

LPS3C12X Linear Power Supply/Charger

Overview:

Altronix LPS3C12X linear power supply/charger is specifically designed to provide the power needed by the most demanding security and access control applications. It converts a 115VAC 50/60Hz input to a 2.5A, 12VDC output.

Specifications:

Input:

Input 115VAC 50/60Hz, 0.5A.

Output:

- 12VDC output.
- 2.5A continuous supply current.
- Filtered and electronically regulated output.
- Thermal and short circuit protection with auto reset.

Battery Backup:

- Automatic switch over to stand-by battery when AC Fails.
- Built-in charger for sealed lead acid or gel type batteries.
- Maximum charge current 0.5A.
- Fused battery protection (circuit breakers available).
- Includes battery leads.

Visual Indicators:

AC input and DC output LED indicators.

Enclosure Dimensions (H x W x D):

15.5" x 12" x 4.5" (393.7mm x 304.8mm x 114.3mm)

Power Supply Voltage Output Specifications:

Output VDC	Maximum Load DC
12VDC	2.5A

XFMR White Black Lead Lead Input 115VAC 50/60Hz 0.5A

Fig. 1

Installation Instructions:

The LPS3C12X should be installed in accordance with The National Electrical Code and all applicable Local Regulations.

- 1. Mount LPS3C12X in the desired location.
- Connect AC power to the black and white flying leads of the transformer (Fig. 1). Use 18 AWG or larger for all power connections (Battery, DC output).
- Measure output voltage before connecting devices. This helps avoiding potential damage.

Keep power-limited wiring separate from non power-limited wiring (115VAC / 60Hz Input, Battery Wires). Minimum 0.25" spacing must be provided.

CAUTION: Do not touch exposed metal parts. Shut branch circuit power before installing or servicing equipment.

There are no user serviceable parts inside. Refer installation and servicing to qualified service personnel.

- Connect devices to be powered to the terminals marked [- DC +] (Fig. 1).
- Connect battery to the terminals marked [- BAT +] (Fig. 1) on the unit (battery leads included).

Note: When batteries are not used, a loss of AC will result in loss of output voltage.

Maintenance:

Unit should be tested at least once a year for the proper operation as follows:

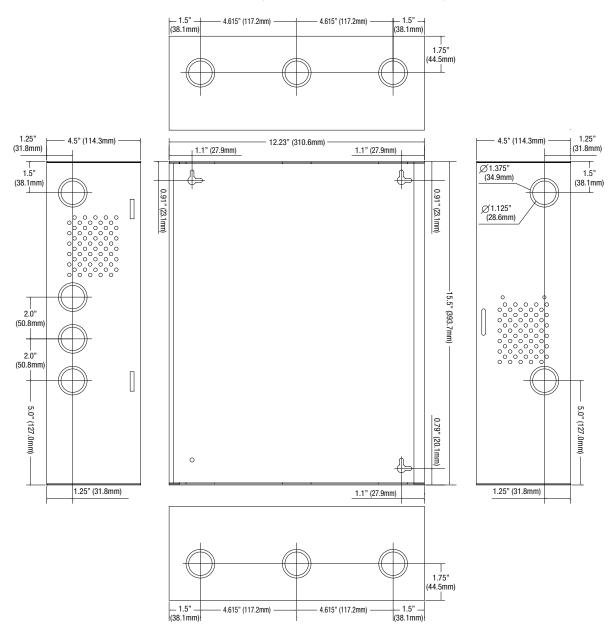
Output Voltage Test: Under normal load conditions the DC output voltage should be checked for the proper voltage level (Power Supply Voltage Output Specifications Chart).

Battery Test: Under normal load conditions check that the battery is fully charged, check specified voltage both at the battery terminal and at the board terminals marked [- BAT +] to ensure that there is no break in the battery connection wires.

Note: Maximum charging current under discharge is 500mA.

Note: Expected battery life is 5 years; however, it is recommended changing batteries in 4 years or less if needed.

LED Diagnostics:


Red (DC)	Green (AC)	Power Supply Status
ON	ON	Normal operating condition.
ON	OFF	Loss of AC. Stand-by battery supplying power.
OFF	ON	No DC output.
OFF	OFF	Loss of AC. Discharged or missing stand-by battery. No DC output.

Terminal Identification:

Terminal Legend	Function/Description
AC/AC	Low voltage AC input.
- BAT +	Stand-by battery connections.
- DC +	12VDC @ 2.5A continuous output.

Enclosure Dimensions (H x W x D approximate):

15.5" x 12" x 4.5" (393.7mm x 304.8mm x 114.3mm)

