
1 Complex System Infrastructure:

 Essential Solution Ideas

Copyright 2019 by Eugene Nelson

Introduction

A system of multiple computers can and should work together to survive the failure of one computer

or all computers at one location. A failure is due to an adverse event such as a successful Cyber-attack,

power failure, fire, flood, or any catastrophic event. Work being performed by a failed computer or all

computers failing at one location can and should be quickly recovered and continued after a failure.

A comprehensive solution includes techniques such as multiple processors at one location doing the

same work at the same time to survive a processor failure. A solution must also shift work to an

alternative location when an entire location is lost due to a catastrophic event.

A system infrastructure can help a system of computers and applications to work together as a team.

System infrastructure requirements in software terminology include:

• Minimize effort to create applications that distribute, isolate, and recover work.

• Provide reasonable cost and performance.

• Enable applications to converse peer to peer, client to server, or publisher to subscriber.

• Encrypt application conversations.

• Enable a client to server conversation to be recoverable.

• Help to ensure and prove software corruption cannot spread.

• Enable an administrator to control and audit data flowing between applications.

• Enable change during operation by supporting multiple simultaneous versions and ensuring

conversing parties are the same version.

An existing communication infrastructure likely does not and almost certainly cannot achieve all these

goals. An existing infrastructure is based on conventional wisdom. Conventional wisdom comes from

what is possible for one computer alone or two computers working together. A system and infrastructure

achieving these goals must use many more than two computers to survive the loss of a location.

Therefore, an infrastructure must be based on new innovations.

A communication infrastructure must provide features that fulfill application needs such as:

• Data is represented in a format as needed by a computer, software language, and person.

• Two or more applications can converse via messages containing data.

• Applications can converse as a client requesting a function of a remote server.

An infrastructure should address issues likely not found in any current infrastructure such as cyber

security between computers within a distributed system, recovery of in progress work upon a failure,

visibility of the internal workings of a distributed system, and change management without the need for

a changed application to work in both an old and new way.

Several interrelated innovations are needed to address these requirements. The first innovation is how

data is represented for conversion to a needed format. Data representation is a necessary feature of any

other functionality. The second innovation is how data travels between two or more applications on

different computers. A third innovation is how a client accesses functionality of a remote server such that

an alternate client or server can take over for a failed application instance to continue in progress work.

 2

Copyright 2019 by Eugene Nelson

Data Representation

No single data format satisfies all needs. A person communicates data as a language in a text format.

A programmer and software language typically represent data as a class. A computer needs to process

data as binary zeros and ones. Computers exchange data as serial (zeros and ones) or text.

The need to represent the same data in different formats creates a requirement to convert data between

formats. A good solution is to change a software language to accept meta data hints that direct how to

convert data between formats. A universal format conversion supplied by a software language eliminates

the need for programming a conversion for each unique type of data content. Unfortunately, the cost of

implementation and need for software language committee approvals is too great for this solution

approach to be viable for the immediate future.

An alternative approach is to define an infrastructure class per primitive data type to hold a data value

and conversion hints. An application class is then defined with underlying infrastructure classes to hold

a data value and conversion meta data. An application initializes meta data as part of a class instance. An

infrastructure universal conversion uses this meta data to convert any data content between formats one

data value at a time. This approach uses more programmer effort and local memory than a software

language approach but is available immediately. Most importantly it meets the goal of minimizing

application effort by eliminating the programing needed for a conversion between formats of each unique

type of data content.

Message Communication

An application uses an infrastructure to send a message to another application. An infrastructure sends

a message from one computer to another computer via network hardware and software. The flow of data

between computers should be controlled by an administrator so that a message is only originated from,

delivered to, and understood by an authorized computer.

A typical solution approach uses an application to application connection with a unique encryption

key per connection. This approach requires on the order of “(n – 1) squared” application to application

connections and keys where “n” is the number of applications in a system.

A hub network is a more efficient but less frequently used solution approach. A hub can enforce where

a message can originate from and where it goes. A unique key per application is used to encrypt a message

when in transit between an application and hub. This approach requires “n” application to hub

connections and keys where “n” is the number of applications in a system.

Combining a hub network together with a local hub within a computer, call it a local and central hub

network, is an even more efficient but less frequently used solution approach. No key or encryption is

needed when a message transits inside a computer between an application and local hub. A local hub

creates a network connection to a central hub network and multiplexes local application instance

messages onto the network connection. This approach requires “m” application to local hub connections

where “m” is the number of application instances on one computer. The approach also requires “n” local

hub to central hub connections and keys where “n” is the number of computers in a system.

An innovative solution approach sends a message via two paths. A local hub connects to two

independent central hub networks. This approach requires “m” application to local hub connections

where “m” is the number of application instances on one computer. This approach requires “2 * n” local

hub to central hub connections and “n” keys where “n” is the number of computers in a system.

3 Complex System Infrastructure:

 Essential Solution Ideas

Copyright 2019 by Eugene Nelson

 An application calls an application resident infrastructure to send or receive a message. The

application resident infrastructure connects to a local hub on the same computer. A local hub connects to

two hub networks and sends a message to both hubs. A receiving local hub sends the first arriving

message copy to an application resident infrastructure and discards any subsequent copy.

An application sends and receives a message as content within a data class. An application resident

infrastructure converts a message between an application class and transmitted serial. An administrator

can configure that a message is also converted to a text format and added to an application log file.

A local & two hub network is an ideal solution approach for a published message to be efficiently

distributed to subscribers. A unique identifier is assigned for each type of published event message. Each

publisher has only one active instance at a time so that a subscriber instance either receives each event

message published for a subscribed event type or is terminated if a delivery fails. A starting subscriber is

automatically given the last published message for each subscribed event type. An active and standby

subscriber receive published messages in the sequence of publication.

A local hub sends a published message to each central hub. A central hub forwards it to a computer

with subscribers as specified by an administrator. A destination local hub distributes it to local application

subscribers. Multiple events are multiplexed onto a connection used only for events to ensure efficient

and timely event distribution.

Some advantages of a redundant application & hub network are:

• Avoid an intermittently failed or slow network.

• Flow control messages to avoid exceeding network capacity and discarding a message.

Client to Server Communication

An application can act as a client to request a function from a remote server. A conventional client to

server solution approach directly connects a client and server.

An innovative solution approach is to insert a manager between a client and server. A client and server

make a connection to a manager via the message communication concept. A client uses a session to

communicate with a remote server. Recovery information is placed in a session and included with each

function request. A manager receives a request and recovery data, stores both, replicates both to a backup

manager, and forwards a request to a destination. If a client instance fails, then a manager assigns a

session for recovery by a backup client instance. The manager makes the backup client appear to be the

original to the server. The server is only aware of and affected by the time needed for failure detection

and recovery. A server similarly uses a session with recovery information that is passed to a manager to

recover a server session after a failure.

Work Distribution Layer

The innovative solution approaches of data representation, message communication, client to server

communication, and other features are packaged together as a work distribution layer. An application can

act as a peer, client, server, or any combination of all three.

There are many advantages to the work distribution layer such as:

• Minimize effort to write client and server software working together as one system.

• The conversion of a message between class format and serial by the infrastructure means errors

such as buffer overrun, illegal text insertion, and a mismatch of message content between

 4

Copyright 2019 by Eugene Nelson

sender and receiver are avoided or detected and rejected by the infrastructure. This helps

ensure and prove software corruption cannot spread to another system computer.

• The state of clients and servers are monitored so that a client connects to an active server.

• A starting instance can connect to an active instance of the same program to synchronize data.

• Configuration and software changes are updateable one computer at a time by supporting

multiple versions to execute at the same time. A change mechanism ensures that a client

instance and a server instance are at the same version.

• Client and server identity are established via use of an encryption key.

• A single system authentication server can establish user identity.

• An administrator controls what a user and client can request from a server.

• A session used for a client to server communication allows one application instance to handle

multiple users. User messages are multiplexed onto one connection. The infrastructure can

switch between user sessions as needed to handle an incoming message. Work for more users

can be performed given the same amount of computer and network resources.

• Maximize work reliability, security, scalability, and performance at a reasonable cost.

• Testing of applications is possible on one computer by combining local and central hub

functions into a special test communication infrastructure.

Service Provided by Server for Client Use

A server provides a client-side service to minimize the effort needed to create a client that uses a

server. A service offers an API of client callable methods. A method maps each method parameter to and

from server request and response messages held in infrastructure data conversion classes. Contents of a

request class are converted to serial and sent to a manager. A manager restricts a client to only

communicate with servers per administrator configuration. A manager informs a server what requests a

client can make. A server receives a request in serial that is converted back into a class format. A server

validates that a request is allowed before preforming work. A client response message is handled in a

similar fashion.

A test client can validate that a server detects and prevents any unauthorized client request.

Summary

Any system is less costly and more reliable and secure by becoming a distributed system with internal

error detection, in-progress work recovery upon a failure, and avoidance of network congestion or failure.

An application uses a server supplied service to request server work at minimal cost. A server supplied

service exchanges a message with a server via the work distribution layer. This software pattern guides

the development of better software with less effort.

An administrator easily controls where client and server applications reside, what requests a client can

make of a server, and whether a message simultaneously travels two network paths.

A communication infrastructure can combine these solution approaches with several others for use by

an application. Visit web site SoftEcoSDK.com or send an email to SoftEcoSDK@gmail.com for more

information. Research and development are needed to transform a proof of concept implementation of

mostly production quality mechanisms into a commercial product.

