

Cheese Board: Cheddar Instructions

Date:	15/01/18	Version:	1.0	By:	Matt Little
\geq	\mathbf{x}	$\sim \lambda$	\bigotimes	- (1	This is an ESP8266 breakout board with small OLED display, a rotary encoder for user input and five Red-Green-Blue WS2812 LEDs.
	°			- () 	This is designed as a low cost platform to quickly get started with projects with the ESP8266. We wanted to design something that got you up and running with your project idea quickly and easily.
$\left \right\rangle$	×			-	The main processor is based upon the ESP8266 system-on-chip from Espressif Systems.
\langle		-	X	-	This can be programmed via the Arduino IDE.
					This is a reasonably simple kit which requires some soldering.
					This kit requires a micro-USB lead for programming and powering the unit. Not suitable for under 12 years old.

Parts included:

Parts list:

Item	Ref	Quantity
Capacitors. 100nf	C1-5	5
Diode. 1N5819	D1, D2	2
LED. WS2812 (pre soldered)	D3-7	5
LED. Red. NOT included	B8	Not Included
Display. OLED. 0.96" With 4-way header	DISP1	1
Encoder	ENC1	1
Fuse. 500MA	F1	1
USB micro Socket (pre-soldered)	P1	1
2 way screw terminal. 5V	P2	1
HC-11 Serial. Optional	Р3	
Software Serial. Optional	P4	
Node MCU header. 15 way.	P5, P6	2
PCB – with SMD parts soldered		1
330ohm Resistor	R1	1
Switch	SW1	1
NodeMCU with 2 x 15 way headers	U1	2
74LVC1G17 Level shifter (pre-soldered)	U2	1

Enclosure Parts:

Hardware

Item	Ref	Quantity
M2 Machine screws. Plastic. 6mm long		2
M2 Nuts. Plastic		2
M2 Spacers. Plastic. 12mm long		2
M3 Machine screws. 6mm long		4
M3 Machine screws 12mm long		4
M3 Threaded Hex spacers. 8mm long		4
M3 Threaded Hex spacers. 15mm long		4
Front. Laser cut 3mm Frosted Acrylic		1
Spacer. Laser cut 3mm Black. Acrylic		1
Back. Laser cut 3mm Frosted Acrylic		1

Tools required:

Soldering Iron

Solder Side cutters

Long-nosed Pliers

Posi-drive Screwdriver

Additional Items Required

- 1 x Micro-USB lead (for powering and for programming)
- 1 x 5V USB power supply (might be required for powering stand-alone unit)
- Computer with Arduino IDE and additional libraries installed. (see software section for more details)

Instructions:

 Step: 1
 Solder diodes

 There are two diodes to solder in to the two components marked D1 and D2.
 Image: Correct polarity! The white band on the diode should align with the black band on the PCB silkscreen.

Step: 3 Solder switch

Step: 5 Solder header pins

Solder the 4 way header block into the holes marked DISP1.

The 15 way headers are soldered into the NodeMCU area marked U1.

Do not sodler anything into the holes marked P5 and P6 – these are connections for any external circuits you might want to add.

The encoder is soldered into the area marked ENC1.

Solder the two larger pads first to hold the encoder in place. Ensure the encoder is straight when soldered, as this goes through the front of the case, with the plastic knob added at the end.

Step: 7 Solder screw terminals (if needed)

This step is only required if you would like to add a wired power supply to the unit. Skip if not using this.

If an external 5V power supply will be used (rather than the micro USB connector), then you can solder a 2 way screw terminal connector to the pads marked 5V_EXT. Ensure that +5V has the positive supply and GND is connected to 0V.

The OLED unit pushes into the 4 way header pins soldered in step 6.

There are two 2.5mm spacers. The long plastic spacer is placed with the threaded male section through the holes and the nuts added to hold them in place. Then put in the OLED

module and fit the two 2.5mm machine screws from the top of the OLED module, as shown in the picture.

Step: 10	PCB is finished!	
Test with r cable can (used for p plugged in to power t through th	nicro-USB cable. The USB power either be plugged into the NodeMCU programming the unit) or it can be to the USB_Micro socket (only used he unit – there is no communication is socket).	Have a nice cup of tea.
Switch on • LEI • OLI • Rot This shoul and the No	and check: Ds light ED screen shows data ary Encoder changes data on OLED d prove that the functions of the PCB odeMCU are working OK.	

Enclosure

Step: 12 Add spacer

There are four spacers to add, each one is comprised on a short spacer with male and female ends and a female-female longer spacer.

The shorted spacer should go through from the bottom of the PCB, with the longer spacer screwed on top, as shown in the picture.

Step: 13 Add enclosure and knob

The shorted M3 screws are used to hold the back enclosure plate in place. The back enclosure plate has a hook hole and also the company logo on it.

The front should have the black cover placed on first, then the front enclosuire plate added. The 15mm M3 screws then hold this in palce on the front of the unit into the spacers added in step 12.

The know for the rotary encoder can also be pushed on. This is sometimes a little difficult and requires some force.

Step: 14 | Finished build!

Now the unit can be plugged in and code uploaded.

The unit can be programmed to show data from the internet, or to upload data from the internet. It can also be used as a standalone unit.

The limit to this unit is only your imagination and coding skills!

Software

Step: 15 Upload software

This is where the fun begins!

This project has software stored on GITHUB software repository here:

https://github.com/curiouselectric/CheeseBoardCheddar

Please follow the readme in this file for the most up to date instructions for uploading code using the Arduino IDE (or any other IDE of your choice).

This GITHUB contains all the design files as well as the software code. Move to the software folder for the software examples and readme.

The software has example code which can be used to build your application. The most important part is setting up the wifi code and internet connection, which is described in the readme.

Contact details:

This kit has been designed and produced by:

The Curious Electric Company

hello@curiouselectric.co.uk

www.curiouselectric.co.uk

Hopkinson Gallery, 21 Station Street, Nottingham, UK, NG2 3AJ

We would like you to be happy with this kit. If you are not happy for any reason then please contact us and we will help to sort it out.

Please email <u>hello@curiouselectric.co.uk</u> with any questions or comments. Please tweet us at @curiouselectric

If any parts are missing from your kit then please email <u>hello@curiouselectric.co.uk</u> with details, including when and where the kit was purchased.

More technical information can be found via www.curiouselectric.co.uk

Circuit Schematic:

PCB Design:

