
Making antibody fragments using phage display libraries [J]

- 6. Trinchieri, G. et al. J. exp. Med. 160, 1147-1169 (1984).
- Tigges, M. A., Casey, L. S. & Koshland, M. E. *Science* **243**, 781–786 (1989). Takacs, L., Osawa, H. & Diamantstein, T. *Eur. J. Immun.* **14**, 1152–1156 (1984).
- Jenkinson, E. J., Kingston, R. & Owen, J. J. T. Nature 329, 160-162 (1987).
- Tentori, L., Longo, D. L., Zuniga-Pflucker, J. C., Wing, C. & Kruisbeek, A. M. J. exp. Med. 168, 1741-1747 (1988).
- 11. Plum, J. & de Smedt, M. Eur. J. Immun. 18, 795-799 (1988)
- 12. MacDonald, H. R. *et al. Immunol. Rev.* **104**, 157–182 (1988). 13. Doetschman, T. *et al. Nature* **330**, 576–578 (1987).
- 14. Thomas, K. R. & Capecchi, M. R. Cell 51, 503-512 (1987).
- Thompson, S., Clarke, A. R., Pow, A. M., Hooper, M. L. & Melton, D. W. Cell 56, 313–321 (1989).
 Zijlstra, M., Li, E., Sajjadi, F., Subramani, S. & Jaenisch, R. Nature 342, 435–438 (1989).
- 17. Fuse, A. et al. Nucleic Acids Res. 12, 9323-9331 (1984).
- 18. Zurawski, S. M. & Zurawski, G. EMBO J. 7. 1061-1069 (1988)
- 19. Evans, M. J. & Kaufman, M. H. Nature 292, 154–156 (1981)

- 20. Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. Semin. Immun. 2, 3-12 (1990).
- 21. von Boehmer, H. & Kisielow, P. *Science* **248**, 1369-1372 (1990). 22. Weinberg, K. & Parkman, R. *New Engl. J. Med.* **322**, 1718-1723 (1990).
- 23. Chen-Bettecken, U., Wecker, E. & Schimpl, A. Proc. natn. Acad. Sci. U.S.A. 82, 7384-7388 (1985).
- 24. Pahwa, R. et al. Proc. natn. Acad. Sci. U.S.A. **86**, 5069–5073 (1989) 25. Hooper, M. et al. Nature **326**, 292–295 (1987).
- 26. Smith, A. G. & Hooper, M. L. Devl. Biol. 121, 1-9 (1987)
- 27. Williams, R. L. et al. Nature 336, 684-687 (1988).
- 28. Kubo, R., Born, W., Kappler, J., Marrack, P. & Pigeon, M. J. Immun. 142, 2736–2742 (1989).
- 29. Molinaro, G. A., Maron, E., Eby, W. C. & Dray, S. Eur. J. Immun. 5, 771-774 (1975)

ACKNOWLEDGEMENTS. We thank M. Hooper for ES cells, R. Swoboda for IL-2 DNA clones. H. Haber R. Mitnacht and K. Borschert for assistance, and S. Siddell for critical reading of the manuscript These studies were supported by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie

Making antibody fragments using phage display libraries

Tim Clackson*, Hennie R. Hoogenboom†, Andrew D. Griffiths† & Greg Winter*†

*MRC Laboratory of Molecular Biology and † Centre for Protein Engineering, Hills Road, Cambridge CB2 2QH, UK

To by-pass hybridoma technology and animal immunization, we are trying to build antibodies in bacteria by mimicking features of immune selection1. Recently we used fd phage2 to display antibody fragments fused to a minor coat protein^{3,4}, allowing enrichment of phage with antigen³. Using a random combinatorial library of the rearranged heavy (VH) and kappa (V κ) light chains⁵⁻⁸ from mice immune to the hapten 2-phenyloxazol-5-one (phOx), we have now displayed diverse libraries of antibody fragments on the surface of fd phage. After a single pass over a hapten affinity column, fd phage with a range of phOx binding activities were detected, at least one with high affinity (dissociation constant, $K_d = 10^{-8}$ M). A second pass enriched for the strong binders at

the expense of the weak. The binders were encoded by V genes similar to those found in anti-phOx hybridomas but in promiscuous combinations (where the same V gene is found with several different partners). By combining a promiscuous VH or $V\kappa$ gene with diverse repertoires of partners to create hierarchical libraries, we elicited many more pairings with strong binding activities. Phage display offers new ways of making antibodies from V-gene libraries, altering V-domain pairings and selecting for antibodies with good affinities.

We used the polymerase chain reaction (PCR)⁹ to amplify the VH and $V\kappa$ genes from the spleen messenger RNA of mice immunized with phOx, and also developed a 'PCR assembly' process¹⁰ to link these genes together randomly for expression as single-chain Fv (scFv) fragments^{11,12} (Fig. 1a-c). The assembled genes were cloned in a single step into the vector fdDOG1 (Fig. 1e) for display as a fusion with the fd gene III coat protein. This initial library of 2×10^5 clones seemed to be diverse (Fig. 1d), and sequencing revealed the presence of most VH groups¹³ and V κ subgroups¹⁴ (data not shown). None of the 568 clones tested bound to phOx as detected by enzymelinked immunosorbent assay (ELISA).

