
A Better Middleware

Eugene Nelson

Copyright 2017 by Eugene Nelson

All rights reserved, including the right to reproduce this book or portions thereof in any form whatsoever. For infor-

mation regarding permissions, send email to SoftEcoSDK@gmail.com.

3 A Better Middleware

Preface

Existing software research and products are mostly about how software works on a single computer. The Internet and Web

enable two computers to communicate messages and access content. The IaaS, PaaS and SaaS models and protocols map the

concept of an application running on a single computer onto a cloud of resources that are leased as needed. Middleware such

as CORBA and ODBC are alternative methods for how a program accesses functionality on another computer. The Service

Availability Forum describes real time message distribution within an embedded system of multiple computers. Very little

research or available solutions are about how programs on multiple computers work together as one system.

The potential advantage of a system composed of multiple computers and programs working together can be understood

via an analogy. A business starts out as one person doing work for one customer. As a business grows, multiple people perform

the same work. The work for one task can even be handed off to another person as needed. A larger business can implement

internal security measures. Intermediate work output can be stored at the end of a work day within a locked desk, locked

office, secure document room or safety deposit box within a vault. Procedures can be implemented so that multiple people

can work on the same task to achieve both reliability and security.

The current boundary between an application and operating system is devised to maximize performance at minimal cost

for a single computer. Reliability and security are provided by an operating system with minimal help from an application.

The knowledge needed to recover in progress work after a computer fails can be known by an application but is not shared

with an operating system. The knowledge needed to know the identity and authority of remote programs can be known by

system software but is not shared with a program performing work for a remote program.

 Cybersecurity efforts mainly focus on how to improve the situation with existing software. Much better system security

is possible if programs and system software share knowledge of in progress work and authority of remote programs. The goal

is not optimal performance of a single computer. Extra work is performed by each computer. A system can reliably and

securely perform work that is then scaled across many computers.

A new middleware must be devised such that a middleware helps a program to do its part for system reliability and security.

The purpose of this book is to describe the what, why and how for one such middleware. An exploratory project has completed

a basic design, implementation and test of a possible middleware. The design supports multiple computers within a system.

The implementation maps the design onto one computer for easy testing. The implementation is some 300 classes and more

than 85,000 lines of source written in Java. A multiple computer implementation is close to completion but requires interested

parties to help to complete the implementation and testing. Much work remains to make this an off the shelf product with

standardized program interfaces. Note that the design allows an easy mapping of the implementation into other software

languages such as C++ and C#.

The software community needs to realize that more can and should be done to address the cybersecurity crisis. A new

middleware must be part of this effort. New client and server programs need to do their part in improving reliability and

security. Please ask yourself what you can do to join and advance this effort.

Existing programs and middleware will not go away. They will keep having the same purpose and value that they have

today. New programs will be written to use a new middleware to achieve better system reliability and security.

 Please send questions and suggestions for improvement to “SoftEcoSDK@gmail.com”.

 4

Table of Contents

1 INTRODUCTION ... 6

1.1 Data Format Conversion Layer ... 6

1.2 Message Communication Layer .. 7

1.3 Client to Server Communication Layer ... 7

1.4 Infrastructure Checklist ... 8

2 SYSTEM CHARACTERISTICS... 10

3 DATA FORMAT CONVERSION LAYER .. 11

3.1 Color as a Class ... 12

3.2 Color as a Convertible Data Class ... 13

4 MESSAGE COMMUNICATION LAYER .. 17

4.1 Message Distribution Algorithm ... 17

4.2 Backup Main Hub Instance ... 18

4.3 Program Definition .. 18

4.4 Program Copy .. 18

4.5 Embedded SCADA ... 18

4.6 System Configuration .. 19
4.6.1 eventConfig sample .. 19

4.7 Sample Message Publisher and Subscriber ... 20

5 CLIENT TO SERVER COMMUNICATION LAYER 26

5.1 Sample Service Client Session .. 27

5.2 Sample Server Session .. 32

6 CHARACTERISTICS OF A BETTER MIDDLEWARE 38

7 ANALYSIS OF A BETTER MIDDLEWARE ... 39

5 A Better Middleware

8 EMBEDDED ENVIRONMENT SUPPORT .. 40

 6

1 Introduction

A better middleware is needed to survive the current and evolving cybersecurity situation. Better security goes hand in

hand with better reliability. Therefore, new programs need to achieve both better reliability and security through the help of a

new middleware. This book describes one possibility for a better middleware.

New programs, using a better middleware, can be added to an existing system. This allows migration of system functions

to achieve improved characteristics as needed.

The presented middleware is composed of three layers. A data format conversion layer, message communication layer,

and a client to server communication layer work together to pass data between programs. The design of these layers was

performed in a bottom up manner. This ensures that a layer offers only functionality that can be reasonably accomplished.

The following describes the essential usage, workings and advantages of each of the three layers.

The purpose of this book is to attract interest in a better middleware. The basic concepts are explained and some of a

possible interface is demonstrated. A programmer and administrator guide book provides a more complete documentation of

this possible interface.

1.1 Data Format Conversion Layer

A data conversion layer is needed for reasons such as allowing a system to be composed of different computer types. It

helps to eliminate most of the programmer effort needed to convert data between formats. A programmer defines a data class

in a new manner to create a convertible data class. Each data field has programmer initialized meta data. A program calls the

layer to convert the content of a convertible data class instance into another format. Currently a serial format and a human

readable text format (subset of XML) are supported. A program can call the layer to reverse a conversion by supplying an

empty instance of the original class and the serial or text result of a conversion from a class.

One advantage of a convertible data class is that it can help to exchange a message between programs. A sending program

creates a message by inserting field values into a convertible data class. A message is then converted to serial. A serial message

is communicated to a receiving program where it is converted back into a convertible data class. A receiving program accesses

field values of a message from a convertible data class. This is like passing a class instance between programs except that a

programmer has complete control over which field values are passed. The sending and receiving convertible data classes must

have the same meta data for passed field values but can differ for a field that is not passed. A notable benefit is that a sending

and receiving convertible data class can be written in different software languages.

Another advantage of a convertible data class is that it can help a program to obtain its configuration information. The

current approach, where configuration is contained in a text file, requires a fair amount of programming effort. The data format

conversion layer can be used to eliminate most of this programming effort. A programmer starts by defining a convertible

data class or classes to hold configuration information. A program calls the layer to read a binary file containing a serial format

of configuration information. The serial is read from a file and converted into a convertible data class. A program accesses

field values of configuration from a convertible data class.

A file containing a serial format of configuration information can be created in different ways. There is an administrator

utility to convert a file containing a text format into a file containing serial format. This is a general-purpose utility as it uses

a class name of a convertible data class to instantiate a class that performs a conversion between a class instance, serial and

text formats. An administrator creates configuration in an appropriate text format file and uses the utility to convert the text

file into a serial file. Of course, a configuration specific utility can be designed and implemented to internally use a convertible

data class that reads and writes a configuration file in serial format.

Yet another advantage of a convertible data class is that it can help to convert a message into text that is appended to a

program created trace file. A program can use an environment that includes a trace capability. A program calls trace to deter-

mine whether a specific kind of trace, as identified by a program specific keyword, is enabled by an administrator. If a specific

trace is enabled, then a program calls trace with a convertible data class containing a message. Trace converts the content of

the convertible data class into text and appends the text to the trace file.

7 A Better Middleware

1.2 Message Communication Layer

A message communication layer appears to a programmer like a typical message oriented middleware. A dedicated pro-

gram to program message channel can be used to pass a message in either direction. A publisher program can generate a

message associated with a unique event identifier that is distributed to listener programs interested in a type of event.

A message communication layer includes a security feature to only allow messages to pass between programs as config-

ured by an administrator. There is a reliability feature to survive the failure of a communication path by sending each message

via two paths. The layer is composed of several components. A main hub, local hub and message bus components are directly

involved in passing a message and embedding security and reliability features.

