

The D1xC1 \& D1xC2 combined alarm horns \& strobes are classified by UL as Audible Signaling Appliances for General Signaling and Public Mode Fire Alarm use in Hazardous Locations

1) Introduction

The D1xC1 \& D1xC2 range are UL Classified combined alarm horns and strobes which produce a loud warning signal in a hazardous area. Sixty-Four first stage alarm sounds can be selected by internal switches and each one can be externally changed to a second, third or fourth stage alarm sound. The alarm horn may be used for Gas applications in Class I Division 1 \& 2 as well as Class I Zone 1 \& 2. D1xS1 \& D1xS2 alarm horns and D1xL1 \& D1xL2 Loudspeakers are also available as well as variants for Explosive Dust Atmospheres.

2) Warnings

CAUTION

TO REDUCE THE RISK OF IGNITION OF HAZARDOUS ATMOSPHERES:
DISCONNECT FROM SUPPLY BEFORE OPENING. KEEP TIGHTLY CLOSED WHEN IN OPERATION. WARNING
FIT SEALING FITTING IN CONDUIT RUNS WITHIN 18 INCHES FROM ENCLOSURE.

ATTENTION

POUR REDUIRE LE RISQUE D'INFLAMMATION DES ATMOSPHÈRES DANGEREUSES:
COUPER L 'ALIMENTATION AVANT OUVERTURE. CONSERVER FERMÉ PENDANT LE FONCIONNEMENT. AVERTISSEMENT
CONDUITS DOIVENT ÊTRE SCELLÉS EN MOINS DE 18 POUCES.

3) Ratings and Markings

The D1xC1 and D1xC2 combined alarm horns and strobes comply with the following standards for hazardous locations:

UL 1203
CSA C22.2 NO. 30-M1986
The D1xC1 and D1xC2 combined alarm horns and strobes also comply with the following standards for signaling equipment:

UL464, UL1638
CSA C22.2 NO. 205-12

3.1 Class / Division Ratings for US \& Canada

The D1xC1X05-DC024 / D1xC1X05-AC115 combined alarm horns and strobes are rated as follows:

Class I Div 1	ABCD	T5	$\mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Class I Div 1	ABCD	T6	$\mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

The D1xC1X05-AC230 combined alarm horns and strobes are rated as follows:
Class I Div $1 \quad \mathrm{ABCD} \quad \mathrm{T} 6 \quad \mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
The D1xC1X10 / D1xC2X05 / D1xC2X10 combined alarm horns and strobes are rated as follows:

Class I Div 1	ABCD	T5	$\mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Class I Div 1	ABCD	T6	$\mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

Installation must be carried out in compliance with the National Electric Code / Canadian Electric Code

3.2 Class / Zone ratings for US \& Canada

The D1xC1X05-DC024 / D1xC1X05-AC115 combined alarm horns and strobes are rated as follows:

Class I Zone 1	IIC	T5	Ta $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Class I Zone 1	IIC	T6	Ta $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

The D1xC1X05-AC230 combined alarm horns and strobes are rated as follows:
Class I Zone $1 \quad$ IIC \quad T6 $\quad \mathrm{Ta}-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
The D1xC1X10 / D1xC2X05 / D1xC2X10 combined alarm horns and strobes are rated as follows:
Class I Zone 1 IIC \quad T5 \quad Ta $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Class I Zone 1 IIC T6 Ta $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Installation must be carried out in compliance with the National Electric Code / Canadian Electric Code

3.3 Fire Alarm Rating

The following models are approved for use as audible signal appliances for fire alarm use - public mode and produce a sound pressure level above $75 \mathrm{~dB}(\mathrm{~A})$ at 10 feet:

```
D1xC1X05-DC024 / D1xC1X10-DC024
D1xC2X05-DC024 / D1xC2X10-DC024
```

For public mode fire alarm use the temporal pattern tone No. 12 as per the tone table provided in these instructions must be selected. Only units with clear lens may be used.

3.4 Ambient Temperature Range:

For D1xC1X05-DC024 / D1xC1X05-AC115
$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ (D1xC1 X05-DC024 / D1xC1X05-AC115 only)
For D1xC1X05AC230 / D1xC1X10 / D1xC2X05 / D1xC2X10 $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$

3.5 Ingress Protection Ratings

The product is rated for ingress protection as follows: IP rating per EN60529: IP66 Type rating per UL50E / NEMA250: 4/4X / 3R / 13 Warning - not suitable for exposure to Acetic Acid or Reference Fuel C.

3.6 Electrical Ratings per UL Listing

Model No.	Nom. Voltage	Nom. rms current sounder ${ }^{1}$	Nom. rms current beacon ${ }^{1}$	Nom. rms current combined ${ }^{1}$	Voltage Range	Max. rms current combined ${ }^{2}$
D1xC1X05-DC024	24 Vdc	217 mA	323 mA	540 mA	$20-28 \mathrm{Vdc}$	604 mA @ 20Vdc
D1xC1X05-AC115	115 Vac 60 Hz	77 mA	130 mA	207 mA	110-120Vac $50 / 60 \mathrm{~Hz}$	266 mA @ 120Vac 60Hz
D1xC1X05-AC230	230 Vac 50 Hz	53 mA	79 mA	132 mA	$220-240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	151 mA @ 240Vac 60Hz
D1xC1X10-DC024	24 Vdc	217 mA	673 mA	890 mA	$20-28 \mathrm{Vdc}$	1112 mA @ 20Vdc
D1xC1X10-AC115	115 Vac 60 Hz	77 mA	247 mA	324 mA	110-120Vac $50 / 60 \mathrm{~Hz}$	431 mA @ 120Vac 60Hz
D1xC1X10-AC230	230 Vac 50 Hz	53 mA	121 mA	174 mA	$220-240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	229 mA @ 240Vac 60Hz
D1xC2X05-DC024	24 Vdc	924 mA	323 mA	1247 mA	20-28Vdc	1477 mA @ 20Vdc
D1xC2X05-AC115	115 Vac 60 Hz	268 mA	130 mA	398 mA	110-120Vac $50 / 60 \mathrm{~Hz}$	446 mA @ 110Vac 60Hz
D1xC2X05-AC230	230 Vac 50 Hz	159 mA	79 mA	238 mA	220-240Vac $50 / 60 \mathrm{~Hz}$	255 mA @ 220Vac 60Hz
D1xC2X10-DC024	24 Vdc	924 mA	673 mA	1597 mA	20-28Vdc	1984 mA @ 20Vdc
D1xC2X10-AC115	115 Vac 60 Hz	268 mA	247 mA	515 mA	110-120Vac $50 / 60 \mathrm{~Hz}$	604 mA @ 120Vac 60Hz
D1xC2X10-AC230	230 Vac 50 Hz	159 mA	121 mA	280 mA	$220-240 \mathrm{Vac} 50 / 60 \mathrm{~Hz}$	330 mA @ 240Vac 60Hz

1) Nom. rms current draw at nom. voltage, worst case tone and 1 Hz flash rate
2) Max. rms current draw at worst case voltage, tone and flash rate

3.7 Surge Current for Fire Alarm use per UL Listing

Part No.	Voltage	Peak Surge Current	RMS surge Current
D1xC1X05-DC024 / D1xC2X05-DC024	28 Vdc	$2.54 \mathrm{~A} @ 2.06 \mathrm{mS}$	1.29 A
D1xC1X10-DC024 / D1xC2X10-DC024	28 Vdc	$2.96 \mathrm{~A} @ 2.06 \mathrm{mS}$	1.61 A

Surge current given at worst case voltage, tone and flash rate

3.8 On-Axis Flash Rate and min. Light Output for Fire Alarm use per UL Listing

Part No.	Voltage	Flash Rate	Light output in candela-effective intensity	Lens Colour
D1xC1X05-DC024 / D1xC2X05-DC024	20 Vdc	$1 \mathrm{~Hz} / 60 \mathrm{fpm}$	12 cd eff.	Clear
D1xC1X10-DC024 / D1xC2X10-DC024	20 Vdc	$1 \mathrm{~Hz} / 60 \mathrm{fpm}$	20 cd eff.	Clear

4) Installation

4.1 Safe Installation Requirements

The product must only be installed by suitably qualified personnel in accordance with the latest issues of the relevant standards.

The installation of the units must also be in accordance with the NEC / CEC and any local regulations and should only be carried out by a competent electrical engineer who has the necessary training.

To maintain the ingress protection rating and mode of protection, the cable entries must be fitted with suitably rated cable entry and/or blanking devices during installation. If conduit is used for installation, seal conduit within 18 inches from the enclosure.
If entries are fitted with adaptors they must be suitably rated for the application. Fitting of blanking elements into adaptors is not permitted.

If a high IP (Ingress Protection) rating is required then a suitable sealing washer or O-ring must be fitted under any cable gland or blanking device with metric threads.

Only the explosionproof cover is to be used for access to the enclosure for installation, service and maintenance.

Connections are to be made into the terminal blocks using solid or stranded wire, sizes $0.5-2.5 \mathrm{~mm}^{2} /$ AWG $20-14$. Wire insulation needs to be stripped $6-7 \mathrm{~mm}$. Wires may be fitted securely with crimped ferrules. Terminal screws need to be tightened down with a tightening torque of $0.4 \mathrm{Nm} / 3.5 \mathrm{Lb}-\mathrm{in}$.

Earthing connections should be made to the Internal Earth terminal in the explosionproof chamber or the external earth stud.

Check that the ' O ' ring seal is in place before replacing the explosionproof cover.

5) Installation

Fig. 1 Fixing locations.

5.1 Mounting

The D1x Alarm Horn may be secured to any flat surface using the three 7 mm fixing holes. The enclosure provides IP66 protection and is suitable for installation in exterior locations providing the cable entry is sealed.

Installation procedure

a. Secure the D1x alarm horn to a flat surface via the three 7 mm fixing holes in the mounting bracket.
b. Remove the explosionproof cover of the alarm horn by unscrewing it, taking care not to damage the explosionproof threads in the process (Refer to section $6)$.
c. Fit an M20/NPT suitably rated cable gland or conduit entry into the hole in the enclosure and connect the field wiring to the appropriate alarm horn terminals as shown in fig. 6 (AC) or fig 8. (DC). The power supply terminals are duplicated so that units may be connected in parallel. An end of line monitoring resistor may be fitted to DC units only (see section 14). If the second and third M20/NPT entries are not used, suitably rated stopping plugs must always be fitted.
d. Replace the explosionproof cover of the loudspeaker, taking care not to damage the explosionproof threads. Tighten fully.

5.3 Hornless Variants

The D1x Sounder is also available as a variant with no horn fitted in the factory. The Horn threaded nose portion has a fitment thread of $1-3 / 8^{\prime \prime}$ - 18 UNF (to BS1580 or ANSI B1.1). The customer is responsible for sourcing and correctly fitting a suitable horn that meets all of the relevant safety requirements.

6) Access to Explosionproof Enclosure

In order to connect the electrical supply cables to the alarm horn it is necessary to remove the explosionproof cover to gain access to the explosionproof chamber. This can be achieved by unscrewing the explosionproof cover, taking extreme care not to damage the explosionproof threads in the process.

Fig. 2 Accessing the Explosionproof Enclosure.
On completion of the cable wiring installation the explosionproof threads should be inspected to ensure that they are clean and that they have not been damaged during installation. Also check that the ' O ' ring seal is in place, on the thread diameter in contact with the flat face of the explosionproof cover. When replacing the explosionproof cover ensure that it is tightened fully.

7) Volume Control

The output level of the D1x alarm horn can be set by adjusting the volume control potentiometer (see Fig 3). For maximum output, set the potentiometer fully clockwise.

D1xC2AC / D1xC2DC / D1xC1DC / D1xC1AC

Fig. 3 Location of field controls

8) Tone Selection

The D1xC1 \& D1xC2 units have 64 different tones that can be selected independently for the first and second stage alarms. The tones are selected by operation of the tone setting DIP switches $1 \& 2$ (see Fig. 3) on the PCB. The alarm horns can also be switched to sound the third and fourth stage alarm tones. The tone table (Table 1) shows the switch positions for the 64 tones on first and second stages and which tones are available for the third and fourth stages dependent on the Stage 1 DIP switch setting.

9) Stage Switching Polarity (DC Units Only)

The D1xC2 and D1xC1 DC alarm horns have the facility to use either +ve or -ve switching to change the tone to the second, third and fourth stages. For -ve switching connect the two headers on the pcb to the left-hand (marked -ve) and centre pins. For +ve switching connect the headers to the right hand (marked +ve) and the centre pins. (Refer to Fig. 4)

Fig. 4 Stage Switching Polarity
10) AC Wiring
10.1 Wiring Diagrams

(Customer
Supplied Switches)
Fig 5a. D1xC2 AC Simplified Block Diagram

Fig 5b. D1xC1 AC Simplified Block Diagram

10.2 Units First Stage Tones

Stage one (S1) operation: Simply connect the supply voltage to the L and N supply terminals, (see fig. 6).

10.3 AC Units Second, Third and Fourth Stage Tone Selection

To select the second, third and fourth stage tones on the D1x AC alarm horns.
Stage two (S2) operation : Power L and N, link the common (C) and S2 terminal.
Stage three (S3) operation : Power L and N, link the common (C) and S3 terminals.

Stage four (S4) operation: Power L and N, link the common (C) and both the S2 and S3 terminals.

Fig. 6 AC Terminals

11) DC Wiring

11.1 Wiring Diagrams

(Customer
Supplied Switches)
Fig. 7a DC Simplified Block Diagram (negative switching)

STAGE $4=$
(Customer
Supplied Switches)

Fig. 7b DC Simplified Block Diagram (positive switching

11.2 Units First Stage Tones

Stage one (S1) operation: Simply connect the supply voltage to the + and - supply terminals, (see fig. 8).

11.3 DC Units Second, Third and Fourth Stage Tone Selection

For units set up for -ve switching (default setting):
Stage two (S2) operation: Power +ve and -ve, link a -ve supply line to the S 2 terminal. Dip switch 2 alters stage 2 tone.
Stage three (S3) operation: Power +ve and -ve, link a -ve supply line to the S3 terminal. Dip switch 1 alters stage 3 tone. Stage four (S4) operation: Power +ve and -ve, link a -ve supply line to both the S2 \& S3 terminals. Dip switch 1 alters stage 4 tone.

For units set up for + ve switching (refer to 9.1):
Stage two (S2) operation: Power +ve and -ve, link a +ve supply line to the S2 terminal. Dip switch 2 alters stage 2 tone. Stage three (S3) operation: Power +ve and -ve, link a +ve supply line to the S3 terminal. Dip switch 1 alters stage 3 tone. Stage four (S4) operation: Power +ve and -ve, link a +ve supply line to both the S2 \& S3 terminals. Dip switch 1 alters stage 4 tone.

Fig. 8 DC Terminals

12) Earthing

The unit has both a primary internal and secondary external earth fixing point.
Internal earth connections should be made to the internal Earth terminal (see Fig. 3 and 4. It should be fitted to the internal earth point using a ring crimp terminal to secure the earth conductor.
In addition, external earth connections can be made to the M5 earth stud (see Fig. 2), using a ring crimp terminal to secure the earth conductor to the earth stud. The external earth crimp ring should be located between the two M5 plain washers provided and securely locked down with the M5 spring washer and M5 nut.
The earth conductor should be at least equal in size and rating to the incoming power conductors but at least a minimum of $0.82 \mathrm{~mm}^{2} / 18 \mathrm{AWG}$ in size.
13) Flash Rate Settings

Fig. 9 DC Flash Settings

(Flip-Flop Mode not available on D1xC1X05 / D1xC2X05)
Fig. 10 AC Flash Settings

14) End Of Line Monitoring (DC Units Only)

On D1xC1DC \& D1xC2DC units, dc reverse line monitoring can be used if required. All DC alarm horns have a blocking diode fitted in their supply input lines. An end of line monitoring diode or an end of line monitoring resistor can be connected across the +ve and -ve terminals. If an end of line resistor is used it must have a minimum resistance value of 3 k 3 ohms and a minimum power rating of 0.5 watts or a minimum resistance value of 500 ohms and a min. power rating of 2 watts. The resistor must be connected directly across the +ve and ve terminals as shown in the following drawing. The resistor leads should be kept as short as possible.

