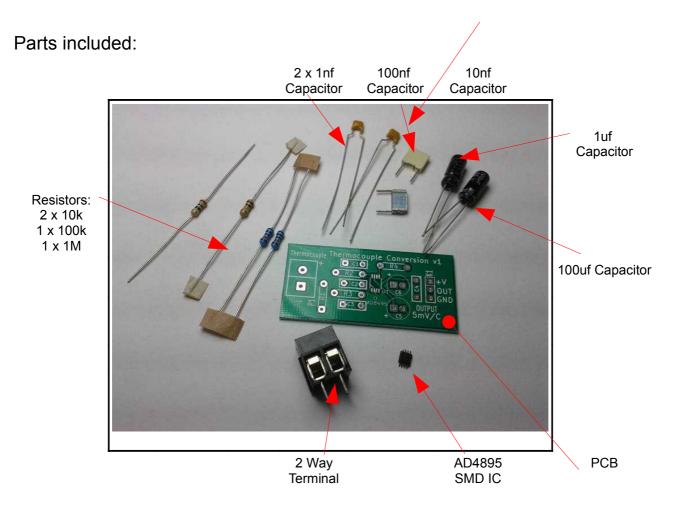
AD8495 Thermocouple Amplifier

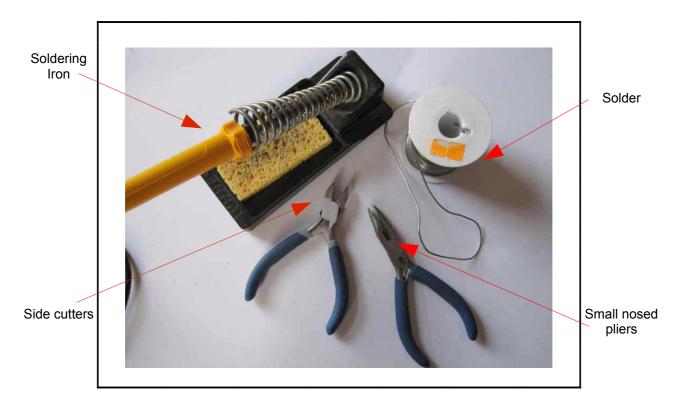
Date: 08/01/14 Ve	ersion: 1.0	By:	Matt Little
-------------------	-------------	-----	-------------



This **Thermocouple Amplifier Kit** is based upon the AD8495 precision K-type thermocouple amplifier. This can be used to measure very high temperatures, with a range up to 1000C (depending upon the rating of the thermocouple). The output is a voltage equal to 5mV per degree with a linear scale. This makes it very easy to measure with an analog input to a microcontroller (such as the Arduino).

Note: No thermocouple probe is included in this kit – please purchase separately for your application.

Data sheet for the AD8495 is available here:


http://www.analog.com/static/imported-files/data_sheets/AD8494_8495_8496_8497.pdf

Parts list:

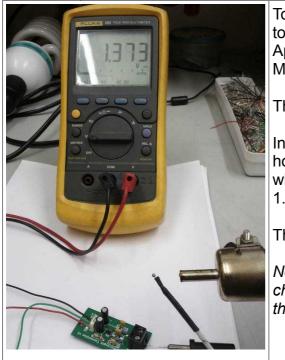
Ref	Value and description
C1	1nf capacitor
C2	10nf capacitor (might vary from photo)
C3	1nf capacitor
C4	100nf capacitor
C5	100uf capacitor
C6	1uf capacitor
K1	DATA – Solder pads
P1	Thermocouple – Screw terminals for the therm
R1	1M resistor
R2	10k resistor
R3	10k resistor
R4	100k resistor
U1	AD8495 SMD K-type Termocouple Amplifier

Tools required:

Instructions:

Step: 1 Solder the SMD IC AD8495 Lets start with probably the most difficult soldering step. Its best to do this first, or the other components get in the way. Holding the IC with a pair of tweezers Thermocouple Thermocouple Conversion v1 align over the solder pads. • R4 • C10 Ensure the correct orientation – the dot on ● R2 ● 1114 6 the IC will be at the end with the triangle on the PCB. Solder one pin on the corner of the IC. Ensure that the IC lines up with all the 5m other pads. If you need to adjust it then heat the solder on the soldered pin and correct the IC. Once it is aligned then you can solder the whole row of pins on the other side to the already soldered pin. If you heat up the top pin and apply solder then drag down to the bottom pin, applying solder if required. This usually will solder all the pins. You may need to remove any excess solder using some solder wick. Leave this to cool for a couple of seconds. Then use the same technique for the unsoldered side.