One local hub instance resides on each computer. A local hub initializes by connecting to two different main hubs. A

message bus component resides with a program and makes a connection to a local hub. A message is sent from a program via

a message bus to a local hub. A local hub sends the message to each main hub. A main hub distributes a message to a local

hub destination(s). A local hub ignores any duplicate message and distributes a message to a message bus destination(s). A

message bus gives a message to a receiving program.

A main hub resides on a dedicated computer. It only allows messages to pass between computers (and ultimately programs)

as configured by an administrator. A main hub program resides on a neutral computer to minimize interaction with other

computers within a system. Message content is less likely to be compromised with this form of isolation.

Each original and received message is held within a convertible data class. Message data content is converted to serial,

passes to a destination, and is converted back into a convertible data class at a destination.

Advantages of this mechanism include improved reliability and security while maintaining good performance. A published

message consisting of a floating-point or integer value with type of event, unique identity, time of collection, etc. can be

serialized within only 25 bytes or 200 bits. A message is packed into a super message during transit. A main hub on a gigabit

network can distribute up to a million small messages per second depending on system message traffic characteristics. Latency

of a published message is two network hops of a few milliseconds.

1.3 Client to Server Communication Layer

A client to server communication layer allows a client to access functions from a server, a server to limit client access to

only permitted functions, and recovery of in progress work after the failure of a server or client. The two latter features require

a new type of client to server mechanism. A client and server program must be written in a new manner.

The client to server communication layer is composed of two components. One component, called an executive, resides

with a client or server. The executive provides an environment for a client to access server functions and for the server to

communicate with the client. The other component is a layer manager that resides on an isolated computer. An executive

instance uses the message communication layer to create a message channel to an active layer manager instance.

A programmer defines a session to hold the state of in progress work. The session also holds minimal information needed

to recover a session in the event of a program failure.

A service is written by a server programmer to reside with a client program. A service provides an API to access server

functions and to hide client to server communication details. Session recovery information and any message is passed to a

layer manager where it is saved and a message is forwarded to its destination. Full details are described in a following section.

An advantage of this client to server mechanism is that work of either a client or server can be recovered after a program

failure. Any external user, or the other program in the client to server association, is not affected except for observing a slower

response when a failure and recovery scenario occurs.

Another advantage is that a server session contains what work a client is permitted to request per administrator configura-

tion. A server can validate a request against permissions before performing work. A server reports any illegal request.

An initial disadvantage is that it takes some time and effort before a programmer understands and can write a client or

server program in an appropriate pattern. Over time this becomes an advantage as writing a client or server program is less

effort when following the same design pattern for every client, service and server.

 8

1.4 Infrastructure Checklist

Literally thousands of ideas are woven together like threads within the 300+ classes that operate within some dozen pro-

grams. Together the programs create one version of a system communication infrastructure. System specific programs perform

work and communicate with each other as a system via an infrastructure version. Some of the more important ideas are:

Message Communication Layer

1. Reliably, Securely & Efficiently distribute messages between programs on multiple computers

2. Do not talk to strangers

3. Message travels two paths

4. Point to point message conversation between two instances of same program

5. Point to point message conversation between parent and child e.g. client to server mechanism

6. Publish and subscribe event message distribution per type of event message

7. Multiple instances of publisher while only one active

8. TCP/IP connection per admin, event & data message stream

9. Pack & unpack message within fixed sized super message

10. Disassemble & assemble data message larger than super message

11. Maximum size data message defined by system

12. Admin or event message must fit within one super message

13. Embed format conversion between class and serial for 4 specific types of event format

14. Convert between event class content, method parameters and serial residing within super message for maxi-

mum performance i.e. communication media and event size in serial are limits on events per second

15. Multiplex message onto appropriate super message stream

16. Flow control on super message

17. Keep one partial super message in transmission to minimize latency

18. Only transmit extra super message when full

19. Embed Automated Control System i.e. monitor communication state & assign program instance as active

20. Record & replay last event message for a starting subscriber

21. Failure of both paths forces complete communication shutdown

22. Automatic startup of paths and communicating program instances per configuration

23. Configuration of production version frozen to be the same on all computers

24. Each version has unique TCP/IP port assignments

25. Several versions can execute on same set of computers with minimal interference

26. Each local hub computer has unique encryption key used with communication to main hub

27. Multiple main hub instances per A & B path communicate and decide which becomes active

Client to Server Layer

• Reliably, Securely & Efficiently distribute work between programs on multiple computers

• Reliability

1. In progress work restart information check pointed with each communication and upon demand

2. Client determines its part of restart information

3. Server determines its part of restart information

4. Client to server mechanism adds messages being exchanged to restart information

5. Client and server recovers in progress work from restart information

6. Either client or server part of communication can be recovered with other participant only detecting an extra

delay in communication time

7. Checkpoint restart information to isolated infrastructure computer that saves information and forwards mes-

sage between client and server

8. Backup instance of infrastructure computer holds restart information

9. Multiple instances of one type of server exchange information used to perform work

• Security

1. Identity of Client and Server securely known

2. Client to server mechanism limits client to allowed server

3. Server is informed of what work client can request

9 A Better Middleware

4. Server restricts client to allowed work

• Efficiency

1. Use message communication layer

2. Multiple work sessions per client and server program instance

3. Multiple instances of server can perform work for clients

4. Server can be client of different server

5. Service API translates between client method call and server message

Data Format Conversion Layer

1. Reliably & Efficiently convert data content between two formats

2. Infrastructure supports definition of convertible data class

3. System specific source defines convertible data class

4. Support class, serial and human readable text formats

5. Convertible data class has embedded meta data per attribute to direct conversion

6. Meta data consumes about 10 times extra memory space

7. Statements to compiler could support explicit meta data with minimal extra memory space

8. Convertible data class has source to explicitly initialize meta data

9. Most attribute data types supported except for hash table and class pointer

10. Convertible data class can hold list of convertible data class instances

11. Convertible data class can hold hierarchy of convertible data class instances

12. Convertible data class can hold non-convertible attributes such as hash table and class pointer

13. Serial and text formats contain identity of originating convertible data class

14. Serial and text formats omit attributes with a value equal to a default value

15. Serial format identifies data type for error detection

16. Infrastructure admin program converts file containing text to or from file containing serial

17. Trace method within Infrastructure converts class to text and appends to trace file

18. Message layer and Client to Server mechanism use data format conversion for configuration

19. Message layer and Client to Server mechanism use data format conversion to convert between local data class

instance and data or message exchanged between programs

20. Message layer and Client to Server mechanism trace message flow per configuration

 10

2 System Characteristics

A computer system is physically composed of computers and networks. The purpose of a system is to perform work for

an external user and to optionally monitor and control an external process. Work can include data collection, persistence and

modification as well as computation and action. System characteristics include performance, reliability and security.

An external user can observe and judge a system based on some characteristics. A user views performance as to how

quickly a system shows requested data or performs requested work. A user views reliability as the combination of how often

a system is available to perform work, if data is persisted as needed and expected, and if a system performs work in a consistent

and needed manner. A user views security as the combination of only permitting data modification or actions by an authorized

user and keeping sensitive information private.

Measured availability of a system can be improved by:

• Use hardware components with a higher MTBF (mean time between failure) rate.

• Supplement commercial power with backup batteries and a power generator.

• Shift work to an alternate computer during a computer failure scenario.

• Shift communication to an alternate network component during a network component failure.

Security of a system includes:

• An externally accessible program identifies a user via supplied credentials. A user can only perform permitted

work as configured by an administrator.

• A network firewall only allows an external entity to communicate to an internal program as configured by an

administrator.

• Sensitive data is encrypted during transit through a public network.

• A scan of persisted data or in memory programs can detect known virus instruction patterns.

• A scan of historical events and actions can detect abnormal usage patterns.

The above availability and security features are available on any system regardless of the middleware that is used. A better

middleware adds many more features described and summarized by the following sections.

11 A Better Middleware

3 Data Format Conversion Layer

A convertible data class is defined by extending a convenience class called gcData. This base class manages a list of fields

defined within a convertible data class. There is a convenience class for each kind of field such as an integer which is called

gcIntegerValue. For example, Figure 1 - Field with meta data, shows an integer field called age with a current age value of

42 and initialized meta data.

This age field, contained in a convertible data class, can be converted to the serial format shown in Figure 2 - Serial format

of Age Field by calling the data conversion layer. The serial format contains the numeric id, data type, size in bytes of a value,

and a value of 42 which is hexadecimal 2A. The conversion algorithm of a field within a class into serial is clear.

The original convertible data class content can be restored by combining the serial format with an instance of the convert-

ible data class. The conversion algorithm uses the numeric id of 3 from the serial format to locate the field with meta data.

The data type 4, meaning integer, is compared between the serial format and meta data to detect an unintentional error. The

size in bytes of a value shown as 1, is used to know how many serial bytes is used to specify a value. The byte of value 2A is

converted into a proper sized integer of decimal 42.

This age field, contained in a convertible data class, can be converted to the text format shown in Figure 3 - Text format

of Age Field by calling the data conversion layer. The tag is taken from the meta data for name. The conversion algorithm

converts to a subset of XML.

The original convertible data class content can be restored by combining the text format with an instance of the convertible

data class. The conversion algorithm uses the tag of Age from the text format to locate the field with meta data. The data type

of integer from the meta data is used to pick a conversion of text into an internal integer. The text 42 is converted to an internal

integer of decimal 42.

A complete listing of convenience classes is specified by a programmer reference guide. There are seven for the usual

types of primitive data and two more for an enumeration and time stamp. The enumeration is quite useful to equate an internal

integer value to an external text name. For example, a value of 0 is represented as “false” and a value of 1 as “true” within a

text format. There are nine more convenience classes for arrays of the primitive data types.

There is a convenience class to hold the serial output of a data conversion. This is quite useful to wrap a message around

another message already converted to serial. Finally, there is a convenience class for an array of gcData class instances.

Default Value

Data Type

Numeric Id

Name

Value 42

Age

4

3

18

Figure 1 - Field with meta data

0403012A

Figure 2 - Serial format of Age Field

<Age>42</Age>

Figure 3 - Text format of Age Field

 12

A convertible data class can contain another convertible data class or a list of convertible data classes. The conversion

algorithm embeds the name of each convertible data class into the serial or text format. The conversion algorithm uses the

name embedded in the serial or text format to locate a class used to convert data content back into a hierarchy of convertible

data class instances.

Complex types such as a class pointer or a hash map are not supported. This kind of information can be built from more

primitive types of data after a serial or text format is converted into convertible class instances.

Note that the interfaces in the implementation are not final. Names such as gcData need to be reviewed through a standard

making process.

3.1 Color as a Class

The following is an example class called uiColorSpec. The class holds the specification of a color as the amount of the

combined primary colors red, green, and blue along with a factor to specify transparency. This class will be re-specified later

as a convertible data class that includes meta data to control data format transformation.

001 package nelson.eugene.serviceFrame.services.ui;

Line 1 specifies a package so that this class can be used by another class outside of the package. Line 2 shows how a class

begins. Lines 4 thru 7 show attributes held as an integer.

002 public class uiColorSpec

003 {

004 private int m_r;

005 private int m_g;

006 private int m_b;

007 private int m_a;

008

009

010 public uiColorSpec()

011 {

012 }

013

014

The initDefault method initializes the data class to default values.

015 public void initDefault()

016 {

017 return init(0, 0, 0, 255);

018 }

019

020

The init method sets all attribute values at one time.

021 public void init(int red, int green, int blue, int alpha)

022 {

023 m_r = red;

024 m_g = green;

025 m_b = blue;

026 m_a = alpha;

027 }

028

029

030 public int getRed()

031 {

032 return m_r;

033 }

034

13 A Better Middleware

035

036 public int getGreen()

037 {

038 return m_g;

039 }

040

041

042 public int getBlue()

043 {

044 return m_b;

045 }

046

047

048 public int getAlpha()

049 {

050 return m_a;

051 }

052

053

054 public void ensureValid()

055 {

056 if ((m_r < 0)

057 || (m_r > 255)

058 || (m_g < 0)

059 || (m_g > 255)

060 || (m_b < 0)

061 || (m_b > 255)

062 || (m_a < 0)

063 || (m_a > 255)) initDefault();

064 }

065

066

067

068 } //uiColorSpec

3.2 Color as a Convertible Data Class

The class uiColorSpec is specified as a convertible data class with the following source:

001 //Copyright Eugene Nelson Software 2012 All Rights Reserved

002 //Reproduction or Other Use Only By Permission of Authors

003

004 // uiColorSpec

005

006 package nelson.eugene.serviceFrame.services.ui;

007

008 import nelson.eugene.serviceFrame.gc.*;

Line 8 refers to all classes in a package so that they can be used by this class.

009

010

The next line shows class uiColorSpec as an extension of the convenience class gcData. Lines 13 thru 16 show attributes

held within a gcIntegerValue convenience class.

011 public class uiColorSpec extends gcData

012 {

 14

013 private gcIntegerValue m_r;

014 private gcIntegerValue m_g;

015 private gcIntegerValue m_b;

016 private gcIntegerValue m_a;

017

018

019 public uiColorSpec()

020 {

021 }

022

023

The initDefault method initializes the data class to default values.

024 public gcErrorResult initDefault()

025 {

026 return init((uiColorSpec)null);

027 }

028

029

The init method sets up programmer defined meta data that is later used to convert between data formats. It optionally

obtains meta data from a previously defined class instance. If an error occurs then the error is returned in class gcErrorResult.

030 public gcErrorResult init(uiColorSpec baseData)

031 {

032 gcErrorResult errorInfo = null;

The next line calls initSchema with a schemaName of sfUiColorSpec and an external name of uiColorSpec. If a convertible

data class is embedded within another convertible data class then the external name is typically overridden e.g. foreground

replaces uiColorSpec as the external name. The schemaName is used by the serial encoder and decoder algorithm to identify

the proper class needed for decoding.

033 initSchema("uiColorSpec", "sfUiColorSpec");

034

The next line calls method createIntegerValue with an external name of red, a default value of 0, and a unique attribute id

of 1. If the id is not unique then the container is not created and an error is returned. A gcIntegerValue convenience class is

created, the Meta data is saved, the value is set to the default, and the class is added to the list held within the gcData class.

035 m_r = createIntegerValue("red", 0, 1);

036 if (m_r == null) return idErr("uiColorSpec", 1);

037

038 m_g = createIntegerValue("green", 0, 2);

039 if (m_g == null) return idErr("uiColorSpec", 2);

040

041 m_b = createIntegerValue("blue", 0, 3);

042 if (m_b == null) return idErr("uiColorSpec", 3);

043

044 m_a = createIntegerValue("alpha", 255, 4);

045 if (m_a == null) return idErr("uiColorSpec", 4);

046

047

048 return null;

049 }

050

The init method sets all values at one time. The setValue method of a value convenience class is called to store the new

value.

051 public void init(int red, int green, int blue, int alpha)

052 {

053 m_r.setValue(red);

054 m_g.setValue(green);

15 A Better Middleware

055 m_b.setValue(blue);

056 m_a.setValue(alpha);

057 }

058

059

The getValue method of the value convenience class is called to get a stored value.

060 public int getRed()

061 {

062 return m_r.getValue();

063 }

064

065

066 public int getGreen()

067 {

068 return m_g.getValue();

069 }

070

071

072 public int getBlue()

073 {

074 return m_b.getValue();

075 }

076

077

078 public int getAlpha()

079 {

080 return m_a.getValue();

081 }

082

083

084 public void ensureValid()

085 {

086 if ((m_r.getValue() < 0)

087 || (m_r.getValue() > 255)

088 || (m_g.getValue() < 0)

089 || (m_g.getValue() > 255)

090 || (m_b.getValue() < 0)

091 || (m_b.getValue() > 255)

092 || (m_a.getValue() < 0)

093 || (m_a.getValue() > 255)) reset();

094 }

095

096

The newInstance method is mandated by class gcData. It creates a new data class instance with meta data based on this

class instance.