Fig. 11 End Of Line Resistor

Tone Selection - To select the required first stage tone set the tone Set DIP switch 1 (6 way DIP see Fig 3) to the required tone setting shown in the table below. The table also shows the second stage tone can be set independently with the Stage 2 DIP switch to select the required tone. The $3^{\text {rd }}$ and $4^{\text {th }}$ stage tones are available if more than two tone output stages are required, they are set/linked via the first stage tone selection.

Stage 1 Set DIP Switch 1 Tone No	Tone Description	Tone Visual	Stage 1 \& 2 DIP Switch Settings 123456	Stage 2 Set DIP Switch 2 Tone (S2)	Stage 3 Set DIP Switch 1 Tone (S3)	Stage 4 Set DIP Switch 1 Tone $(\mathrm{S} 2+\mathrm{S} 3)$
1	1000 Hz PFEER Toxic Gas	1000 Hz	000000	1	2	44
2	1200/500Hz @ 1Hz DIN / PFEER P.T.A.P.	$\begin{array}{ll} 1200 \mathrm{~Hz} \\ 500 \mathrm{~Hz} \end{array} \mathrm{Is}^{2}$	100000	2	3	44
3	$1000 \mathrm{~Hz} @ 0.5 \mathrm{~Hz}$ (1s on, 1s off) PFEER Gen. Alarm	$1000 \mathrm{~Hz}{ }^{1 \mathrm{~s}}{ }_{\text {1s }}\lceil$	010000	3	2	44
4	$1.4 \mathrm{KHz}-1.6 \mathrm{KHz} 1 \mathrm{~s}, 1.6 \mathrm{KHz}-$ $1.4 \mathrm{KHz} 0.5 \mathrm{~s} \mathrm{NF} \mathrm{C} 48-265$	$\begin{aligned} & 1600 \mathrm{~Hz} \\ & 1400 \mathrm{~Hz} \text { /s } 0.5 \mathrm{~s} \end{aligned}$	110000	4	24	1
5	$544 \mathrm{~Hz}(100 \mathrm{mS}) / 440 \mathrm{~Hz}$ (400 mS) NF S 32-001		001000	5	19	1
6	$1500 / 500 \mathrm{~Hz}-(0.5 \mathrm{~s}$ on, $0.5 \mathrm{~s}$ off) $x 3+1 s$ gap AS4428	$\left.\begin{array}{l\|lllll} 1500 \mathrm{~Hz} \\ & & & & & \\ 500 \mathrm{~Hz} \end{array}\right\|_{0.5 \mathrm{~s}} \quad 0.5 \mathrm{~s} \int_{0.5 \mathrm{~s}} 0.5 \mathrm{~s} \int_{0.5 \mathrm{~s}} \quad 1.5 \mathrm{~s}$	101000	6	44	1
7	$500-1500 \mathrm{~Hz}$ Sweeping 2 sec on 1 sec off AS4428	$\begin{array}{lr\|l} 1500 \mathrm{~Hz} & & \\ 500 \mathrm{~Hz} & 2 \mathrm{~s} & 1 \mathrm{~s} \\ \hline \end{array}$	011000	7	44	1
8	500/1200Hz @ 0.26Hz(3.3s on, 0.5 s off) Netherlands NEN 2575	$\left.\begin{aligned} & 1200 \mathrm{~Hz} \\ & 500 \mathrm{~Hz}-3.3 \mathrm{~s} \end{aligned}\right\|_{0.5 \mathrm{~s}}$	111000	8	24	35
9	1000 Hz (1s on, 1 s off) $\mathrm{x} 7+(7 \mathrm{~s}$ on, 1s off) IMO Code 1a		000100	9	34	1
10	1000 Hz (1s on, 1 s off) $\times 7+(7 \mathrm{~s}$ on, 1s off) IMO Code 1a		100100	10	34	1
11	$420 \mathrm{~Hz}(0.5 \mathrm{~s}$ on, 0.5 s off) $\mathrm{x} 3+$ 1s gap ISO 8201 Temporal Pattern	$\left.\left.\left.\left.\left.\left.{ }^{420 \mathrm{~Hz}}\right\|^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}\right\|^{0.55}\right\|_{0.5 \mathrm{~s}}\right\|^{0.55}\right\|_{1.5 \mathrm{~s}}$	010100	11	1	8
12	$1000 \mathrm{~Hz}(0.5 \mathrm{~s}$ on, 0.5 s off) $\mathrm{x} 3+$ 1s gap ISO 8201 Temporal Pattern	$\left.\left.\left.\left.{ }^{1000 \mathrm{~Hz}}\left\|{ }^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}\right\|^{0.5 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}}\right\|^{0.5 \mathrm{~s}}\right\|_{1.5 \mathrm{~s}}$	110100	12	1	8
13	$422 / 775 \mathrm{~Hz}-(0.85 \text { on, } 0.5$ off) $x 3+1 s$ gap NFPA - Temporal Coded	$\left.\left.{ }_{422 \mathrm{~Hz}}^{775 \mathrm{~Hz}} 0{ }_{0.85 \mathrm{~s}}\right\|_{0.5 \mathrm{~s}} 00.85 \mathrm{~s}\right\|_{0.5 \mathrm{~s}}{ }_{0.85 \mathrm{~s}}{ }_{1.5 \mathrm{~s}}$	001100	13	1	8
14	$1000 / 2000 \mathrm{~Hz}$ @ 1 Hz Singapore	$\begin{array}{ll} 2000 \mathrm{~Hz} \\ 1000 \mathrm{~Hz} & \text { is } \end{array}$	101100	14	3	35
15	300 Hz Continuous	300 Hz	011100	15	24	35
16	440 Hz Continuous	440 Hz	111100	16	24	35
17	470 Hz Continuous	470 Hz -	000010	17	24	35
18	500 Hz Continuous IMO code 2 (Low)	500 Hz	100010	18	24	35
19	554Hz Continuous	554 Hz	010010	19	24	35
20	660 Hz Continuous	660 Hz	110010	20	24	35
21	800 Hz IMO code 2 (High)	800 Hz	001010	21	24	35
22	1200 Hz Continuous	1200 Hz -	101010	22	24	35
23	2000 Hz Continuous	2000 Hz	011010	23	3	35
24	2400 Hz Continuous	2400 Hz	111010	24	20	35
25	440 @ 0.83 Hz (50 cycles/minute) Intermittent		000110	25	44	8
26	$470 @ 0.9 \mathrm{~Hz}-1.1 \mathrm{~s}$ Intermittent	$470 \mathrm{~Hz}{ }^{0.55 \mathrm{~s}}{ }_{0.55 \mathrm{~s}} \Gamma^{----}$	100110	26	44	8
27	470 Hz @ 5 Hz - (5 cycles/second) Intermittent		010110	27	44	8
28	544 Hz @ 1.14 Hz - 0.875 s Intermittent	$\left.\left.470 \mathrm{~Hz}\right\|_{0.43 \mathrm{~s}}\right\|_{0.44 \mathrm{~s}} \square^{----}$	110110	28	24	8
29	655Hz @ 0.875Hz Intermittent	$655 \mathrm{~Hz} \widetilde{0.57 \mathrm{~s}}_{0.57 \mathrm{~s}}$	001110	29	44	8
30	$660 \mathrm{~Hz} @ 0.28 \mathrm{~Hz}-1.8 \mathrm{sec}$ on, 1.8 sec off Intermittent	$6 6 0 \mathrm { Hz } \longdiv { 1 . 8 s } ^ { 1 . 8 \mathrm { s } } { } ^ { - - - - }$	101110	30	24	8
31	$660 \mathrm{~Hz} @ 3.34 \mathrm{~Hz}$ - 150 mS on, 150 mS off Intermittent	$660 \mathrm{~Hz} \varlimsup_{0.15 \mathrm{~s}}{ }^{0.15 \mathrm{~s}}{ }^{----}$	011110	31	24	8