The library of phages was passed down a phOx affinity column (Table 1a), and eluted with hapten. Of the eluted clones, 13%

TABLE 1 Affinity selection of hapten-binding phage									
Clones binding to phOx*									
Precolumn	After first round	After second round	After third round						
0/568 (0%)	48/376 (13%)	175/188 (93%)	_						
	-	0/388 (0%)							
6/190 (3%)	348/380 (92%)	_	_						
0/190 (0%)	23/380 (7%)	_							
88/1,896 (4.6%)	55/95 (57.9%)	1,152/1,156 (99.7%)	1,296/1,299 (99.8%						
	Precolumn 0/568 (0%) — 6/190 (3%) 0/190 (0%)	Clones bin After first round 0/568 (0%)	Clones binding to ph0x* After first round After second round 0/568 (0%)						

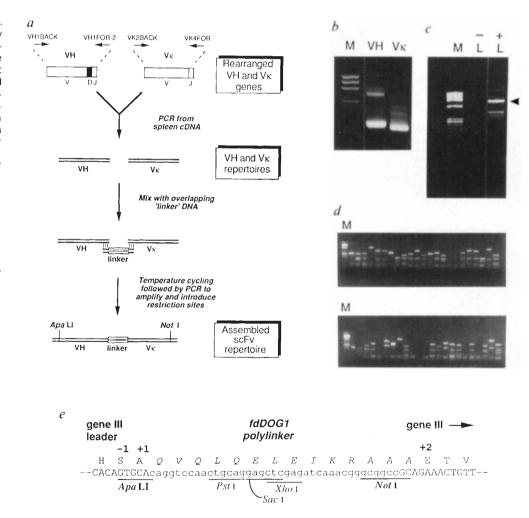
Selection of phage with hapten-binding activities from the random combinatorial and hierarchical libraries (a and b, respectively), and fractionation of clones with different affinities for phOx (c). For the random combinatorial libraries fdDOG1 RF was extensively digested with Notl and Apall, purified by electroelution²⁴ and 1 µg ligated to 0.5 µg (5 µg for the hierarchical libraries) of the assembled scFv genes in 1 ml with 8,000 units T4 DNA ligase (New England Biolabs) overnight at 16 °C. Purified ligation mix was electroporated in six aliquots into MC1061 cells²⁵ and plated on NZY medium²⁴ with 15 µg ml⁻¹ tetracycline, in 243 × 243 mm dishes (Nunc); 90-95% of clones contained scFv genes by PCR screening (see legend to Fig. 1). Colonies were scraped into 50 ml 2 × TY medium²⁶ and shaken at 37 °C for 30 min. Liberated phage were precipitated twice with polyethylene glycol and resuspended to 10¹² transducing units (TU) ml⁻¹ in water (titred as in ref. 3). For affinity selection, a 1-ml column of phOx-BSA-Sepharose²⁷ M. Dreher and C. Milstein, unpublished results) was washed with 300 ml PBS, and 20 ml PBS containing 2% skimmed milk powder (MPBS). Phage (10¹² TU) were loaded in 10 ml MPBS, washed with 10 ml MPBS and finally 200 ml PBS. The bound phage were eluted with 5 ml 1 mM 4-ε-amino-caproic acid methylene 2-phenyl-oxazol-5-one (phOx-CAP). About 106 TU eluted phage were amplified by infecting 1 ml log phase E. coli TG1 (ref. 28) and plating as above. For a further round of selection, colonies were scraped into 10 ml $2 \times TY$ medium and then processed as above. For the hierarchical libraries, VH-B and $V\kappa$ -d genes were individually recloned, then assembled with the VH or $V\kappa$ repertoires. For the fractionation of clone VH-B/V κ -d, 7×10^{10} TU phage in the ratio 20 VH-B/V κ -b:1 VH-B/V κ -d were loaded onto a ph0x-BSA-Sepharose column in 10 ml MPBS and eluted as above. Eluted phage were used to reinfect E. coli TG1, and phage produced and harvested as before. About 10¹¹ TU of phage were loaded onto a second affinity column and the process repeated to give a total of three column passes. Dilutions of eluted phage at each stage were plated in duplicate and probed separately²⁴ with oligonucleotides specific for Vκ-b (5'-GAGCGGTAACCACTGTACT) or Vκ-d (5'-GAATGGTATAGTACTACCCT).

* In (c), numbers refer to $VH-B/V\kappa-d$.

† Numbers after three reinfections and cycles of growth. This control, omitting the column steps, confirms that a spurious growth or infectivity advantage was not responsible for the enrichment of clone V_H-B/V κ -d.

bound to phOx, and ranged from poor to strong binding in ELISA. We sequenced 23 of these hapten-binding clones and found eight different V_H genes (A-H) in a variety of pairings with seven different V_K genes (a-g) (Fig. 2a). Most of the domains, such as VH-B and V_K -d, were able to bind hapten with any of several partners¹⁵. The probability of finding multiple partners for a given chain should depend mainly on the inherent promiscuity of the chain and on the number of available partners and competing chains. Two other examples of promiscuous pairings have been noted in random combinatorial libraries made in λ phage^{6,8}, so this may prove to be a feature of small combinatorial libraries from immunized animals.

The sequences of the V genes were related to those seen in the secondary response to phOx, but with differences (Fig. 2b). Thus most phOx hybridomas from the secondary response use somatically mutated derivatives of three types of $V\kappa$ genes, $V\kappa$ 0x1, ' $V\kappa$ 0x-like' and $V\kappa$ 45.1 genes¹⁶. These can pair with VH genes from several groups, but $V\kappa$ 0x1 more commonly pairs with the VH0x1 gene (VH group 2; ref. 13). $V\kappa$ 0x1 genes are


always, and $V\kappa$ ox-like genes often, found in association with heavy chain genes (including VHox1) that encode a short fiveresidue CDR3, with the sequence motif Asp-X-Gly-X-X (where X is any amino acid¹⁶), in which the central glycine creates a cavity for phOx (ref. 17). In our library, nearly all of the VH genes belonged to group 1, and most of the $V\kappa$ genes were ox-like and associated with VH genes encoding a five-residue CDR3 motif Asp/Asn-X-Gly-X-X (Fig. 2b). $V\kappa$ ox1 and VHox1 were found only once ($V\kappa$ – f and VH-E), and not in combination with each other: indeed $V\kappa$ -f does not encode the Trp 91 involved in phOx binding¹⁷ and was paired with a VH gene (VH-C) encoding a six-residue CDR3.