097 public gcData newInstance()

098 {

099 uiColorSpec newInst = new uiColorSpec();

100 newInst.init(this);

101 //Ignore duplicate id error as initial creator will report

102 return newInst;

103 }

104

105 } //uiColorSpec

The human readable text for a uiColorSpec embedded within another class looks like:

 16

<foreground>

<dataSchemaName>sfUiColorSpec</dataSchemaName>

<red>0</red>

<green>0</green>

<blue>0</blue>

<alpha>255</alpha>

</foreground>

Note that the name foreground appears rather than the name uiColorSpec. Also, lines 33 thru 44 of the data class specify

the external names that appear within the text. The serial is a sequence of binary bytes that is quite unreadable so no example

is shown. The only notable feature is that the string "sfUiColorSpec" appears encoded in UTF8 format.

The programmer and administrator reference guide contains much more information about how a convertible data class

can be used as shown by examples of middleware usage.

17 A Better Middleware

4 Message Communication Layer

The message communication layer uses a TCP/IP connection to communicate between a message bus and local hub as

well as a local hub and main hub. The Figure 4 - Message Passing shows how these components logically communicate via

two independent networks.

The message communication layer works like most software that multiplexes a message from a virtual connection over a

TCP/IP connection. A message is packed into and unpacked out of a fixed size super message that passes between a message

bus and local hub. Similarly, a message is packed into and unpacked out of a fixed size super message that passes between a

local hub and main hub. If a message is larger than the super message size then it is disassembled and reassembled at a

destination. The layer sends a super message when it becomes full and a flow control window is open. If a flow control

window becomes closed and there is no more space in the pre-allocated super message buffers, then a program can choose to

be either blocked or be informed that a message is not queued and must be sent in the future. The layer immediately sends a

super message containing only one message if there is no other message currently in transit. This mechanism minimizes

latency while automatically adjusting to minimize the resources used for a changing message work load.

4.1 Message Distribution Algorithm

A message distribution algorithm must solve several difficult and conflicting issues. It must reliably distribute a broadcast

message to all interested subscribers. It must efficiently identify a computer, program, type of event, etc. when a message is

transmitted between computers. It must allow changes to configuration such as new programs and computers. It must track

changes in the state of communication to a computer and communication to a program instance on a computer. It must help

to determine the state of a program and choose which instance of a program is active.

Several different message distribution algorithms have been tried before finding one that appears to work in all scenarios.

The current algorithm uses the concept of a system version to reliably achieve expected results.

An administrator creates the configuration for a system version as a small set of configuration files. The configuration has

a state that an administrator migrates with the values of CONFIGRATION, TEST, MAIN, and DEATH. The configuration

content can only be changed during CONFIGURATION state. Migration is allowed between TEST and CONFIGURATION.

Once the state migrates to MAIN, which means it is the default operational version on all computers within a system, then it

can only migrate to DEATH.

A transition from CONFIGRATION is significant in that internally unique integer keys are generated to identify a

computer, program, event type, etc. The keys are assigned as monotonically increasing integer values based on the position

of a definition in a configuration file. Configuration files can then be distributed to all computers in a system. Each computer

has the identical configuration files for a version. This allows main hub, local hub and message bus to efficiently know

Main Hub A

Main Hub B

Local Hub Local Hub Message Bus Message Bus

Program Program

Figure 4 - Message Passing

 18

program, computer, etc. identity when a message is sent between computers. Main hub and local hub can calculate message

distribution routing only once from a version configuration.

A new system version is created when a change to configuration is needed. Each version must use a unique network

address for a local hub and main hub. This means that multiple versions can run at the same time on the same computers. A

new version can be tested at any time while the current version remains the default operational version. An older version can

be accessed to perform a function that is unavailable or does not work properly on the current default version.

A program instance and message remains inside the boundary of a version. The file system of an operating system can be

used to access state information from a prior version upon a first time start of a new version.

A careful examination of the configuration file convertible data class definitions will reveal field values that do not exist

in the text and serial formats. For example, there are class pointers that become initialized as the message distribution

algorithm calculates message destination. The same convertible data class holds both configuration values and values only

needed by the main hub and local hub programs. The main hub and local hub setup algorithms are greatly simplified but a

programmer examining the source must be aware of this feature.

4.2 Backup Main Hub Instance

Multiple instances of a main hub can be configured on different computers as the center of a message distribution path.

Each instance connects to the other instances to pick an active instance. The active instance allows a connection from a local

hub. This feature improves main hub availability.

4.3 Program Definition

A program and associated characteristics must be configured by an administrator. A program must also be written to

perform configured characteristics. It might appear to eliminate mistakes and make administration easier by having a program

announce its properties but this approach allows a virus to take over a system.

A program is defined with a name and a Java class reference. The current implementation only supports a Java class as a

program but it is anticipated that other software language classes will become supported.

4.4 Program Copy

A program is defined to execute and be administered as a program copy. A program copy is a configuration and program

instance based on a configuration executing on one or more computers. A message channel can be created by an instance of

a program copy to an active instance of the same program copy. Alternatively, a parent program is specified to identify the

destination of a created message channel. Only connecting to a peer of yourself or an active parent program is a security

feature that ensures a message is only exchanged with a trusted program instance.

4.5 Embedded SCADA

The purpose of a program copy is to allow instances of the identical program and configuration to be available on multiple

computers and to use the message communication layer in an appropriate manner. A program copy instance is called a bus

program instance. The message communication layer has an embedded SCADA feature to track, manage and report the state

of significant system components such as a bus program instance. The communication state of an instance can be DOWN,

CONNECTED, STANDBY, or ACTIVE.

A bus program instance starts in a down state. A program initializes its configuration and starts access to the message

communication layer. A message bus connection to a local hub changes the state to connected. A program initializes access

to event messages and receives the last message distributed for a type of event. A layer program called recorder remembers

the last message of each event type and sends a copy to a starting subscriber. Upon finishing subscriber setup, the state

transitions to standby. A layer program called assigner tracks state and chooses an active instance among instances of a pro-

gram copy. If there is no active instance, then an assigner chooses a standby instance to become active. The instance chosen

19 A Better Middleware

to be active is informed of this designation. If the instance is a publisher then it is now allowed to publish a message for a type

of event allowed by administrator configuration.

4.6 System Configuration

An administrator must configure all elements and associated properties within a system version configuration file such as

computers dedicated to a main hub program, computers with a local hub program, where to find executables, programs, and

program copies. There are properties of the message communication layer such as size and number of super message buffers.

There is a startup program that always runs on every computer that is part of a system. It looks for new or removed system

version configuration files. Elements on a computer are started as programs or stopped based on the configuration file contents.

The following is a fragment of a system configuration file taken from an example shown in the administration guide book.

Each possible program that can execute is specified by a programDefinition entry which follows the format:

<programDefinition>

<dataSchemaName>sfPrgDef</dataSchemaName>

<name></name>

<programType>UNKNOWN</programType>

<javaClassReference></javaClassReference>

<executableReference></executableReference>

</programDefinition>

Each program copy that executes is specified by a programCopyDefinition entry such as:

<programCopyDefinition>

<dataSchemaName>sfPrgCpyDef</dataSchemaName>

<programName>sfEventTest</programName>

<programCopyId>A</programCopyId>

<localHubNames>

<value>localHub1</value>

</localHubNames>

</programCopyDefinition>

<programCopyDefinition>

<dataSchemaName>sfPrgCpyDef</dataSchemaName>

<programName>sfEventTest</programName>

<programCopyId>B</programCopyId>

<localHubNames>

<value>localHub2</value>

</localHubNames>

</programCopyDefinition>

The dataSchemaName is the name of a convertible data class used to define this format of data. The programName must

match a name for a programDefinition entry. The programCopyId identifies how a program can be executed for more than

one purpose. For example, A executes on one computer while B executes on a different computer. The list of localHub names

identifies each computer that executes an instance of a program copy. At least one instance becomes active and more than one

instance can become active depending on the situation. Note that programDefinition and programCopyDefinition are names

of two convertible data classes that are used to define and easily access configuration information.

