the voltage on pin 13 using the digitalWrite function, the microcontroller
changes the voltage on the wire leading to the resistor R29, which sits in front of the diode D11.
We asked the MCU to set the voltage to 3.3V. This means that the microcontroller has to push a
current through the resistor and the diode. Let’s dig a little deeper on this and read about the
diode D11 online. If you look in the Flybrix “Bill of Materials” file, you can find out that the diode
D11 is manufactured by Kingbright company and has the part number “APHHS1005CGCK”.
Search for “Kingbright APHHS1005CGCK” and find the datasheet for the part. A datasheet is
full of all kinds of interesting information. For example, you can find out that the dominant
wavelength of this particular LED is 570nm. You can also find out that the “forward voltage drop’
is typically about 2.1 volts. This means that when the microcontroller sets the voltage on pin 13
to 3.3V (“HIGH”), the voltage at the other side of the resistor will climb up to 2.1V -- meaning
that the voltage drop across the resistor is going to be (3.3V - 2.1V = ...) 1.2 volts. You may

recall that Ohm’s Law can be used to calculate the current that must be flowing through the
resistor to create a drop of 1.2V. In this case the current (I = V/R = 1.2V/3300hms) is ~3.6mA.
This current generates light (and a little bit of heat) in the LED and is supplied by the
microprocessor when it interprets the code that you just wrote! This is about as close to Harry
Potter’s “Lumos” as you can get.

So now we have “Lumos”.. but what about “Nox”? Let’s return to the code inside the “loop”
function. We also wrote “digitalWrite(13, LOW)” with the intention of turning off the LED - but if
you look at your flightboard, it probably looks like the light is on all the time, right?

We need to learn more about the “delay” function. Go back to your browser and search for
“arduino delay”. The first result should again be a tutorial page from the official arduino website.
Aha! The numerical parameter we’re passing to the delay function is interpreted with units of
milliseconds. So we’re blinking the LED on and off 500 times every second! This is fast enough
to appear as a solid color to your eyes and brain -- that is unless you use a trick related to the
persistence of vision effect. Try waving the flight board around in the air -- do you see a row of
green dots? Compare to the solid trail created by the other green LED that is powered
constantly to show that the battery is attached.

Changing an LED between “on” and “off” five hundred times every second is easy for your
flightboard. In fact your MCU could switch the lights “on” and “off” a million times a second
without any problems. You should get used to thinking about very small slices of time when you
program on a microcontroller!

As another aside, let’s think for a moment about how your flight board knows anything about
time at all in the first place. Look again at the bottom of your flight board, next to the
microcontroller chip. Do you see a small silver box near one corner? It has some marks on top
of it that you could read and search for online, or maybe you could ask in a user forum for help
discovering that this component is the “oscillator” listed in the bill of materials as “Y1”. This part
is manufactured by TXC Corporation and has the part number “8Y-16.000MAAV-T” -- see if you
can find the datasheet online. This part is a “quartz crystal” - that’s the only breadcrumb you
need to learn all about this type of electronic component if you’re interested. Here’s the
wikipedia page. If you found the datasheet, you'll learn that the part number tells us that this is a
16MHz crystal. So our microcontroller knows about time because it can watch a voltage
(generated with the crystal) rise and fall 16 million times a second. If you'’re a really good
detective, perhaps you’ve noticed that the Arduino IDE has an option to let you change the CPU
speed and that the default is 96Mhz and not 16 Mhz. If you wanted to understand this, you
might explore circuits that perform frequency division or go out and hunt for the datasheet for
the microcontroller itself.

Back to our LEDs. How would you slow things down so that you can see the LED blink without
shaking the board around?

https://en.wikipedia.org/wiki/Ohm%27s_law
https://en.wikipedia.org/wiki/Persistence_of_vision
https://en.wikipedia.org/wiki/Crystal_oscillator
https://en.wikipedia.org/wiki/Frequency_divider

7. Change the program so that you can see the LED blink.
See if you can guess how to do this on your own before you continue - there is no right answer
here! When you finish making your changes, you can save the file or just press the “Upload”

button again and the file will be saved automatically. Are you blinking now?

The next page shows how we changed the code...

File Edit Sketch Teols Help

void loop() |
1i alWrite (13, HIGH):
ds F{100);

This code makes the green indicator LED blink once every ~5.1 seconds for ~100 msec. (How
much time do you think is needed to change the voltage on pin 137?)

If you want to keep playing, you might try also changing the red indicator LED using pin 27 (can
you see this in the circuit schematic above?). You'll need to add a line to the setup routine to tell
the microcontroller that pin 27 is also being used as an output in your program.