The promiscuity of the VH-B and V κ -d domains prompted us to force further pairings, by assembling these genes with the entire repertoires of either $V\kappa$ or VH genes from the same immunized mice. The resulting hierarchical libraries, (VH-B \times V κ -rep and VH-rep \times V κ -d), each with 4×10^7 members, were subjected to a round of selection and hapten-binding clones isolated (Table 1b). Most were strong binders by ELISA

FIG. 1 PCR assembly of scFv library. a, V_H and V_K genes are separately amplified, then mixed with a linker fragment that overlaps them both. The linker (93 base pairs) encodes the short peptide, (Gly₄Ser)₃, which links VH and Vκ in scFvs (ref. 11). Cycles of annealing-denaturation, followed by reamplification of the mixture, generate a random combinatorial cassette of VH and V_K genes joined in-frame for expression. b, VH and Vk gene repertoire PCR products from the immunized mice analysed by electrophoresis on agarose (1%) gel. c, PCR assembly of scFv gene repertoires with linker (+L) or without (-L); arrow indicates assembled repertoire. M is DNA marker ΦX174 replicative form DNA digested with Haelll. d, Diversity of library as seen by BstNI fingerprinting of individual clones. e, Sequence of fd gene III around the signal peptide cleavage site in fdDOG1.

METHODS. For the random combinatorial libraries, cytoplasmic RNA was isolated²⁹ from the pooled spleens of either 5 male BALB/c mice boosted 8 weeks after primary immunization with phOx coupled to chicken serum albumin²⁷, or of 5 unimmunized mice. The cDNA was made with avian myoblastosis virus reverse transcriptase (Anglian Biotech)30 and primers that straddle the junction between the variable and constant regions of γ heavy chains and κ light chains (C. Marks, unpublished data). V_H and V_K repertoires were amplified from the cDNA with 25 cycles of PCR (94 °C for 1 min, 60 °C for 1 min, 72 °C for 2 min) using Vent polymerase (New England

Biolabs) and the primers VH1BACK (ref. 19) and VH1FOR-2 (ref. 31) or the primers VK2BACK and VK4FOR. The linker DNA was similarly amplified from pSW2scD1.3 (ref. 3) using primers LINKFOR and LINKBACK (complementary to VK2BACK and VH1FOR-2 respectively). After gel purification, 1 μg each of the VH and V $_K$ products were mixed with 300 ng linker in a 25 μ l PCR reaction mix without primers, and cycled 7 times (94 $^{\circ}$ C 2 min, 72 $^{\circ}$ C 4 min) to join the fragments, then amplified for 20 cycles (94 $^{\circ}$ C 1.5 min, 72 $^{\circ}$ C 2.5 min) using 25 pmol each VH1BACK and VK4FOR primers. Finally, the assembled products were gel-purified and reamplified with VH1BACK-ApaLl and VK4FOR-Notl ('tagged' versions of the original primers) to append restriction sites. Products (1–5 μg) were extensively digested with ApaLl

and NotI for cloning into fdDOG1. Recombinant colonies were screened by PCR³² with the primers VH1BACK and VK4FOR, followed by digestion with the frequently cutting enzyme BstNI. Primers: VK2BACK 5'-GACATTGAGCTC-ACCCAGTCTCCA; VK4FOR, an equimolar mix of 5'-CCGTTTGATTTCCAGCTT-GGTGCC, 5'-CCGTTTTATTTCCAGCTTGGTCCC, 5'-CCGTTTTATTTCCAACTTGT-CCC and 5'-CCGTTTCAGCTCCAGCTTGGTCCC; LINKFOR, 5'-TGGAGACTGGGT-GAGCTCAATGTC; LINKBACK, 5'-GGGACCACGGTCACCGTCTCCTCA; VH1BACK-ApaLI, as VH1BACK (ref. 19) but with 5'-CATGACCACAGTGCAC added at the 5' end; VK4FOR-NotI, as VK4FOR but with 5'-GAGTCATTCTGCGGCCGC similarly added (restriction sites underlined).

FIG. 2 a, Matrix of VH and Vk genes identified in phOx-binding clones selected from random combinatorial library. The number of clones found with each combination is shown. The binding to phOx-BSA, as judged by the ELISA signal, seemed to vary (marked by shading): no binding was seen to BSA alone. Optical density at 405 nm: 0.2-0.9, dotted box; 0.9-2.0, hatched box; >2.0, solid box. b. Encoded protein sequences of phOx-binding clones. Sequences of phOx-binding clones isolated (single-letter amino-acid code) after one round of selection of the random combinatorial library, with pairings as above, or the hierarchical library. Note that the first eight or seven residues, and the last nine or eleven residues, of the $V\kappa$ or VH genes, respectively, are encoded by the PCR primers. Classifications into VH groups 13 and V κ subgroups 14 , and the position of residue 91 encoded by the $V\kappa$ genes (#), are indicated. The relationship to genes from the hybridoma analysed secondary response to phOx (ref. 16) is also shown; all of the V_K genes are 'ox-like', apart from those marked * with an asterisk, which are VKox1, and the only example of VH group 2 (VH-E) is VHox1. The intensity of ELISA signals from the hierarchical libraries, corrected relative to the signal from control phage, are indicated: Optical density at 405 nm 0.9-2.0 (+++), >2.0 (+++). Multiple isolations of sequences are marked, and sequences (VH-B and $V\kappa$ -c) isolated from the random combinatorial library, and also the hierarchical libraries, are shown in italics. The VH-B/V κ -d and VH-B/V k-c pairings gave similar signals (after correction of ELISA) when recovered from either combinatorial or hierarchical libraries.

