Relief Suppository Batch 17 Sample Matrix: **CANNABIS & HEMP** BEYOND COMPLIANCE CBD/HEMP Derivative Products 721 Cortaro Dr. Sun City Center, FL 33573 (External Use) www.acslabcannabis.com License No. 800025015 **Certificate of Analysis** FL License # CMTL-0003 CLIA No. 10D1094068 R&D Batch # RSP001_017 Batch Date: 2021-03-10 Extracted From: hemp Production Facility: Hudson Hemp Production Date: 2021-03-10 Test Reg State: Oregon FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301 Order # FOR210310-030117 Order Date: 2021-03-10 Sample # AABB862 Sampling Date: 2021-03-16 Lab Batch Date: 2021-03-16 Completion Date: 2021-03-19 Initial Gross Weight: 117.887 g Pathogenic Potency Listeria Monocytogenes Tested Passed 0

Passed

	Potency -	11			Т	ested	
*	Specimen Weigh	t: 90.520 mg			(HPLC	C/LCMS)	Total TH None Dete
Analyte	Dilution (1:n)	LOD (%)	LOQ (%)	Result (mg/g)	(%)		Total CI
CBD	1000.000	0.000054	0.001	92.980	9.298		0.055
CBG	1000.000	0.000248	0.001	0.550	0.055		Oth an Oanna
CBDV	1000.000	0.000065	0.001	0.530	0.053		Other Canna
CBN	1000.000	0.000014	0.001	0.310	0.031		0.0739
Delta-8 TH	C 1000.000	0.000026	0.001	0.200	0.020		
CBC	1000.000	0.000018	0.001		<loq< td=""><td></td><td></td></loq<>		
THCV	1000.000	0.000007	0.001		<loq< th=""><th></th><th></th></loq<>		
Delta-9 TH	C 1000.000	0.000013	0.001		<loq< th=""><th></th><th></th></loq<>		
CBGA	1000.000	0.00008	0.001		<loq< th=""><th></th><th></th></loq<>		
CBDA	1000.000	0.00001	0.001		<loq< td=""><td></td><td></td></loq<>		

<LOQ

Potency Summary								
Total THC	Total CBD							
None Detected	9.298%							
Total CBG	Total CBN							
0.055%	0.031%							
Other Cannabinoids	Total Cannabinoids							
0.073%	9.457%							

drit	Gun
Xueli Gao	Lab Toxicologist

1000.000

0.000032

0.001

Ph.D., DABT

>

THCA-A

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution = CBC + CBDV + THCV + THCV-A, *Otal Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, Up2/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Sun Cit www.acsl License FL Lice	ATORY CANNABIS & BEYOND CON rtaro Dr. y Center, FL 33573 labcannabis.com No. 800025015 nse # CMTL-0003 o. 10D1094068		Certifica	ate of Analys		uppository Batch Sample Ma CBD/HE Derivative Produ (External U	trix: MP ucts	
				R&D				
2440 Ju	WELLNESS nction Place, #102 CO 80301	Batch # RSP00 Batch Date: 20 Extracted Fron	21-03-10	Test Reg State: Orego	n	Production Facility Production Date: 2		emp
Order Date	OR210310-030117 e: 2021-03-10 AABB862	Sampling Date Lab Batch Date Completion Date	: 2021-03-16 : 2021-03-16 ate: 2021-03-19	Initial Gross Weight:	117.887 g			
Ð	Listeria Monocyte Specimen Weight: 982.900 mg	•						Passed (qPCR)
Dilution Fac								
Analyte	Action Le (cfu		Result					
Listeria Mo	nocytogenes	1	Absence in 1 g					
53 53	Pathogenic SAE (qPCR)						Passed
6.5	Specimen Weight: 236.700 mg							(qPCR)
Dilution Fac	ctor: 1.000							
Analyte	Action Le (cfu			Analyte	Action Level (cfu/g)	Result (cfu/g)		
Aspergillus Niger, Terre	(Flavus, Fumigatus, eus)	1 Absence in 1g		E.Coli Salmonella	1	Absence in 1g Absence in 1g		

Page 2 of 2

Sun City (ro Dr. Center, FL 33573 cannabis.com								tive Prod External		
L Licens	o.800025015 e # CMTL-0003 10D1094068	Certificate of Analysis Compliance Test									
	ELLNESS tion Place, #102 0 80301	Ba	atch # RSP001_017 atch Date: 2021-03-1 ttracted From: hemp			Test Reg State	e: Oregon	Produc Produc	ction Facilit ction Date:	ty: Hudson 2021-03-1	Hemp 6
	210322-020004 2021-03-22 ABC932	La	ampling Date: 2021- b Batch Date: 2021- ompletion Date: 202	03-24		Initial Gross \	Weight: 117.8	87 g			
H	Heavy Metals Passed	☆ *	Mycotoxins Passed	/1	. "	Pesticides Passed	Д	Residual Solvents Passed	•••	pH Leve Tested	
otency	Panel Not Inclu	ıded	-								
·····,											
Xo	1. (7.4		Aini								
žn	1: Com		Minici	tor/Princip							
کرری eli Gao D, DABT	Л: Ссса Lab Toxicol	• · ·	Minicia Sun Lab Direct IH.Sc., M.Sc., B.Sc., MT (J			entist					
		D. D. CE To (rr Co	ixia Sun Lab Direct IH.Sc., M.Sc., B.Sc., MT (/ efinitions and Abbreviatio BG, *CBN Total = (CBNA * stal + THC Total + CBC+C ong/mi) = Milligrams per M olomy Forming Unit pee G	AAB) ns used in t * 0.877) + (CBDV + THC Milliliter, LO ram (cfu/g)	this rep CBN, *O CV + TH Q = Lim = Color	ort: *Total CBD = CBD + (C ther Cannabinoids Total = CV-A, *Analyte Details abo it of Quantitation, LOD = I	CBC + CBDV + TH ve show the Dry V Limit of Detection , LOD = Limit of	Total THC = THCA-A * 0.877 - ICV + THCV-A, *Total Detected Weight Concentrations unless so Julitation = Dilutation Factor (pp Detection, (µg/g) = Microgram	Cannabinoid pecified as 1 b) = Parts pe	s = CBD Total 2% moisture c r Billion, (%) =	+ CBG Total + C oncentration. Percent, (cfu/g

LABORATORY CANNABIS & HEMP BEYOND COMPLIANCE		Relief Suppository Batch 17 Sample Matrix: CBD/HEMP
721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com		Derivative Products (External Use)
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certificate of Analysis	
	Compliance Test	

Production Facility: Hudson Hemp Production Date: 2021-03-16 Batch # RSP001_017 Test Reg State: Oregon **FORIA WELLNESS** Batch Date: 2021-03-16 Extracted From: hemp 2440 Junction Place, #102 Boulder, CO 80301 Order # FOR210322-020004 Order Date: 2021-03-22 Sample # AABC932 Sampling Date: 2021-03-24 Lab Batch Date: 2021-03-24 Completion Date: 2021-04-01 Initial Gross Weight: 117.887 g Η Passed

Heavy Metals

00

Specimen Weight: 252.760 mg

Dilution Factor: 2.000								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As)	0.1	1.5	<loq< td=""><td>Cadmium (Cd)</td><td>0.1</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	0.1	0.5	<loq< td=""><td></td></loq<>	
Lead (Pb)	0.1	0.5	<loq< td=""><td>Mercury (Hg)</td><td>0.1</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	0.1	3	<loq< td=""><td></td></loq<>	

** **Mycotoxins**

Specimen Weight: 176.000 mg

Dilution Factor: 8.523							
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""></loq<>
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""></loq<>
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				

drit Gr. 1 Lab Toxicologist Xueli Gao

Ph.D., DABT

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/mg) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

(ICP-MS)

Passed (LCMS)

721 Con Sun City www.acsi License FL Licen	ATORY CANNABI BEYOND rtaro Dr. y Center, FL 33573 abcannabis.com No. 800025015 nse # CMTL-0003 b. 10D1094068			Certifi	cate of Analysis		Ippository Bato Sample M CBD/H Derivative Proc (External	atrix: IEMP ducts		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301 Order # FOR210322-020004 Order Date: 2021-03-22 Sample # AABC932			Batch # RSP001_ Batch Date: 2021 Extracted From: h	-03-16	Test Reg State: Oregon		n Hemp 6			
			Sampling Date: 2021-03-24 Lab Batch Date: 2021-03-24 Completion Date: 2021-04-01		Initial Gross Weight: 117.887	9				
Dilution Fac	Pesticides Specimen Weight: 176.0	000 mg							Passed (LCMS/GCMS)	
Analyte	101. 6.525	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)		
Abamectin Acequinocy Aldicarb Bifenazate Carbaryl Chlorpyrifo:		0.028 0.048 0.03 0.03 0.01 0.03	0.3 2 0.1 3 0.5 0.1	<loq <loq <loq <loq <loq <loq <loq< td=""><td>Acephate Acetamiprid Azoxystrobin Bifenthrin Chlorfenapyr Clofentezine</td><td>0.03 0.03 0.01 0.03 0.048 0.03</td><td>3 3 0.5 0.1 0.5</td><td><lqq <lqq <lqq <lqq <lqq <lqq< td=""><td></td></lqq<></lqq </lqq </lqq </lqq </lqq </td></loq<></loq </loq </loq </loq </loq </loq 	Acephate Acetamiprid Azoxystrobin Bifenthrin Chlorfenapyr Clofentezine	0.03 0.03 0.01 0.03 0.048 0.03	3 3 0.5 0.1 0.5	<lqq <lqq <lqq <lqq <lqq <lqq< td=""><td></td></lqq<></lqq </lqq </lqq </lqq </lqq 		
Coumaphos Cypermethr Diazinon		0.03 0.03 0.03	0.1 1 0.2	<l0q <l0q <l0q< td=""><td>Cyfluthrin Daminozide Dichlorvos</td><td>0.03 0.03 0.03</td><td>1 0.1 0.1</td><td><loq <loq <loq< td=""><td></td></loq<></loq </loq </td></l0q<></l0q </l0q 	Cyfluthrin Daminozide Dichlorvos	0.03 0.03 0.03	1 0.1 0.1	<loq <loq <loq< td=""><td></td></loq<></loq </loq 		

Dimethomorph

Fenpyroximate

Etofenprox

Fenhexamid

Flonicamid

Hexythiazox

Imidacloprid

Malathion

Methiocarb

Mevinphos

Paclobutrazol

Phosmet

Prallethrin

Propoxur

Pyridaben

Spiromesifen

Spiroxamine

Thiacloprid

Trifloxystrobin

Pentachloronitrobenzene

Naled

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

3

3

2 2

2

3

2

0.1

0.1

0.5

0.1

0.2

0.2

0.4

0.1

3

3

0.1

0.1

3

0.1

<LOQ

<LOQ

<L00

<L00

<LOQ

<LOQ

<LOQ

<L00

<L00

<L0Q

<LOQ

<LOQ

<LOQ

<L00

<L00

<LOQ

<LOQ

<LOQ

<LOQ

<L0Q

<L00

Lab Toxicologist

Gun

Dimethoate

Etoxazole

Fenoxycarb

. Fludioxonil

Kresoxim Methyl

Parathion-methyl

Piperonylbutoxide

Propiconazole

Fipronil

Imazalil

Metalaxyl

Methomyl

Oxamyl

Myclo butanil

Permethrin

Pyrethrins

Spinetoram

Spirotetramat

Tebuconazole

Thiamethoxam

drit

Xueli Gao

Ph.D., DABT

Ethoprophos

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.01

0.03

0.03

0.03

0.048

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.03

0.1

0.1

1.5

0.1

0.1

0.1

3

0.1

3

0.5

0.1

1

3

1

1

3

3

1

1

3

<LOQ

<LOQ

<LOQ

<L00

<LOQ

<LOQ

<LOQ

<L0Q

<L00

<L0Q

<LOQ

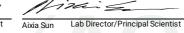
<LOQ

<LOQ

<LOQ

<L00

<LOQ


<LOQ

<LOQ

<LOQ

<L0Q

<L00

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Oliution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, ($\mu g/g$) = Microgram per Gram (ppm) = Parts per Million, (ppm) = ($\mu g/g$), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

Speci Dilution Factor: 1.00 Analyte 1,1-Dichloroethene Acetone Benzene Chloroform Ethyl Acetate Ethyle Oxide Hexane Yentane Toluene Trichloroethylene	CMTL-0003 01094068 LNESS n Place, #102 0301 322-020004 1-03-22 932 sidual Solvents - simen Weight: 7.700 mg 00 LOQ (ppm) 0.16 2.08 0.02 0.04 1.11 0.19 0.02 0.04 1.11 0.19 0.02 0.02 0.04 1.11 0.19 0.02 0.02 0.02 0.04 0.02 0.02 0.02 0.02	Batch # RSP001_ Batch Date: 2021- Extracted From: h Sampling Date: 2 Lab Batch Date: 2 Completion Date:	Co 017 .03-16 emp 021-03-24 021-03-24	Analyte	Pro	oduction Facilit		
A440 Junction Boulder, C0 80 ander FOR2103 ample # AABC9 Analyte 1,1-Dichloroethene Acetone Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Trichloroethylene Trichloroethylene Analyte	n Place, #102 0301 322-020004 1-03-22 932 sidual Solvents - timen Weight: 7.700 mg 00 LOQ (ppm) 0.16 2.08 0.02 0.04 1.11 0.1 0.69 2.08	Batch Date: 2021 Extracted From: h Sampling Date: 2 Lab Batch Date: 2 Completion Date: FL (CBD) Action Level (ppm) 8 5000 2 60	03-16 emp 021-03-24 021-03-24 2021-04-01 Result (ppm) <loq< th=""><th>Initial Gross Weight: 117.88</th><th>Pro</th><th></th><th></th><th></th></loq<>	Initial Gross Weight: 117.88	Pro			
Analyte	1-03-22 932 sidual Solvents - simen Weight: 7.700 mg 00 LOQ (ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08	Action Level (ppm) 8 5000 2 60	221-03-24 2021-04-01 Result (ppm) <loq< th=""><th></th><th>7 g</th><th></th><th></th><th>Passer</th></loq<>		7 g			Passer
Speci Dilution Factor: 1.00 Analyte 1,1-Dichloroethene Acetone Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene Diluene Trichloroethylene Analyte	timen Weight: 7.700 mg 00	Action Level (ppm) 8 5000 2 60	(ppm) <loq< th=""><th>Analyte</th><th></th><th></th><th></th><th>Passed</th></loq<>	Analyte				Passed
Analyte 1,1-Dichloroethene Acetone Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Trichloroethylene UUUU Ethylene Analyte	LOQ (ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08	(ppm) 8 5000 2 60	(ppm) <loq< th=""><th>Analyte</th><th></th><th></th><th></th><th>(GCMS)</th></loq<>	Analyte				(GCMS)
1,1-Dichloroethene Acetone Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene UUU Analyte	(ppm) 0.16 2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08	(ppm) 8 5000 2 60	(ppm) <loq< td=""><td>Analyte</td><td>LOQ</td><td>Action Level</td><td>Result</td><td></td></loq<>	Analyte	LOQ	Action Level	Result	
Acetone Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene UUU Speci Analyte	2.08 0.02 0.04 1.11 0.1 1.17 0.69 2.08	5000 2 60			(ppm)	(ppm)	(ppm)	
Benzene Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene UUU Speci Analyte	0.02 0.04 1.11 0.1 1.17 0.69 2.08	2 60	<loq< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><loq< td=""><td></td></loq<></td></loq<>	1,2-Dichloroethane	0.04	5	<loq< td=""><td></td></loq<>	
Chloroform Ethyl Acetate Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene UUU Speci Analyte	0.04 1.11 0.1 1.17 0.69 2.08	60	<loq< td=""><td>Acetonitrile Butanes</td><td>1.17 2.5</td><td>410 2000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<>	Acetonitrile Butanes	1.17 2.5	410 2000	<loq <loq< td=""><td></td></loq<></loq 	
Ethylene Oxide Hexane Methanol Pentane Toluene Trichloroethylene D D D D D Speci Analyte	0.1 1.17 0.69 2.08	5000	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><loq< td=""><td></td></loq<></td></loq<>	Ethanol	2.78	5000	<loq< td=""><td></td></loq<>	
Hexane Methanol Pentane Toluene Trichloroethylene Analyte	1.17 0.69 2.08		<l0q< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Ethyl Ether	1.39	5000	<l0q< td=""><td></td></l0q<>	
Pentane Toluene Trichloroethylene Analyte	2.08	5 290	<loq <loq< td=""><td>Heptane Isopropyl alcohol</td><td>1.39 1.39</td><td>5000 500</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Heptane Isopropyl alcohol	1.39 1.39	5000 500	<loq <loq< td=""><td></td></loq<></loq 	
Toluene Trichloroethylene Trichloroethylene PH Speci Analyte		3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><loq< td=""><td></td></loq<></td></loq<>	Methylene chloride	2.43	600	<loq< td=""><td></td></loq<>	
Trichloroethylene Trichloroethylene Trichloroethylene PH Speci Analyte	2.92	5000 890	<loq <loq< td=""><td>Propane Total Xylenes</td><td>5.83 2.92</td><td>2100 2170</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Propane Total Xylenes	5.83 2.92	2100 2170	<loq <loq< td=""><td></td></loq<></loq 	
Speci Analyte	0.49	80	<l0q< td=""><td></td><td>2.92</td><td>2170</td><td>LUQ</td><td></td></l0q<>		2.92	2170	LUQ	
Speci Analyte	Level							Tested
Analyte								(pH Meter)
-	imen Weight: N/A Dilution Fac Result	tor: 1.000						
pH Level	(pH)							
	4.0							
dril.	Gun	Nin						
•	Lab Toxicologist	//	Director/Principal Scie	ntict				
ueli Gao h.D., DABT	Lab Toxicologist	Aixia Sun Lab L D.H.Sc., M.Sc., B.Sc.,		inist				
····· , -····						077 - D-b- 0 TU0	*000 T-4-1 (0	
17025 EXCENTED LARGENCE		CBG, *CBN Total = (Cl Total + THC Total + Cl (mg/ml) = Milligrams Colony Forming Unit p	BNA * 0.877) + CBN, *01 BC + CBDV + THCV + THC per Milliliter, LOQ = Limi per Gram (cfu/g) = Colon	rrt: *Total CBD = CBD + (CBD-A* 0.877), *To ther Cannabinoids Total = CBC + CBDV + THC V-A, *Analyte Details above show the Dry We t of Quantitation, LOD = Limit of Detection, L y Forming Unit per Gram, , LOD = Limit of De g/Kg) = Milligram per Kilogram	V + THCV-A, *Total Def ight Concentrations un vilution = Dilution Facto	ected Cannabinoid less specified as 1 or (ppb) = Parts pe	ls = CBD Total + 0 2% moisture con er Billion, (%) = P	CBG Total + CBN ncentration. ercent, (cfu/g) =
us annie press	Testing			ut written approval, from ACS Laboratory	The results of this	report relate only	to the material	l or product
		analyzed. Test resu	Its are confidential un	less explicitly waived otherwise. Accredi he International Organization for Standar	ted by a third-party a			

Page 4 of 4