Can you write a program that alternates between red and green indicator lights? How about a
program that shows a line of alternating red and green dots when you shake the board around?

Reinstalling the Flybrix Firmware

When you’re finished experimenting with the indicator LEDs you'll probably want to reinstall the
Flybrix firmware that lets you fly drones! We’re going to show you two different ways to do this -

both are equivalent, so you can follow whichever you would like. Method 1 is faster if you're in a
rush.

Method 1: Uploading the compiled firmware

Have you visited the Flybrix Github page before? We use Github to keep track of the code that
we’re writing for the Flybrix flightboard. If you're ever curious about what we’re working on, you
can check out the differences between the “master” branch (which stores the code for the last
official firmware release) and the “development” branch (which stores all of our work in
progress).

You can also download precompiled “.hex” files from each official release of the firmware. We’re
going to use the latest of these compiled files with the “Teensy Loader” program to restore the
Flybrix flight code to your flightboard.

1. Download the file “firmware.hex” file from the latest release here.
2. Run the “Teensy Loader” application.
3. Load the file “firmware.hex” from the file menu:

By T. = X
Fil_e Opleratinn_ Hellp
E Open HEX File

Quit

Press Button
on Teensy to
manually enter
Program Mode

sketch_aug02a.ino.hex (unreac 2

4. With your flightboard powered up and plugged into the USB port (is it still blinking?) hit
the program button.

5. You should see a progress bar while the Flybrix firmware is uploaded. You should see
the boot-up light sequence -- you’re ready to go!

Method 2: Compiling from the source code

You don’t have to understand all of the source code for the Flybrix firmware before you can
compile it on your own computer. The process is very similar to how you uploaded your blinking
indicator LED sketches earlier. There are a few extra steps, but we’ll guide you through the
process one step at a time.

1. Download the compressed archive of the source code from “Source Code (zip)” from the
Flybrix release page on Github here.

https://github.com/Flybrix/
https://github.com/Flybrix/flybrix-firmware/releases
https://github.com/Flybrix/flybrix-firmware/releases

2. Extract the zip file somewhere convenient. Remember that the main sketch file
“flybrix-firmware.ino” must be inside a folder named “flybrix-firmware”. Alternatively, you
might decide to rename the sketch to “flybrix-firmware-x.y.z.ino” so that it matches the
folder name.

3. Open the main sketch file in the Arduino IDE.

4. Click the round button with the check mark (“Verify”).

At this point the compilation will fail because you're missing a library that we’re going to need to
install separately. The code is called “SdFat” and is written by Bill Greiman. We’re going to
download Greiman’s code from his github page. See the green button labelled “Clone or
Download”?

greiman / SdFat ® Watch~ 52 Star 184 ¥Fork 112

<> Code Issues 1 Pull requests 0 Wiki Pulse Graphs

Arduino FAT16/FAT32 Library

YD 7 commits ¥ 1 branch > 0 releases

¥ 1 branck 48
y 4
Branch: master v New pull request Create new file = Upload files Fint\':j’ﬁle
.h%‘&
- L‘-,_ -y _ . i
¥ greiman Fix README Latest commiemeagath 20 dausaae

l AnalogBinloggerExtras
Bm SdFat

Bl SdFatTestSuite

| html

E) gitattributes

[El .gitignore

[E) README.md

E SdFat.html

[E) changes.txt Commit ct

README.md

Download the zip file and extract the contents somewhere convenient.

5. Install the SdFat library for Arduino using the manual method described in the Arduino
documentation into your “libraries” folder. The only tricky part is finding the right place to
put the library, but here’s where to look:

Under Windows, it will likely be called "My Documents\Arduino\libraries". For Mac users,
it will likely be called "Documents/Arduino/libraries”. On Linux, it will be the "libraries"
folder in your sketchbook.

https://github.com/greiman/SdFat
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Guide/Libraries

You'll want to copy the “SdFat” folder from inside the unzipped “SdFat-master” folder to the
“libraries” folder. You can ignore all the other stuff:

[5 3 — O 4
Home Share View 0
}f I_] ¥ cut x Y %New item = @ il Open EaSelect all
Wl Copy path = - ﬂ Easy access = Edit Select none
Pinto Quick Copy Paste o Move Copy Delete Rename Mew Properties
access E] Paste shortcut to to - folder - £ History DD Invert selection
Clipboard Organize MNew Open Select
« v A » SdFat-master w | @ Search 5dFat-m.. 2
el Mame Date modified Type Size
AnalogBinLoggerExtras File folder
&3 Dropbox : E i
html File folder
@ Onelrive SdFatTestSuite ! File folder
5 .gitattributes /19/2016 1:03PM Text Document 1KB
[This PC = e ; /
S E] gitignore 2016 1:03 PM Text Document 3KB
¥ Network Q{ changes.txt 2016 1:03 PM TXT File 13 KB
4 Q[’ README.md 8/2016 1:03 PM MDD File 2KB
ikt & sdFat.html 7/19/2016 1:03 PM HTML File 1KB
& items

[v = | libraries

Home Share View ~ @

}' u o Cut 3 x l % New item = @ | Open Hﬂ Select all
we Copy path A -f:| Easy access = Edit 10 Select none
Pinto Quick Copy Paste _ love Py Delete Rename Mew Froperties
access |7] Paste shorteut - falder - £ History DD Invert selection
Clipboard Crganize Mew Open Select
- v » ThisPC » Documents * Arduino » libraries v O Search libraries 2
F Otk sccess MName Date modified Type Size
Qf' readme it 8/8/2016 %09 PM TXT File TKB
22 Dropbox
SdFat 8/8/2016 T:58 PM File folder
f@ OneDlrive = -
COPY OVER THE "SdFat" FOLDER
[This PC
@ MNetwork

g Homegroup

6. Editthe SdFat Library.

This is the most complicated thing we’re going to ask you to do today. Here’s the deal - the
MCU on your flightboard is much more than just an ARM core processor. It also has a bunch of
hardware peripherals that are implemented using electronics rather than software. You've
already been using one of these peripheral subsystems all day to talk to the microprocessor
through the USB port. The MCU actually has more peripheral subsystems than you can use
simultaneously! If you count the pins on the chip, you’ll see that there are 64 of them. Many of
these pins are connected to more than one peripheral. Remember when we used the function
“pinMode” in the “setup” function? We didn’t go over the function in detail, but it was needed to

tell the chip that we wanted to use pin 13 as a general purpose input output device (GPIO) and
more specifically, as an OUTPUT version of this device.

The Flybrix flight software lets you read and write from an SD card using a different peripheral
subsystem of the MCU. We need to tell the SdFat library which pins on the MCU are connected
to the SD card on the flightboard. Ready?

Let’s go back into the “libraries” folder where you copied the SdFat folder. We’re going to
navigate down to a file called “SdSpiTeensy3.cpp” at “...Arduino\libraries\SdFat\src\SdSpiCard”.
You will need to open this file in a text editor. It's probably best not to use a word processor. On
a Windows machine you can use Notepad or you can install “Notepad++”. On a Mac, you might
use “Text Edit” or download TextWrangler or Sublime.

We’re going to look in the file for the following three lines:
CORE PIN11 CONFIG PORT PCR DSE | PORT PCR MUX(2);
CORE_PIN12 CONFIG PORT PCR MUX (2) ;
CORE PIN13 CONFIG PORT PCR DSE | PORT PCR MUX(2);
and replace them with these three lines instead:
CORE PIN7 CONFIG = PORT PCR DSE | PORT PCR MUX(2);
CORE_PIN8 CONFIG PORT PCR MUX (2) ;
CORE PIN14 CONFIG = PORT PCR DSE | PORT PCR MUX(2);

The general idea is that the SdFat library is expecting our SD card to be attached to the MCU at
pins 11, 12, and 13, but in fact our SD card is attached to pins 7, 8, and 14.

Phew.

7. Close and reopen the flybrix-firmware sketch (the Arduino IDE isn’t very good at
reloading libraries in our experience) and then compile and upload to your flightboard
using the “Upload” button.

Congratulations! You just built our flight control software from scratch!

Summary

In this chapter, you installed a development environment on your computer and compiled your
first program. You learned some strategies for how to find help online, and you also should feel
confident that you can restore your Flybrix flightboard to its factory configuration whenever you
want.

We hope you’ll continue to learn how the hardware on your flightboard works while you build
your programming skills. The next chapter shows you how to read one of the sensors on your
flightboard using your computer as the display.

Chapter 2: Terminal Velocity

Introduction

Receiving Data in the Arduino IDE Terminal
|12C Communication

The MPU9250 Sensor

Estimating Velocity

Building a Simple Pendulum

Summary

Future chapters....

Connecting to python

Connecting to the browser

COBS Encoding for optimal throughput
Some pendulum experiments

State estimation

Basics of control theory

Driving the motors

Controlling a real pendulum

Flightboard Electronics Overview
The BMP280 sensor

FastLED

Radio Control

Bluetooth

SD Cards

SPI Peripherals