METHODS. We screened for binding of the phage to hapten by ELISA: 96-well plates were coated with 10 µg ml⁻¹ ph0x-BSA²⁷ or 10 µg ml⁻¹ BSA in PBS overnight at room temperature. Colonies of phage-transduced bacteria were inoculated into 200 μ l 2×TY medium²⁶ with 12.5 μ g ml⁻¹ tetracycline in 96-well plates ('cell wells', Nuclon) and grown with shaking (300 r.p.m.) for

Heavy chain a F G Н Α В C D E O. 0 а b 0 0 0 O) Light chain O C d 7 1 1 0 0 е f O 0 g

24 h at 37 °C. At this stage, cultures were saturated and phage titres were reproducible (10 10 TU ml $^{-1}$). Phage supernatant (50 μ l), mixed with 50 μ l PBS containing 4% skimmed milk powder, was then added to the coated plates. Further details given in ref. 3. To sequence the clones, template was prepared²⁴ from the supernatants of 10-ml cultures grown for 24 h, and sequenced using the dideoxy method³³ and a Sequenase kit (USB), with primer LINKFOR for the VH genes and primer fdSEQ1 (5'-GAATTTTCTGTATGA-GG) for the $V\kappa$ genes.

b

VH sequences												
Fre	om combinatorial library:	CDR1		CDR2	,			CDR3		G	roup	ELISA signal
A B C D E F G H	QVQLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVQLQQSGPELVKPGASVKMSCKA QVQLQQSGPELVKPGASVKISCKA QVQLQESGPELVAPSQSLSITCTV QVQLQQSGPELAKPGASVKMSCKA QVKLQQSGAELVRPGASVKLSCKA QVKLQQSGAELVRPGASVKLSCKA	SGYTFT SYTMH SGYTFT RDWMH SGYTFT SYVMH SGYSFT GYFMN SGYSFT SYGVH SGGYFT SYLMH SGYTFT RYLMH SGYTFT RYLMH	WLKQRPGQGLEWIG WVKQKPGQGLEWIG WVKQSHGKSLEWIG WVRQPPGKGLEWLG WVKQRPGQGLKWIG WVKQRPGQGLEWIG	YINPSSGYTNYM YINPSTGYTEYM YINPYNDGTKYM RINPYNGDTFYM VIWAGGSTNYMS YINPSTGYTEYM YINPSTGYTEYM	NQKFKD K NQKFKD K NEKFKG K NQKFKG K SALMS R NQKFKD K NQKFKD E	ATLTADKSSSTAYM ATLTSDKSSSTAYM ATLTVDKSSSTAHM LSISKDNSKSQVFI ATLTADKSSSTAYM ATLTADKSSNTAYM	QLSSLTSEDSAVYY IELSSLTSEDSAVYY IELLSLTSEDSAVYY IELLSLTSEDSAVYY IMMSLQTDDTAMYY IQLSSLTSEDSAVYY IQLSSLTSEDSAVYY IQLSSLTSEDSAVYY	CAN RYGAY CAR NYGLY CAI YRSFPY CVG ITTRFAY CAR DRGDY CAR DYGYY CAR DYGYY	WGQGTTVTVSS WGQGTTVTVSS WGQGTTVTVSS WGQGTTVTVSS WGQGTTVTVSS WGQGTTVTVSS WGQGTTVTVSS	x9 x3 x3	1 1 1	(see Fig.2a)
From hierarchical library VH-rep ×Vκ-d:												
I J K L M W O P Q R S T U B	QVKLQQSGPELARPGVSVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGLELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVGLQQSGAELARPGASVKMSCKA QVQLQQSGAELARPGASVKMSCKA QVQLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA QVKLQQSGAELARPGASVKMSCKA	SGYTFT RYTMH SGYTFT NOMMH SGYTFT NYMMH SGYTFT NYMMH SGYTFT SYMMH SGYTFT SYMMH SGYTFT SYMMH SGYTFT SYMMH SGYTFT SYMMH SGYTFT TSLMH SGYTFT TSLMH SGYTFT TSLMH SGYTFT TSLMH SGYTFT TSLMH SGYTFT SYMH	WVKQRFGQGLEWIG WVKQRFGGGLEWIG WVKQRFGGGLEWIG	YINPSSGYTNYM YINPSTGYTEYM YINPSTGYTEYM YINPSTGYTEYM YINPSSGYTNYM YINPSTGYTEYM YINPSTGYTEYM YINPSSGYTNYM YINPSSGYTNYM YINPSSGYTNYM YINPSSGYTNYM YINPSTGYTEYM YINPSTGYTEYM	NQKFKD K	ATLTADKSSTAYM ATLTADKSSTAYM ATLTADKSSTAYM ATLTADKSSSTAYM	QLSSLTSEDSAYYYY	CAR DRGAY CAR NYGLY CAR DYGYY CAR NYGIY CAR DYGYY	WGQGTTVTVSS	x2 x2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+++ +++ ++ ++ ++ ++ ++ ++ ++ ++ +++ ++
	C Sequences om combinatorial library: DIELTQSPSSLSASLGERVSLTC DIELTQSPAIMSASPGEKITITC DIELTQSPTTMAASPGEKITITC DIELTQSPTMAASPGEKUTITC DIELTQSPAIMSASPGEKVTITC DIELTQSPAIMSASPGEKVTITC	CDR1 RASQEISGYLS RASSSVSSSYLH SASSSISSNYLH SASSSISSNYLH SASSSVNYMH SASSSVNYMH	WYQQKPGFSPKLL	IIY STSNLAS IIY RTSNLAS IIS RTSNLAS IIY STSNLAS	GVPARF GVPARF GVPARF GVPTRF	SGSRSGSDYSLTIS SGSGSGTSYSLTIS SGSGSGTSYSLTIG SGSGSGTSYSLTIG SGSGSGTSYSLTIS SGSGSGTSYSLTIS	SVEAEDAATYYC (TMEAEDVATYYC (TMEAEDVATYYC (RMEAEDAATYYC (QGSSIPLT QGSTIPFT	FGAGTKLEIKRA FGAGTKLEIKRA FGAGTKLEIKRA FGSGTKLEIKRA FGSGTKLEIKRA FGAGTKLELKRA	x3 x2 x9	V IV VI *	(see F1g.2 a)
g	DIELTQSPAIMSASPGEKVTMTC DIELTQSPAIMSASPGEKVTMTC om hierarchical library VH-B×V	SASSSINYMH	WYQQKPGASPKRW			SGSGSGTSYSLTIS			FGGGTKLEIKRA		VI *	
h	DIELTQSPAIMSASPGEKVTMTC DIELTQSPAIMSASPGEKVTITC			IY STSNLAS	GVPARF		SMEAEDAATYYC (QYHSYPLT		×4	VI *	+++

n

DIELTOSPTTMAASPGEKITITC

DIELTQSPTTMAASPGDMITITC

DIELTOSPTTMAASPGEKITITC

DIELTQSPTTMAASPGEKITITC

DIELTQSPTTMAASPGEKITITC

DIELTOSPAIMAASPGEKITITC

DIELTOSPAIMSASPGEKVTMTC

DIELTOSPAIMSASPGDKVTLTC

DIELTQSPAIMSASPGEKVTMTC

DIELTOSPAIMSASPGEKVTMTC

DIELTQSPAIMSASPGEKVTMTC

DIELTOSPAIMSASPGEKVTMTC

DIELTQSPAIMSASPGEKVTMTC

DIELTOSPTTMAASPGEKITITC

SASSSISSNYLH

SASSSISSNYLH

SASSSISSNHLH

SASSSISSNYLH

SASSSISSNYLH

SASSSVSYMH

SASSSVRYVN

SASSSVSYMH

RASSSVTSSYLN

RASSSVSSSYLH

RASSSVSSSYLH

SASSSISSNYLH

WFOOKPGFSPKLLIY

WYQQKPGFSPKLLIY

WYOOKPGFSPKLLIY

WYQQKPGFSPKLLIY

WYOOKPGFSPKLLIY

WYQQKPGFSPKLLIY WYQQKSGTSPKRWIY

WFOOKSGTSPKRWIY

WYQQKSGTSPKRWIY

WYOOKSGASPKLWVY

WYQQKSGASPKLWIY

WYOOKSGASPKLWIY

WFQQKSGASPKLWIY

WYOOKPGFSPKLLIY

RTSNLAS

RTSNLAS

RTSNLAS

RTSNLAS

RTSNLAS

DTSKLAS

DISKLAS

DTSKLAS

STSNLAS

STSNLAS

STSNLAS

RTSNLAS

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC

GVPPRFSGSGSGTSYSLTIGAMEAEDVATYYC

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC GVPARFSGSGSGTSYSLTISSMEAEDVATYYC

GVPARFSGSGSGTSYSLTISSMEAEDAATYYC GVPARFSGSGSGTSYSLTISSMEAEDAATYYC

GVPARFSGSGSGTSYSLTISSVEAEDAATYYC

GVPARFSGSGSGTSYSLTISRMEAEDAATYYC

GVPARESGSGSGTSYSLTISSVEAEDAATYYC

GVPARFSGSGSGTSYSLTISSVEAEDAATYYC

GVPARFSGSGSGTSYSLTIGTMEAEDVATYYC

EGGGTKLEIKRA

FGAGTKLEIKRA

FGGGTKLEIKRA

FGGGTKLEIKRA

FGGGTKLEIKRA

FGGGTKLEIKRA

FGAGTKLEIKRA

FGAGTKLEIKRA

FGAGTKLEIKRA

FGAGTKLEIKRA

FGGGTKLEIKRA

FGAGTKLEIKRA x3

FGAGTKLEIKRA x2

τv

VΙ

VI VI

τv

ΙV

ΙV

COGSSIPLT

QQGSSIPYT

OOGSSIPYT

COGSSIPFT

QQWSSNPLT

QQWTSNPPT

COWSTNALT

QQYSGYPLT

QQRSSYPLT

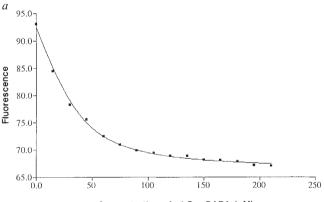
OOYSGYPLT

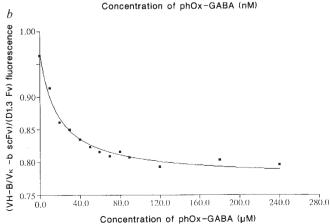
QQYSGYPLT

QQGSSIPLT

(Fig. 2b). By sequencing 23 clones from each library, we identified 14 new partners for VH-B and 13 for $V\kappa$ -d; apart from VH-B and $V\kappa$ -c, none of the previous VH-B or $V\kappa$ -d partners (or indeed other partners) cloned and sequenced from the random combinatorial library was isolated again. These features are consistent with the much larger number of available partners (4×10^7) for the VH-B (or V κ -d) domain, and the promiscuous nature of the domain. The Vk genes were mainly ox-like and the VH genes mainly group 1, but the only examples of V_{κ} ox 1 $(V\kappa-h, -p, -q \text{ and } -r)$ encode Trp 91, and the VH-CDR3 motif Asp-X-Gly-X-X now predominates. Thus some features of the phOx hybridomas seem to emerge more strongly in the hierarchical library. The new partners differ from each other mainly by small alterations in the CDRs, indicating that much of the subtle diversity had not been tapped by the original random combinatorial library. More generally we find that a range of related antibodies can be made by keeping one of the partners fixed and varying the other, and this could be invaluable for fine tuning of antibody affinity and specificity.

To determine the range of antibody affinities for phOx, we recloned the combinations of VH-B with $V\kappa$ -b and $V\kappa$ -d (which gave weak and strong binding signals to phOx in ELISA) for secretion as soluble scFv fragments (Fig. 3, legend). Fluorescence quench titrations determined the K_d of VH-B/V κ -d for phOx-GABA as 1.0×10^{-8} M (Fig. 3a), indicating that antibodies with affinities representative of the secondary response can be selected from phage display libraries. Indeed of antiphOx hybridomas from the secondary response, only two (out of 11 characterized) secrete antibodies of a higher affinity than VH-B/V κ -d (ref. 16). The K_d of VH-B/V κ -b for phOx-GABA was determined as 1.8×10^{-5} M (Fig. 3b); thus phage bearing


scFv fragments with weak affinities can also be selected with antigen, probably because of the avidity of the multiple antibody heads on the phage.


A second round of selection of the original, random combinatorial library from immune mice resulted in 93% of eluted clones binding phOx (Table 1a). Most of these clones were $V\kappa$ -d combinations, and bound strongly to phOx in ELISA (data not shown). Few weak binders were seen. This suggested that affinity chromatography had not only enriched for binders, but also for the best. To confirm this we mixed the phage VH-B/V κ -d with a 20-fold excess of the phage VH-B/V κ -b and subjected the mixture to rounds of selection: after only two rounds, essentially all the eluted phage were VH-B/V κ -d (Table 1c).

We also constructed a random combinatorial library (2×10⁶ members) from unimmunized mice, but found no phOx-binding clones after two rounds of selection (Table 1a). Immunization therefore seems to be necessary to create and/or enrich for VH or $V\kappa$ domains with at least some of the features required for hapten binding. With libraries of this size ($\sim 10^6$ members), such domains need to be represented at a high frequency to reconstitute a binding site¹, and immunization ensures this by biasing the spleen lymphoid cell population heavily towards messenger RNA-rich blast cells making specific antibody (R. Hawkins and G.W., unpublished data). With larger libraries (>10⁷) now accessible using selection³ rather than screening⁵⁻⁸, immunization may be unnecessary for the isolation of antibody fragments. It has been estimated that a library of 10⁷ different antibodies will probably recognize >99% of epitopes with a dissociation constant of $\ge 10^{-5}$ M (ref. 18), and we have shown here that we can recover antibody fragments with such affinities

FIG. 3 Fluorescence quench titration of soluble scFv fragments. a, The $K_{\rm d}$ $(1.0\pm0.2\times10^{-8}$ M) for clone VH-B/V κ -d was determined by fluorescence quench titration 34 of purified scFv (100 nM) with 4- γ -amino-butyric acid methylene 2-phenyl-oxazol-5-one (phOx-GABA). Excitation was at 280 nm, emission was monitored at 340 nm and the $K_{\rm d}$ calculated as in refs 35 and 36. All values were calculated with standard errors included. The $K_{\rm d}$ was determined to be $1.0\pm0.2\times10^{-8}$ M with 0.38 ± 0.05 binding sites per scFv molecule. b, For measurement of the $K_{\rm d}$ of the low affinity clone VH-B/V κ -b, 2 μ M purified scFv protein was titrated with phOx-GABA as above. But to minimize light absorption by the higher concentrations of phOx-GABA required, excitation was at 260 nm and emission was monitored at 304 nm. In addition, the fluorescence values were divided by those from a parallel titration of the lysozyme binding Fv fragment D1.3 (ref. 31). The $K_{\rm d}$ was calculated as described in refs 34 and 36 and determined to be $1.8\pm0.3\times10^{-5}$ M, with a fractional quench of 0.20 ± 0.01 .

METHODS. Clones VH-B/Vκ-b and VH-B/Vκ-d were reamplified with VK4FOR-NotI and VH1BACK-Sfil (5'-CATGCCATGACTCGCGGCCCAGCCGGCCATGG-CC(G/C)AGGT(C/G)(A/C)A(A/G)CTGCAG(C/G)AGTC(A/T)GG-3'), a primer that introduces an Sfil site (underlined) at the 5' end of the VH gene. VH-B/Vk-d was cloned into the phagemid pJM1 (A.D.G. and J. Marks, unpublished results) as an Sfil-NotI cassette, downstream of the pelB leader for periplasmic secretion³⁷, with a C-terminal peptide tag for detection^{31,38}, and under the control of a λP₁ promoter³⁹. Cultures (10 I) of Escherichia coli N4830-1 (ref. 40) harbouring each phagemid were induced²⁶ and supernatants precipitated with 50% ammonium sulphate. The resuspended precipitate was dialysed into PBS, 0.2 mM EDTA (PBSE), loaded onto a 1.5-ml column of phOx:Sepharose⁴¹ and the column washed sequentially with 100 ml PBS; 100 ml 0.1 M Tris-HCl, 0.5 M NaCl pH 8.0; 10 ml 50 mM citrate, pH 5.0; 10 ml 50 mM citrate, pH4.0 and 20 ml 50 mM glycine, pH 3.0. The scFv fragment was eluted with 50 mM glycine, pH 2.0, neutralized with Tris base and dialysed against PBSE. VH-B/V κ-b was cloned into a phagemid vector (A.D.G., unpublished results) based on pUC119 (ref. 42) encoding identical signal and tag sequences to pJM1, and expression induced at 30 °C in a 10-culture of E. coli TG1 (ref. 28) harbouring the phagemid, as in ref. 43. The low affinity of clone VH-B/V k-b made its purification on ph0x-Sepharose impossible. Therefore after concentration by ultrafiltration (Filtron, Flowgen) the supernatant (100 ml of 600 ml) was loaded onto a 1-ml column of protein A-Sepharose coupled44 to the monoclonal antibody 9E10 that recognizes

the C-terminal peptide tag^{31,38}. The column was washed with 200 ml PBS and 50 ml PBS, 0.5 M NaCl. The scFv fragment was eluted with 100 ml 0.2M glycine, pH 3.0, with neutralization and dialysis as before.

from phage display libraries. The antibody fragments could be rebuilt from their genes into complete antibodies, and expressed in myeloma cells if required, as described in ref. 19.

It may be possible to retain the original $VH/V\kappa$ pairings of the splenocytes, as in hybridoma technology. In principle, PCR assembly could be used to construct such 'natural' libraries, if the V genes from individual cells could be amplified and assembled in capsules. More immediately, affinity selection from combinatorial and hierarchical libraries promises an attractive route to high-affinity antibodies, in particular those from humans that are difficult to produce by hybridoma technology¹. But the use of phage display libraries is not limited to antibodies: it offers a powerful and general method to change and refine the properties of any other protein²⁰ or peptides²¹⁻²³ that can be displayed on the phage surface.

Received 19 March; accepted 9 July 1991

- Winter, G. & Milstein, C. Nature 349, 293-299 (1991).
- Smith, G. P. Science 228, 1315-1317 (1985).
- 3. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Nature 348, 552-554 (1990).
- Hoogenboom, H. R. et al. Nucleic Acids Res. 19, 4133-4137 (1991).
- Huse, W. D. et al. Science 246, 1275-1281 (1989).
- 6. Caton, A. J. & Koprowski, H. Proc. natn. Acad. Sci. U.S.A. 87, 6450-6454 (1990); correction, 88, 1590 (1991).
- Mullinax, R. L. et al. Proc. natn. Acad. Sci. U.S.A. 87, 8095-8099 (1990).
- Persson, M. A. A., Caothien, R. H. & Burton, D. R. Proc. natn. Acad. Sci. U.S.A. 88, 2432-2436 (1991).
 Saiki, R. K. et al. Science 239, 487-491 (1988).
 Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Gene 77, 61-68 (1989).

- Huston, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5879-5883 (1988).
 Glockshuber, R., Malia, M., Pfitzinger, I. & Plückthun, A. Biochemistry 29, 1362-1367 (1990)
- 13. Dildrop, R. Immun. Today 5, 85-86 (1984).
- 14. Kabat, E. A., Wu, T. T., Reid-Miller, M., Perry, H. M. & Gottesman, K. S. Sequences of Proteins of Immunological Interest (US Department of Health and Human Services, US Government Printing Office, 1987).

- 15. Hudson, N. W., Mudgett-Hunter, M., Panka, D. J. & Margolies, M. N. J. Immun. 139, 2715-2723 (1987)
- Berek, C., Griffiths, G. M. & Milstein, C. Nature 316, 412-418 (1985).
- 17. Alzari, P. M. et al. EMBO J. 9, 3807-3814 (1990). 18. Perelson, A. S. Immunol, Rev. 110, 5-33 (1989).
- 19. Orlandi, R., Güssow, D. H., Jones, P. T. & Winter, G. Proc. natn. Acad. Sci. U.S.A. 86, 3833-3837 (1989)
- 20. Bass, S., Greene, R. & Wells, J. A. Proteins 8, 309-314 (1990).
- 21. Cwirla, S. E., Peters, E. A., Barrett, R. W. & Dower, W. J. Proc. natn. Acad. Sci. U.S.A. 87, 6378-6382 (1990)
- Devlin, J. J., Panganiban, L. C. & Devlin, P. E. Science 249, 404-406 (1990)
- Scott, J. K. & Smith, G. P. Science 249, 386-390 (1990).
- 24. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1989).
- Dower, W. J., Miller, J. F. & Ragsdale, C. W. Nucleic Acids Res. 16, 6127-6145 (1988).
- Nagai, K. & Thøgersen, H. C. *Meth. Enzym.* **153**, 461–481 (1987).
 Mäkelä, O., Kaartinen, M., Pelkonen, J. L. T. & Karjalainen, K. *J. exp. Med.* **148**, 1644–1660 (1978).
- 28. Gibson, T. thesis, Univ. Cambridge (1984).
- Gherardi, E., Pannell, R. & Milstein, C. J. immunol. Meth. 126, 61-68 (1990).
 Clackson, T., Güssow, D. & Jones, P. T. in PCR, a Practical Approach (eds McPherson, M. J., Taylor
- G. R. & Quirke, P.) (IRL, Oxford, in the press)
- 31. Ward, E. S., Gussow, D., Griffiths, A. D., Jones, P. T. & Winter, G. Nature 341, 544-546
- 32. Güssow, D. & Clackson, T. Nucleic Acids Res. 17, 4000 (1989)
- 33. Sanger, F., Nicklen, S. & Coulson, H. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463-5467 (1977).
- 34. Eisen, H. N. Meth. med. Res. 10, 115-121 (1964).
- Segal, I. Enzyme Kinetics 73-74 (Wiley-Interscience, New York, 1975).
- 36. Foote, J. & Milstein, C. Nature (in the press).
- Better, M., Chang, C. P., Robinson, R. R. & Horwitz, A. H. Science 240, 1041-1043 (1988).
- Munro, S. & Pelham, H. R. B. *Cell* 46, 291-300 (1986).
 Shimatake, H. & Rosenberg, M. *Nature* 292, 128-132 (1981).
- 40. Gottesman, M. E., Adhya, S. & Das, A. J. molec. Biol. 140, 57-75 (1980).
- 41. McManus, S. & Riechmann, L. *Biochemistry* **30**, 5851-5857 (1991). 42. Vieira, J. & Messing, J. *Meth. Enzym.* **153**, 3-11 (1987).
- 43. De Bellis, D. & Schwartz, I. Nucleic Acids Res. 18, 1311 (1990)
- 44. Harlow, E. & Lane, D. Antibodies: A Laboratory Manual (Cold Spring Harbor Laboratory, New York,

ACKNOWLEDGEMENTS, We thank J. McCafferty for help in constructing the vector fdDOG1; J. Marks for the vector pJM1; C. Marks for oligonucleotide primers for cDNA synthesis and for D1.3 Fv protein; E. Gherardi for spleen mRNA; J. Foote for help with fluorescence quench titrations; and M. Dreher, L. Riechmann, J. Jarvis, D. Chiswell, A. R. Fersht and C. Milstein for advice. Supported by the MRC, the D. Collen Research Foundation, Leuven, and the European Molecular Biology Organisation (H.R.H), and by the Louis Jeantet Foundation (A.D.G. and T.C.).

Phosphorylation-regulated Cl⁻ channel in CHO cells stably expressing the cystic fibrosis gene

Joseph A. Tabcharani*, Xiu-Bao Chang†, John R. Riordan† & John W. Hanrahan*‡

† Research Institute, Hospital for Sick Children, and University of Toronto, Toronto, Ontario M5G 1X8, Canada

A CYCLIC AMP-stimulated choride conductance appears when the cystic fibrosis gene is expressed in non-epithelial cells by infection with recombinant viruses^{1,2}. Cyclic AMP-stimulated conductance in this system is mediated by the same ohmic, lowconductance Cl channel as in human secretory epithelia²⁻⁴, but control of this channel by phosphorylation has not been directly demonstrated. Here we report the appearance of the low-conductance Cl channel in Chinese hamster ovary cells after stable transfection with the cystic fibrosis gene. The channel is regulated on-cell by membrane-permeant analogues of cAMP and off-cell by protein kinases A and C and by alkaline phosphatase. These results are further evidence that the cystic fibrosis transmembrane regulator is a Cl channel which can be activated by specific phosphorylation events and inactivated by dephosphorylation; they reveal an unsuspected synergism between converging kinase regulatory pathways.

The coding sequence of the cystic fibrosis transmembrane regulator (CFTR) was cloned behind the metallothionein promoter of a plasmid that also contained a mutant dihydrofolate reductase gene, driven by the simian virus 40 early promoter (Fig. 1a). Stably transformed colonies were selected with methotrexate after calcium phosphate transfection of Chinese hamster ovary (CHO)-K1 cells. CFTR-expressing variants were chosen for further study on the basis of their capacity to produce a protein of the same apparent size as that present in T84 cell membranes in western blots probed with monoclonal antibodies against CFTR (Fig. 1b). CFTR protein was localized in a highly enriched plasma membrane vesicle fraction. In variants containing nearly the same amount of CFTR as T84 cells, cAMPregulated chloride permeability, as monitored by 125I efflux, was indistinguishable from that in T84 cells (Fig. 1c).

Patch-clamp recording was used to identify the channel responsible for cAMP-stimulated 125 I efflux. Channels became active in cell-attached patches after a lag of 69 ± 26 seconds when cells were exposed to membrane-permeant derivatives of cAMP; this was reversed by washing cAMP from the bath (n = 7,Fig. 2a). The channel was observed in 80% of all seals during cAMP stimulation (225/282) at an average density of between five and ten channels per patch. By contrast, it was recorded only once in 55 patches on unstimulated, CFTR-transfected cells and was never observed on cAMP-stimulated CHO cells that had been transfected with vector alone (0/31). Figure 2b shows that open probability was relatively independent of voltage, despite increased flickering at hyperpolarized potentials. Flickering was not observed using excised patches (see below), therefore these brief closures may reflect voltage-dependent, fast channel block by some anion in the cytosol. The current-voltage relationship rectified slightly in the outward direction during cell-attached recordings (Fig. 2c), but was linear $(r^2 = 0.9997)$ when patches were excised and bathed symmetrically with 154 mM Cl⁻ (data not shown). In cell-attached patches the reversal potential (E_{rev}) was near the membrane potential $(0.6 \pm$ 0.3 mV applied potential) and the slope conductance at E_{rev} was 9.6 ± 0.5 pS (n = 5). The E_{rev} shifted to $+32.4 \pm 2.0$ mV when the pipette solution contained 110 mM sodium gluconate and

^{*} Department of Physiology, McGill University, 3655 Drummond Street, Montréal, Québec H3G 1Y6, Canada

[‡] To whom correspondence should be addressed