4.6.1 eventConfig sample

The programCopy sfEventTest copy A publishes an event that is allowed by the following:

<eventDefinition>

<dataSchemaName>sfEvtDef</dataSchemaName>

<eventId>/eventTest/mf1</eventId>

 20

<eventType>FLOAT</eventType>

<eventSchemaName>sfFltValSt</eventSchemaName>

<saveType>LAST</saveType>

</eventDefinition>

The eventId can be any text string that is unique. The eventId /eventTest/mf1 identifies an event state that contains a

floating point number. The programCopy sfEventTest copy B subscribes to an event that is allowed by the following:

<subscribeEventIds>

<value>/eventTest/mf1</value>

</subscribeEventIds>

which is the event being published by copy A.

4.7 Sample Message Publisher and Subscriber

The following source is a bus program called sfEventTest along with a class called comm. A comm class instance uses

the message bus component to either publish or subscribe to an event message. This example uses convertible data classes

and interfaces that are documented in the programmer guide book. Hopefully, this example is useful without knowing the

exact details of these classes and interfaces.

001 //Copyright Eugene Nelson Software 2011 All Rights Reserved

002 //Reproduction or Other Use Only By Permission of Authors

003

004 // sfEventTest

005

006 package nelson.eugene.serviceFrame.fred.samples;

007

008 import nelson.eugene.serviceFrame.net.io.netMain;

009

010 import nelson.eugene.serviceFrame.bus.*;

011

012

013 /* class sfEventTest

014 *

015 * Test fred event feature

016 *

017 */

A bus program, by definition, must extend class netProgramBase. Method startFromCommand() of netProgramBase

obtains information passed from the infrastructure sfStart program and sets up the environment for execution of a bus program.

Infrastructure class netIo method doWork() contains a select that awaits message I/O or a maximum sleep time.

018 public class sfEventTest extends netProgramBase

019 {

020 //attribute

021 private long m_priorNanoTime = 0;

022

023 private comm m_comm = null;

024

025

026 /* doWork - look for work

027 *

028 * @param nanoTime - current nanoTime

21 A Better Middleware

029 *

030 * @return none

031 * @throws none

032 */

033 public void doWork(long nanoTime)

034 {

035 if (m_comm == null)

036 {

037 m_comm = new comm();

038 m_comm.init(this);

039 }

040 m_comm.doWork(nanoTime);

041 }

042

043

044 public String getProgramName()

045 {

046 return new String("sfEventTest");

047 }

048

049

050 /* main - start program from command parameters

051 *

052 * @param args - parameters from command line

053 *

054 * @return none

055 * @throws none

056 */

057 public static void main(String[] args)

058 {

059 sfEventTest tst = new sfEventTest();

060

061 netMain netIo = tst.startFromCommand(args);

062 if (netIo != null)

100

063 {

064 //endless loop to perform work

065 long nanoTime = 0;

066 while (true)

067 {

068 //Call programs to do work

069 nanoTime = System.nanoTime();

070 tst.doWork(nanoTime);

071

072 //Call netIo to process messages

073 netIo.doWork();

074 }

075 }

076

077 } //main

078

079 } //sfEventTest

Every bus program must have a class very similar to sfEventTest. Class comm extends commAccessBase and implements

valueNotifyInterface. Infrastructure class commAccessBase implements busInterface. It executes within a bus program and

communicates with other parts of the infrastructure to exchange messages between bus programs. The infrastructure

 22

valueNotifyInterface defines method onValueChange() that informs when the contents of an event class have been changed.

The source for class comm is:

001 //Copyright Eugene Nelson Software 2011 All Rights Reserved

002 //Reproduction or Other Use Only By Permission of Authors

003

004 // comm

005

006 package nelson.eugene.serviceFrame.fred.samples;

007

008 import java.util.Date;

009

010

011 import nelson.eugene.serviceFrame.gc.*;

012

013 import nelson.eugene.serviceFrame.core.*;

014

015 import nelson.eugene.serviceFrame.bus.*;

016

017 import nelson.eugene.serviceFrame.fred.access.commAccessBase;

018

019

020 /* class comm

021 *

022 * Communication via fred

023 *

024 */

025 public class comm extends commAccessBase implements valueNotifyInterface

026 {

027 //attribute

028 private netProgramBase m_prg;

029

030 private floatValueState m_pFloat1;

031

032 private floatValueState m_sFloat1;

033

034 private boolean m_update = false;

035 private long m_publishNanoTime = 0;

036 private long m_checkNanoTime = 0;

037 private float m_priorValue = (float) 1.1;

038 private boolean m_isQualifierChange;

039

040

041 /* doWork - look for work

042 *

043 * @param nanoTime - current nanoTime

044 *

045 * @return none

046 * @throws none

047 */

048 public void doWork(long nanoTime)

049 {

050 super.doWork(nanoTime);

051

052 //Determine if time to check trace settings - every 5 minutes

053 long elapsedNanoSeconds = nanoTime - m_checkNanoTime;

054 if (elapsedNanoSeconds > ((long)(5 * 60) * (long)1000 * (long)1000000))

23 A Better Middleware

055 {

056 m_checkNanoTime = nanoTime;

057 m_prg.checkConfigChange();

058 m_logEvent = m_prg.isTrace("event");

059 }

060

061 if (!m_update) return;

062

063 //Determine if time to update - every 5 seconds

064 elapsedNanoSeconds = nanoTime - m_publishNanoTime;

065 if (elapsedNanoSeconds > ((long)(5) * (long)1000 * (long)1000000))

066 {

Periodically generate and publish a new value for the float m_pFloat1.

067 m_publishNanoTime = nanoTime;

068 m_pFloat1.setState(true, true, System.currentTimeMillis());

069 m_pFloat1.setValue(m_priorValue);

070 m_priorValue = (float) (m_priorValue + 1.0);

071

072 publishEvent(false, m_isQualifierChange, m_pFloat1);

073

074 m_isQualifierChange = false;

075 }

076 } //doWork

077

078

079 /* init - initialize

080 *

081 * @param prg - net program base

082 *

083 * @return none

084 * @throws none

085 */

086 public void init(netProgramBase prg)

087 {

088 m_prg = prg;

089

090 m_logEvent = m_prg.isTrace("event");

091

Initialize instances of infrastructure class floatValueState that are used to contain a value being published or subscribed.

Note that "/eventTest/mf1" would normally come from configuration but it is hard coded to keep the sample simple.

092 m_pFloat1 = new floatValueState();

093 m_pFloat1.initDefault();

094 valueQualifierBase qualifier = (valueQualifierBase) m_pFloat1.getQualifier();

095 qualifier.setAdminSource(sourceType.MEASURED);

096 qualifier.setSource(sourceType.MEASURED);

097 qualifier.setSourceError(sourceErrorType.NONE);

098 qualifier.setSeverity(severityType.INFORMATION);

099

100 m_pFloat1.init(true, eventType.FLOAT, "/eventTest/mf1", null, null, null);

101 m_pFloat1.setValue(m_priorValue);

102

103 m_isQualifierChange = true;

104

105 m_sFloat1 = new floatValueState();

 24

106 m_sFloat1.initDefault();

107

108 m_sFloat1.init(false, eventType.FLOAT, "/eventTest/mf1", null, null, this);

109

110 m_prg.trace("sfEventTest", "init", null, null, m_pFloat1);

111

112 super.init(m_prg, true);

113

If this instance is copy A then act as publisher, else act as subscriber.

114 if (m_prg.getProgramCopyId().equals("A"))

115 {

116 registerAsEventPublisher(m_pFloat1);

117 }

118 else

119 {

120 subscribeToEvent(m_sFloat1);

121 }

122 } //init

123

124

125 /* onAccessDown - communication access down

126 *

127 * @param none

128 *

129 * @return none

130 * @throws none

131 */

132 public void onAccessDown()

133 {

134 m_update = false;

135 }

136

137

138 /* onAccessUp - communication access up, start configuration

139 *

140 * @param none

141 *

142 * @return none

143 * @throws none

144 */

145 public void onAccessUp()

146 {

147 requestSync();

148 }

149

150

151 /* onActive - instance is now active

152 *

153 * @param none

154 *

155 * @return none

156 * @throws none

157 */

158 public void onActive()

159 {

25 A Better Middleware

160 if (m_prg.getProgramCopyId().equals("A"))

161 {

162 m_update = true;

163 }

164 }

165

166

167 /* onLicenseRetrieval - license retrieved from mainHub computer

168 *

169 * @param licenseInfo - license validated by mainHub

170 *

171 * @return none

172 * @throws none

173 */

174 public void onLicenseRetrieval(license licenseInfo)

175 {

176 }

177

178

179 /* onSyncComplete - event sync complete

180 *

181 * @param none

182 *

183 * @return none

184 * @throws none

185 */

186 public void onSyncComplete()

187 {

188 }

189

190

191 /* method onValueChange - value changed from event

192 *

193 * @param isRetry - true if retry attempt else first try

194 * @param valueState - value state instance

195 *

196 * @return true if success else retry still needed

197 * @throws none

198 */

199 public boolean onValueChange(boolean isRetry, valueStateBase value)

200 {

Generate a trace each time the subscriber sees a change.

201 if (m_logEvent)

202 {

203 m_prg.trace("sfEventTest", "update", null, null, value);

204 }

205 return true;

206 }

207

208

209 } //comm

 26

5 Client to Server Communication Layer

The client to server communication layer consists of a manager program and an executive component resident with a user

written client or server program as shown in Figure 5 - Client to Server Communication Layer. There is one active instance

of a manager and standby instances that are informed of saved information such as recovery state and an in-progress message.

An executive starts a program class and connects to the active layer manager instance via the message communication layer.

A client uses a service to access functions of a server as shown in Figure 6 - Client to Server Mechanism. A service uses

a client session to exchange messages with a server session in a remote server instance.

A service is a client resident API written by a server programmer. A service API permits a client to access server functions

with a direct call interface.

A client program calls a service to request a connection to a server associated to a work session. A service requests the

executive to create a server session in a server and a client session in the client that associates a client program work session

to the client session and remote server session. The executive passes the request to the manager layer.

The layer manager, upon receiving a request to create a client to server connection, validates that a client program is

permitted to access the requested server. If not, then a violation is reported and the connection to the client program instance

is terminated. If yes, then the executive on the server program is directed to create a server session that includes the functions

that a client can access. The executive on the client program is directed to create a client session associated to the server

session and the client work session.

The executive on the client program directs the service to create a client session. The service creates a client session and

informs the client program of the client session associated with the client program work session. The client is informed of a

client session becoming available.

A client program calls the API on the client session to obtain server functionality. A service converts a client session API

call to a server message sent via a client session to a server session. The executive passes session recovery state and the

message to the layer manager.

The layer manager saves session recovery state and any message. A message is forwarded to its destination. If a connection

to an executive is lost, then affected sessions are assigned and recovered by an instance of the identical program. Any external

user, or the other program in the client to server association, is not affected except for observing a slower response when a

failure and recovery scenario occurs.

An executive within a server program receives a client message from a layer manager. The executive calls the server via

an API on a server session to process a message from a client. The server checks if a client is permitted to access the requested

function. If not, then a violation is reported and the server session is terminated. If yes, then work is performed and the result

is formed as a message that is sent to a client by calling an API on a server session.

Layer Manager Executive

Client or Server

Executive

Client or Server

Figure 5 - Client to Server Communication Layer

Service Client Server

Layer Manager Executive Executive

Figure 6 - Client to Server Mechanism

27 A Better Middleware

An executive within a client program receives a server message from a layer manager. The executive calls a service via

an API on a client session to process a message from a server. The service processes a message and calls the client program

via the client session API. The client program accepts data or work completion from a server, integrates this into the work

performed for and saved as state within a work session, and continues the work being directed by the work session.

Both a client program and server program are designed to support multiple sessions. An executive within a client program

calls to create a new work session or a recovered work session with an associated client session. An executive within a server

program calls to create a new server session or a recovered server session with an associated client session. Note that a server

program can also be a client program. Care must be taken to ensure a timely response to client requests and to prevent a

circular chain of calls through multiple servers.

An astute reader will wonder how a client gets a work session. There is an initial work session when a program is started.

A work session called an application session can also be created to support an external user. The layer supports configuration

of a user interface service and a user manager service. An external user connects to an interface service in a manner specific

to a server of the interface service. The interface service requests the user manager to identify a new user. A validated user

can request connection to a program designated as an application. A user manager requests the layer to create an application

session. The layer directs an application to create an application session associated to an external user. The application uses

an interface service to open and manage windows containing fields that appear to an external user. This mechanism allows

one or more kinds of programs to manage application sessions to perform work. The application interface to a user is defined

by a service added to the middleware. This mechanism is intended to support a gateway to web application instances.

A server program should use the message distribution layer to keep multiple instances of the same server program in

contact and synchronized. A server requests a virtual connection to an active server instance. The connection provides two-

way message delivery or disconnects upon delivery failure. A server can publish a message identified by a unique type

identifier. A server can be a subscriber that receives a published message by type. A starting server receives the last published

message for each type of subscribed message.

5.1 Sample Service Client Session

Class sFile1ClientSession is a service client session that extends the infrastructure client session and implements a service

API. The sample service is a simple request of a file from the server that either returns the file content or an error indication.

This example uses convertible data classes and interfaces that are documented in the programmer guide book. Hopefully, this

example is useful without knowing the exact details of these classes and interfaces.

001 //Copyright Eugene Nelson Software 2012 All Rights Reserved

002 //Reproduction or Other Use Only By Permission of Authors

003

004 // sFile1ClientSession

005

006 package nelson.eugene.serviceFrame.services.sFile1;

007

008

009 import nelson.eugene.serviceFrame.gc.*;

010

011 import nelson.eugene.serviceFrame.bus.*;

012

013 import nelson.eugene.serviceFrame.services.*;

014

015 import nelson.eugene.serviceFrame.exec.*;

016

017

018 /* class sFile1ClientSession

019 *

020 * client session access to remote service

021 *

022 */

023 public class sFile1ClientSession extends clientSession

 28

024 implements clientSessionInterface

025 {

026 //attribute

The service client session class holds references to the environment.

027 private netProgramBase m_prg;

028 private serviceExecInterface m_exec;

The class holds the instance of the client side manager.

029 private sFile1Access m_serviceAccess;

The class holds the user reply instance.

030 private sFile1ReplyInterface m_reply;

031

The class holds the message class exchanged with the server.

032 private fileMessage m_fileMsg = null;

The class holds the map from schema name to message class.

033 private gcSchemaToClassMap m_map;

034

035

036 /* method delete - delete session

037 *

038 * @param none

039 *

040 * @return none

041 * @throws none

042 */

043 public void delete()

044 {

Tell the client side manager to forget about this client session.

045 m_serviceAccess.deleteAccess(getServSession());

Tell the clientSession that the connection is gone.

046 super.disconnect();

047 }

048

049

This is part of the unique service signature. It allows a user to request the content of a remote file.

050 /* getFileContent - get file content

051 *

052 * @param vaultName - name of vault

053 * @param path - path to directory containing file

054 * @param fileName - file name

055 *

056 * @return requestId

057 * @throws none

058 */

059 public int getFileContent(String vault, String path, String fileName)

29 A Better Middleware

060 {

Get the next unused requestId and advance the id for the next time.

061 int requestId = getRequestId();

062 advanceRequestId();

Get a new instance of a fileMessage class. This must be done since the message will be placed in a request queue that is

encoded and sent to the server only after this thread returns back to the service technology.

063 fileMessage fileMsg = (fileMessage)m_fileMsg.newInstance();

Generate a get file content message.

064 fileMsg.setGetFileContent(requestId, vault, path, fileName);

Queue the request message to be sent to the server.

065 sendRequestMessage(fileMsg);

Return the requestId for this request in case the user must correlate a response back to a request.

066 return requestId;

067 } //getFileContent

068

069

070 /* method getSchemaMap - get schema map of class(es)

071 * placed on client / server session lists

072 *

073 * @param none

074 *

075 * @return schema map of class(es) placed on client / server session lists

076 * @throws none

077 */

078 public gcSchemaToClassMap getSchemaMap()

079 {

Return the map of schema name to message class as created by init method.

080 return m_map;

081 }

082

083

084 /* method getState - get current state

085 *

086 * @param none

087 *

088 * @return gcData based object containing current state

089 * @throws none

090 */

091 public gcData getState()

092 {

093 //no state beyond that held by sessionBase request, response,

094 //event and ack lists

095 return null;

096 }

097

098

099 /* init - initialize service manager

 30

100 *

101 * @param prg - net program base

102 * @param exec - serviceExec control interface

103 *

104 * @return none

105 * @throws none

106 */

107 public void init(netProgramBase prg, serviceExecInterface exec)

108 {

Save environment context instances.

109 m_prg = prg;

110 m_exec = exec;

111

Instantiate a fileMessage class instance that is used to exchange messages with the server.

112 m_fileMsg = new fileMessage();

113 gcErrorResult errorInfo = m_fileMsg.initDefault();

114 if (errorInfo != null)

115 {

116 m_prg.trace("sFile1", "init", null, errorInfo);

117 return;

118 }

119

Create the map of schema name to message class.

120 m_map = new gcSchemaToClassMap();

121 m_map.addMapping(m_fileMsg);

122 }

123

124

125 /* initReply - init reply

126 *

127 * @param serviceAccess - service access

128 * @param reply - user reply instance

129 *

130 * @return none

131 * @throws none

132 */

133 public void initReply(sFile1Access serviceAccess,

134 sFile1ReplyInterface reply)

135 {

Save client side manager and user reply instances.

136 m_reply = reply;

137 m_serviceAccess = serviceAccess;

138 }

139

140

141 /* method onConnect - session connected

142 *

143 * @param none

144 *

145 * @return none

146 * @throws none

31 A Better Middleware

147 */

148 public void onConnect()

149 {

Tell user that client session can now be used.

150 m_reply.onAccessConnect(this);

151 }

152

153

154 /* method onDisconnect - session disconnected

155 *

156 * @param none

157 *

158 * @return none

159 * @throws none

160 */

161 public void onDisconnect()

162 {

Tell user to stop using the client session.

163 m_reply.onAccessDisconnect(this);

164 }

165

166

167 /* onDelete - on delete of server session by client side

168 *

169 * @param none

170 *

171 * @return none

172 * @throws none

173 */

174 public void onDelete()

175 {

Nothing to do since this is a simple service with no client state or fancy stuff supplied to user.

176 }

177

178

179 /* method onEventMessage - process event message from service

180 *

181 * @param event - event message

182 *

183 * @return none

184 * @throws none

185 */

186 public void onEventMessage(serviceMessageBase event)

187 {

Nothing to do since server does not send event messages.

188 }

189

190

191 /* method onResponseMessage - process response message from service

192 *

193 * @param response - response message

 32

194 *

195 * @return none

196 * @throws none

197 */

198 public void onResponseMessage(serviceMessageBase res)

199 {

Cast the response message to the fileMessage class since this is the only class in the schema map that can be used by the

infrastructure.

200 fileMessage response = (fileMessage) res;

Get any error returned from the server.

201 gcErrorResult errorInfo = response.getErrorInfo();

202 if (errorInfo != null)

203 {

Tell the user about a server error.

204 m_reply.onAccessError(this, response.getRequestId(), errorInfo);

205 }

206 else

207 {

Tell the user the serial content of the requested file.

208 m_reply.onSerialContent(response.getRequestId(),

209 response.getContent().getSerialPackage());

210 }

211 }

212

213

214 } //sFile1ClientSession

A service client session class for any service will look somewhat like this sample as it must extend clientSession and must

implement clientSessionInterface. Of course, the service API is unique and the message convertible data class is tailored to

the functionality being accessed.

5.2 Sample Server Session

This is an example of a server session. The prior section shows the client session that matches this server session to provide

a function to a client. A service server session called sSession extends serverSession and implements serverSessionInterface.

001 //Copyright Eugene Nelson Software 2012 All Rights Reserved

002 //Reproduction or Other Use Only By Permission of Authors

003

004 // sSession

005

006 package nelson.eugene.serviceFrame.servers.sFile1;

007

008 import java.util.ArrayList;

Import the java classes needed to perform a file open and read.

009 import java.io.File;

010 import java.io.RandomAccessFile;

011 import java.nio.channels.FileChannel;

33 A Better Middleware

012 import java.nio.ByteBuffer;

013

014 import nelson.eugene.serviceFrame.gc.*;

015

016 import nelson.eugene.serviceFrame.bus.*;

017

018 import nelson.eugene.serviceFrame.services.*;

019

020 import nelson.eugene.serviceFrame.exec.*;

021

Import the message class from the service.

022 import nelson.eugene.serviceFrame.services.sFile1.*;

023

024

025 /* class sSession

026 *

027 * server session access to remote service

028 *

029 */

030 public class sSession extends serverSession

031 implements serverSessionInterface

032 {

033 //attribute

The class holds references to the environment.

034 private netProgramBase m_prg;

035 private serviceExecInterface m_exec;

The class holds reference to the server manager.

036 private sFile1Server m_service;

037

038 private state m_state;

039

040 private String m_versionDirectory;

041 private gcErrorResult m_errorInfo;

042

The class holds the message class exchanged with the server.

043 private fileMessage m_fileMsg = null;

The class holds the map from schema name to message class.

044 private gcSchemaToClassMap m_map;

045

046

047 /* doWork - look for work

048 *

049 * @param currentTimeMillis - current time in milliseconds

050 *

051 * @return none

052 * @throws none

053 */

054 public void doWork(long currentTimeMillis)

055 {

 34

Call from the service infrastructure in case some work needed by server session (as requested by server manager).

056 }

057

058

059 /* method getSchemaMap - get schema map of class(es)

060 * placed on client / server session lists

061 *

062 * @param none

063 *

064 * @return schema map of class(es) placed on client / server session lists

065 * @throws none

066 */

067 public gcSchemaToClassMap getSchemaMap()

068 {

Return the map of schema name to message class as created by init method.

069 return m_map;

070 }

071

072

073 /* method getState - get current state

074 *

075 * @param none

076 *

077 * @return gcData based object containing current state

078 * @throws none

079 */

080 public gcData getState()

081 {

082 //no state beyond that held by sessionBase request, response,

083 //event and ack lists

084 return null;

085

086 //return m_state; State must be saved so that it can be restored.

087 }

088

089

090 /* init - initialize service manager

091 *

092 * @param prg - net program base

093 * @param exec - serviceExec control interface

094 * @param service - main service

095 * @param priorState - state content if prior state to be recovered

096 *

097 * @return none

098 * @throws none

099 */

100 public void init(netProgramBase prg, serviceExecInterface exec,

101 sFile1Server service,

102 gcData priorState)

103 {

Save environment context instances.

102 m_prg = prg;

35 A Better Middleware

103 m_exec = exec;

104 m_service = service;

105

106 //Restore state from prior session instance

107 //This example does not use state, however, follow this pattern when state

108 //must be saved and recovered.

109 m_state = (state)priorState;

110

Get the version directory for this server instance.

111 //Setup to access versionDirectory and exchange service messages.

112 m_versionDirectory = m_prg.accessFile().getVersionDirectory();

113

Instantiate a fileMessage class instance that is used to exchange messages with the client.

114 m_fileMsg = new fileMessage();

115 gcErrorResult errorInfo = m_fileMsg.initDefault();

116 if (errorInfo != null)

117 {

118 m_prg.trace("file1Test", "init", null, errorInfo);

119 return;

120 }

121

Create the map of schema name to message class.

122 m_map = new gcSchemaToClassMap();

123 m_map.addMapping(m_fileMsg);

124 }

125

126

127 /* method getFileContent - get file content

128 *

129 * @param path - path to directory containing file

130 * @param fileName - file name

131 *

132 * @return serial if no error else null on error

133 * @throws none

134 */

135 public gcSerialPackage getFileContent(String path, String fileName)

136 {

Perform the work needed to read the content from a file. A gcSerialPackage is how the gcData technology represents the

serial in a sequence of ByteBuffer class instances. Most of this method is dictated based on how Java file I/O works.

137 gcSerialPackage serial = new gcSerialPackage();

138 serial.init(1);

139

140 String fullDirPathName = new String (m_versionDirectory + "\\" + path);

141 File dir = new File(fullDirPathName);

142

143 File file = new File(fullDirPathName + "\\" + fileName);

144 try

145 {

146 FileChannel fc = new RandomAccessFile(file, "r").getChannel();

147

148 int len = (int)fc.size();

 36

149 ByteBuffer buf = ByteBuffer.allocate(len);

150 fc.read(buf);

151 fc.close();

152 buf.flip();

153 serial.addPart(buf);

154 }

155 catch (Exception e)

156 {

157 m_errorInfo = new gcErrorResult();

158 m_errorInfo.init();

159 ArrayList<String> params = new ArrayList<String>();

160 params.add(file.getPath());

161 params.add(e.toString());

162 m_errorInfo.setErrorInfo("sf", "file_error", params);

163 return null;

164 }

165 return serial;

166 } //getFileContent

167

168

169 /* method onConnect - session connected

170 *

171 * @param none

172 *

173 * @return none

174 * @throws none

175 */

176 public void onConnect()

177 {

Ignore as nothing to do beyond what is done by init method.

178 }

179

180

181 /* onDisconnect - on disconnect by client side

182 *

183 * @param none

184 *

185 * @return none

186 * @throws none

187 */

188 public void onDisconnect()

189 {

Ignore as nothing to do beyond class going away on disconnect.

190 }

191

192

193 /* onRequestMessage - on request message

194 *

195 * @param request - request message

196 *

197 * @return none

198 * @throws none

199 */

200 public void onRequestMessage(serviceMessageBase req)

37 A Better Middleware

201 {

Cast the request message to the fileMessage class since this is the only class in the schema map that can be used by the

infrastructure.

202 fileMessage request = (fileMessage)req;

203 if (request.getFileMsgType() == fileMsgType.GET_FILE_CONTENT)

204 {

205 gcSerialPackage serial;

Get file content via the local class method.

206 serial = getFileContent(request.getPath(), request.getFileName());

207 if (serial == null)

208 {

If nothing returned then send error back in new file message.

209 fileMessage fileMsg = (fileMessage)m_fileMsg.newInstance();

210 fileMsg.setGetFileContentReply(request.getRequestId(), m_errorInfo);

211 sendResponseMessage(fileMsg);

212 }

213 else

214 {

Return serial file content back in new file message.

215 fileMessage fileMsg = (fileMessage)m_fileMsg.newInstance();

216 m_fileMsg.setGetFileContentReply(request.getRequestId(), null);

217 m_fileMsg.getContent().setSerialPackage(serial);

218 sendResponseMessage(m_fileMsg);

219 }

220 }

221 else

222 {

223 m_prg.trace("file1Test", "badRequest", null, null, request);

224 disconnect();

225 }

226 }

227

228

229 } //sSession

This sample server session has a structure that is similar for all servers. There is flexibility that allows for how functionality

occurs. Perhaps the most work, not shown, is in how information is shared with either standby or other active instances of a

server. The serviceExecInterface environment method getBusInterface() returns access to the message bus. The bus supports

both point to point message connections and publisher to subscriber near real time event messages. These message distribution

mechanisms provide a reasonable way to share information with different pros and cons.

 38

6 Characteristics of a Better Middleware

Reliability is improved by:

• Each message travels two paths. Failure of one path does not affect communication between programs.

• A starting subscriber receives the last message published for each subscribed event message type.

• In progress work and communication between a client and server are represented as data in a session. Session

contents are persisted periodically or upon significant change. A session can be reassigned and recovered after a

program failure. An external user can only observe slower performance when a failure scenario occurs.

• A server supports multiple instances where either one is active and the others are standby or all are active.

Changes in server state are passed between instances such that a client receives an identical function from any

active server.

Security is improved by:

• Two programs can only communicate as configured by an administrator.

• Published event messages are only distributed to subscribers as configured by an administrator.

• A server knows the functions that a client is permitted to request as configured by an administrator.

Other characteristics can be improved such as:

• Less programmer effort is needed to convert data between formats.

• Less administrator effort is needed to operate a 24/7 system.

• Multiple versions of a system can operate at the same time on the same hardware. This supports testing of a new

version and access to an older version.

• A client program can communicate with a server program running on a different kind of computer under a

different operating system and written in a different software language.

• Work organized as a recoverable session can be scaled over multiple program instances on different computers.

• Survive expected disaster scenarios by placing computers within a system at geographically dispersed sites.

39 A Better Middleware

7 Analysis of a Better Middleware

The characteristics of the data format conversion layer are quite interesting. Roughly ten times as much local memory is

needed to hold a convertible data class instance versus a more traditional data class representation.

A programmer must spend a week or so to learn how to define a convertible data class. A programmer only needs a few

minutes to program the initialization of meta data which is in addition to the time it takes to define a more traditional data

class representation.

The ease of converting data formats leads to some significant advantages. An administrator prepares configuration in a

human readable text format. Configuration is converted, persisted and distributed in a serial format. Little programming effort

or execution time is needed to obtain configuration stored in serial and convert to an in-memory convertible class format.

Each message is held in a convertible data class instance. This allows a message to be converted to and from serial format

for transmission between programs. A message is easily converted to human readable text format for inclusion in a log file.

The characteristics of the message communication layer are what might be expected. Extra processor time and memory

are used to convert a message between a convertible data class instance and a serial format.

Messages are aggregated into a super message such that needed resources are reduced as work load increases. Extra re-

sources are used to replicate a message, transmit via two paths, and ignore a duplicate message.

The use of extra resources can be mitigated by spreading work load across extra computers.

Note that bulk data can be securely transmitted directly between a client and server upon a connection requested by a

server to a client.

The characteristics of the client to server communication layer are quite interesting. Extra resources are used to hold and

convert a message between formats.

The work sessions of a failed client or server program can be assigned and recovered by an identical instance of the same

client or server program.

A client or server program instance can support multiple sessions. This makes it more likely that aggregation of messages

into a super message will help to reduce overall system work load.

A client and service can access a server running on a different type of computer under a different operating system written

in a different software language. This means a type of server can be designed and implemented once and reused by any type

of client. This approach offers a reasonable bridge between different legacy environments such as Java and .Net C++.

 40

8 Embedded Environment Support

The Java implementation is designed and implemented for both an operating system and embedded environment. The

software is divided into 300+ classes with a file per class. Dependence on environment specific features are isolated into just

a few of the classes.

A class detects, reports and handles unusual situations as needed. A report captures interesting details into an error message

class that is passed to a trace class. The trace class implementation within an operating system environment translates the error

message class into text and appends the text to a trace file. If the error occurs within the context of a connection then the

connection is terminated. The caller is always informed whenever an error occurs so that proper handling of the situation can

be performed by the caller. An embedded environment needs to supply an appropriate trace class implementation. Note that

there are no print statements.

The work of many classes is based on receiving or sending data within a memory buffer. The allocation of memory is

common to most all environments.

There is tracing of events and messaging within key classes that can be enabled via configuration.

The design is suitable for porting to another language such as C++. The design can even be ported to assembly language

when there is an appropriate substitute for a class instance.

A special test command simulates the infrastructure running on many computers. A class instance is created per computer

that instantiates all the class instances needed to run the infrastructure on a computer. A few low-level classes simulate a

TCP/IP connection passing messages on a connection. Each simulated computer has a dedicated incoming buffer that is filled

with a message from a sending simulated computer. Most of the class instances work as if they are running on different

computers even though everything runs under the test command. This command is useful to test most functionality.