Step: 2 Solder the resistors


	Identify all the resistors. You will have:QuantityValueValuePart Reference		
Thermocouple Thermocouple Conversion v1	1	1M	R1
Thermocouple Conversion VI	2	10k	R2,R3
	1	100k	R4
- E GRD	instructions Solder into	or a multi the releva	

Step: 3	Solder the Capacitors			
			e capacitors.	
Quantity	Value	Reference	Photo	
2	1nf	C1, C3		
1	10nf	C2		
1	100nf	C4	->>	
1	100uf	C5		
1	1uf	C6		
direction.		can be instation on cap	alled in either	
C5,C6. The negative signifies r	he white side. The negative. positive.	line on the e round pac The longe	side signifies d on the PCB	

Step: 4	Solder the screw terminal block		
	upte Ther ouple Conversion v1 +V OUT ADB495 +V OUT CON HPUT HV/C	This will be used to connect the thermocouple wires.	

Step: 5	Build is finished!	
Have a nice cup of tea.		

Step: 6 Test the device

To test the device, connect a k-type thermocouple to the screw terminals.

Apply 5V power supply to the V+ pin and GND. Measure the output with a multimeter.

The output should be +5mV per degree C.

In this photo I have heated the thermocouple with a hot air gun and am getting a reading of 1.373V, which equates to: 1.373V / 0.005 = 274C

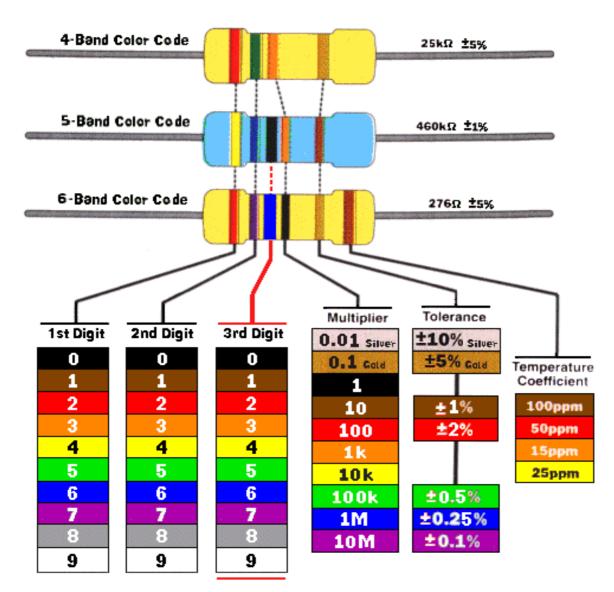
The error is +/-2C for the range 25C-400C.

Note: This version cannot measure below zero (but check the data sheet for an application note to do this).

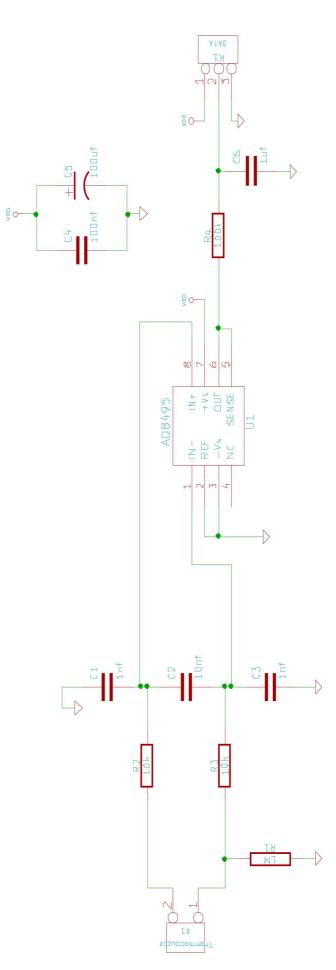
Contact details:

This kit has been designed and produced by:

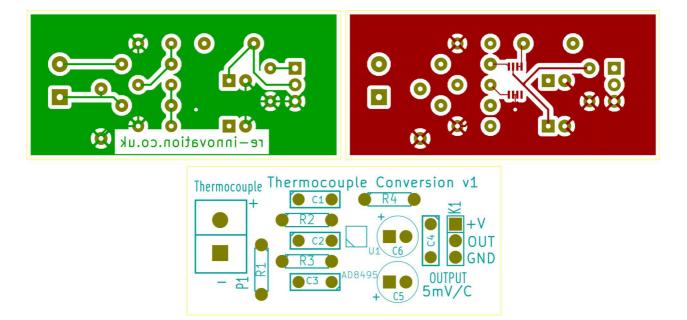
Renewable Energy Innovation. info@re-innovation.co.uk www.re-innovation.co.uk Hopkinson Gallery 21 Station Street Nottingham NG7 6PD


We would like you to be happy with this kit. If you are not happy for any reason then please contact us and we can help to sort it out. Please email <u>info@re-innovation.co.uk</u> with any questions or comments.

If any parts are missing from your kit then please email <u>info@re-innovation.co.uk</u> with details, including where the kit was purchased.


More technical information can be found via <u>www.re-innovation.co.uk</u>.

Useful Information:


Resistor colour codes:

Circuit schematic:

PCB overview:

