	ABIS & H ND COMI							D	Salve Batch 8R2 Sample Matrix: CBD/HEMP erivative Products (External Use)	
License No. 80002501 FL License # CMTL-000 CLIA No. 10D1094068			Ce	rtif	icate of		ysis			
FORIA WELLNESS 2440 Junction Place, #1 Boulder, CO 80301	02	Batch Date	SV001_008R2 2021-04-22 From: hemp		Tes	t Reg State: O	regon		oduction Facility: Hud oduction Date: 2021-(
Order # FOR210422-030004 Order Date: 2021-04-22 Sample # AABG232	ļ	Lab Batch	Date: 2021-05 Date: 2021-05 on Date: 2021	5-04		al Gross Wei u me: 60 ml	ght: 136.100 g		umber of Units: 1 et Weight per Unit: 591	47.000 mg
		*	Potency Tested		Residual Solvents Passed		Microbiology (qPCR) Passed	,		
Product Image Potency -	11			+	Tested			🔹 Pote	ncy Summary	
Specimen Weight:				(HPLC/LCMS)	0.031%	Total THC	18.584mg	Total C 1.123%	BD 664.221mg
Pieces For Panel: 1							Total CBG None Detecte		Total C None Det	BN
Dilution Analyte (1:n)	LOD (%)	LOQ (%)	Result (mg/g)	(%)		Ot	her Cannabin None Detecte		Total Canna 1.154%	binoids 682.805mg
CBD 10.000	0.000054	0.001	11.230	1.123						

(1:n)	(%)	(%)	(mg/g)	(%)
10.000	0.000054	0.001	11.230	1.123
10.000	0.000013	0.001	0.314	0.031 丨
10.000	0.000018	0.001		<loq< td=""></loq<>
10.000	0.000007	0.001		<loq< td=""></loq<>
10.000	0.000026	0.001		<loq< td=""></loq<>
10.000	0.000014	0.001		<loq< td=""></loq<>
10.000	0.00008	0.001		<loq< td=""></loq<>
10.000	0.000248	0.001		<loq< td=""></loq<>
10.000	0.000065	0.001		<loq< td=""></loq<>
10.000	0.00001	0.001		<loq< td=""></loq<>
10.000	0.000032	0.001		<loq< td=""></loq<>
	10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000 10.000	10.000 0.000054 10.000 0.000013 10.000 0.000013 10.000 0.000007 10.000 0.000026 10.000 0.000014 10.000 0.000084 10.000 0.000084 10.000 0.000084 10.000 0.000085 10.000 0.000065	10.000 0.000054 0.001 10.000 0.000013 0.001 10.000 0.000018 0.001 10.000 0.000017 0.001 10.000 0.00007 0.001 10.000 0.000026 0.001 10.000 0.000014 0.001 10.000 0.000014 0.001 10.000 0.000026 0.001 10.000 0.00008 0.001 10.000 0.000065 0.001 10.000 0.00001 0.001	10.000 0.000054 0.001 11.230 10.000 0.000013 0.001 0.314 10.000 0.000018 0.001 10.314 10.000 0.000007 0.001 10.001 10.000 0.000026 0.001 10.000 10.000 0.000014 0.001 10.000 10.000 0.00008 0.001 10.000 10.000 0.00026 0.001 10.001 10.000 0.00005 0.001 10.000 10.000 0.00001 0.001 10.001

None Delected	None	Delected
Other Cannabinoids None Detected	Total Ca 1.154%	annabinoids 682.805m

Gun drit \sim Lab Toxicologist Xueli Gao

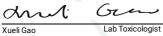
Ph.D., DABT

Minis

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + A *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Total Detection, Dilution = Dilution Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Dilution Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Cannabinoids = CBD Total + CBB Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Cannabinoids = CBD Total + CBC + CBDV + THCV +

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.


Residual Solvents - FL (CBD)

Specimen Weight: 101.900 mg

Pieces For Panel: 1 Dilution Factor: 1.000

Л

Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
1,1-Dichloroethene	0.16	8	<loq< td=""><td>1,2-Dichloroethane</td><td>0.04</td><td>5</td><td><loq< td=""><td></td></loq<></td></loq<>	1,2-Dichloroethane	0.04	5	<loq< td=""><td></td></loq<>	
Acetone	2.08	5000	<loq< td=""><td>Acetonitrile</td><td>1.17</td><td>410</td><td><loq< td=""><td></td></loq<></td></loq<>	Acetonitrile	1.17	410	<loq< td=""><td></td></loq<>	
Benzene	0.02	2	<loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""><td></td></loq<></td></loq<>	Butanes	2.5	2000	<loq< td=""><td></td></loq<>	
Chloroform	0.04	60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td>Passed</td><td></td></loq<>	Ethanol	2.78	5000	Passed	
Ethyl Acetate	1.11	5000	<loq< td=""><td>Ethyl Ether</td><td>1.39</td><td>5000</td><td><loq< td=""><td></td></loq<></td></loq<>	Ethyl Ether	1.39	5000	<loq< td=""><td></td></loq<>	
Ethylene Oxide	0.1	5	<loq< td=""><td>Heptane</td><td>1.39</td><td>5000</td><td><loq< td=""><td></td></loq<></td></loq<>	Heptane	1.39	5000	<loq< td=""><td></td></loq<>	
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""><td></td></loq<></td></loq<>	Isopropyl alcohol	1.39	500	<loq< td=""><td></td></loq<>	
Viethanol	0.69	3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><loq< td=""><td></td></loq<></td></loq<>	Methylene chloride	2.43	600	<loq< td=""><td></td></loq<>	
Pentane	2.08	5000	<loq< td=""><td>Propane</td><td>5.83</td><td>2100</td><td><loq< td=""><td></td></loq<></td></loq<>	Propane	5.83	2100	<loq< td=""><td></td></loq<>	
Toluene	2.92	890	<loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""><td></td></loq<></td></loq<>	Total Xylenes	2.92	2170	<loq< td=""><td></td></loq<>	
Trichloroethylene	0.49	80	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

Xueli Gao Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCVA, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/mg) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Teator (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 3

Passed (GCMS)

ACCS LABORATORY CANNABIS & BEYOND COM 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com	HEMP MPLIANCE		Salve Batch 8R2 Sample Matrix: CBD/HEMP Derivative Products (External Use)
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis	
FORIA WELLNESS 2440 Junction Place, #102 3oulder, CO 80301	Batch # RSV001_008R2 Batch Date: 2021-04-22 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Hudson hemp Production Date: 2021-04-22
Order # FOR210422-030004 Order Date: 2021-04-22 Sample # AABG232	Sampling Date: 2021-05-04 Lab Batch Date: 2021-05-04 Completion Date: 2021-05-18	Initial Gross Weight: 136.100 g Volume: 60 ml	Number of Units: 1 Net Weight per Unit: 59147.000 mg
Specimen Weight: 268.990 mg			Passed (qPCR
Pieces For Panel: 1 Dilution Factor: 1.000			
Analyte	Result	Analyte	Result
Dag A: Cores	Airie		
ueli Gao Lab Toxicologis	Aixia Sun Lab Director/Principal Scie	entist	
hD, DABT	CBG, *CBN Total = (CBNA * 0.877) + CBN, *O Total + THC Total + CBC + CBDV + THCV + TH (mg/ml) = Milligrams per Milliliter, LOQ = Lim Colony Forming Unit per Gram (cfu/g) = Colon	ther Cannabinoids Total = CBC + CBDV + THCV + THCV- CV-A, *Analyte Details above show the Dry Weight Conce it of Quantitation, LOD = Limit of Detection, Dilution = D	THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN intrations unless specified as 12% moisture concentration. ilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = g/g = Microgram per Gram (ppm) = Parts per Million, (ppm) = ertainty = 4/-5%
Resting Figure 1 Figure	This report shall not be reproduced, with analyzed. Test results are confidential un	out written approval, from ACS Laboratory. The rest	uits of this report relate only to the material or product hird-party accrediting body as a competent testing Page 3 of 3

CANNABIS BEYOND C 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com	& HEMP OMPLIANCE		Relief Salve Batch 8R2 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # RSV001_008R2 Batch Date: 2021-05-04 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Hud Production Date: 2021-0	
Order # FOR210520-020041 Order Date: 2021-05-20 Sample # AABJ647	Sampling Date: 2021-05-21 Lab Batch Date: 2021-05-21 Completion Date: 2021-05-27	Initial Gross Weight: 136.100 g		
Heavy Metals Passed	Mycotoxins Passed	Pesticides Passed		
Potency Panel Not Incl				

Gun drit Lab Toxicologist Xueli Gao

Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

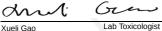
Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

ACC	
ALD	CANNABIS & HEMP
LABORATORY	BEYOND COMPLIANCE

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068


Relief Salve Batch 8R2 Sample Matrix: CBD/HEMP **Derivative Products** (External Use)

Certificate of Analysis

Compliance Test

				L.	ompliance lest				
2440 Ju	A WELLNESS Inction Place, #102 r, CO 80301		Batch # RSV001_ Batch Date: 2021 Extracted From: h	-05-04	Test Reg State: Oregon		Production Faci Production Date		
Order Da	FOR210520-020041 ate: 2021-05-20 # AABJ647		Sampling Date: 2 Lab Batch Date: 2 Completion Date:	2021-05-21	Initial Gross Weight: 136.100	g			
H Dilution F	Heavy Metals Specimen Weight: 246.300) mg							Passed (ICP-MS)
Analyte		LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (A Lead (Pb)		0.1 0.1	1.5 0.5	<loq <loq< td=""><td>Cadmium (Cd) Mercury (Hg)</td><td>0.1 0.1</td><td>0.5 3</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Cadmium (Cd) Mercury (Hg)	0.1 0.1	0.5 3	<loq <loq< td=""><td></td></loq<></loq 	
* *	Mycotoxins Specimen Weight: 175.600) mg							Passed (LCMS)
Dilution F	actor: 8.542	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin E Aflatoxin C Ochratoxir	G1	0.006 0.006 0.012	0.02 0.02 0.02	<loq <loq <loq< td=""><td>Aflatoxin B2 Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq </loq 	Aflatoxin B2 Aflatoxin G2	0.006	0.02	<loq <loq< td=""><td></td></loq<></loq 	

Xueli Gao Ph.D., DABT

< Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBG Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millilliter, LQQ = Limit of Quantitation, LDD = Limit of Detection, Dilution = Dilution Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LDD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

ACC	
AUD	CANNABIS & HEMP
LABORATORY	BEYOND COMPLIANCE

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068

Relief Salve Batch 8R2 Sample Matrix: ĊBD/HEMP **Derivative Products**

(External Use)

Passed (LCMS/GCMS)

Certificate of Analysis

Compliance Test

FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # RSV001_008R2 Batch Date: 2021-05-04 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Hudson Hemp Production Date: 2021-05-04
Order # FOR210520-020041 Order Date: 2021-05-20	Sampling Date: 2021-05-21 Lab Batch Date: 2021-05-21	Initial Gross Weight: 136.100 g	
Sample # AABJ647	Completion Date: 2021-05-27		

ġ.

Pesticides

Specimen Weight: 175.600 mg

Dilution Factor: 8.542							
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
Abamectin	0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Acephate	0.03	3	<loq< td=""></loq<>
Acequinocyl	0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Acetamiprid	0.03	3	<loq< td=""></loq<>
Aldicarb	0.03	0.1	<loq< td=""><td>Azoxystrobin</td><td>0.01</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Azoxystrobin	0.01	3	<loq< td=""></loq<>
Bifenazate	0.03	3	<loq< td=""><td>Bifenthrin</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Bifenthrin	0.03	0.5	<loq< td=""></loq<>
Carbaryl	0.01	0.5	<loq< td=""><td>Chlorfenapyr</td><td>0.048</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Chlorfenapyr	0.048	0.1	<loq< td=""></loq<>
Chlorpyrifos	0.03	0.1	<loq< td=""><td>Clofentezine</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Clofentezine	0.03	0.5	<loq< td=""></loq<>
Coumaphos	0.03	0.1	<loq< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><loq< td=""></loq<></td></loq<>	Cyfluthrin	0.03	1	<loq< td=""></loq<>
Cypermethrin	0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Daminozide	0.03	0.1	<loq< td=""></loq<>
Diazinon	0.03	0.2	<loq< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Dichlorvos	0.03	0.1	<loq< td=""></loq<>
Dimethoate	0.03	0.1	<loq< td=""><td>Dimethomorph</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Dimethomorph	0.03	3	<loq< td=""></loq<>
Ethoprophos	0.03	0.1	<loq< td=""><td>Etofenprox</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Etofenprox	0.03	0.1	<loq< td=""></loq<>
Etoxazole	0.03	1.5	<loq< td=""><td>Fenhexamid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Fenhexamid	0.03	3	<loq< td=""></loq<>
Fenoxycarb	0.03	0.1	<loq< td=""><td>Fenpyroximate</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Fenpyroximate	0.03	2	<loq< td=""></loq<>
Fipronil	0.03	0.1	<loq< td=""><td>Flonicamid</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Flonicamid	0.03	2	<loq< td=""></loq<>
Fludioxonil	0.03	3	<loq< td=""><td>Hexythiazox</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Hexythiazox	0.03	2	<loq< td=""></loq<>
Imazalil	0.03	0.1	<loq< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Imidacloprid	0.03	3	<loq< td=""></loq<>
Kresoxim Methyl	0.03	1	<loq< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Malathion	0.03	2	<loq< td=""></loq<>
Metalaxyl	0.01	3	<loq< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Methiocarb	0.03	0.1	<loq< td=""></loq<>
Methomyl	0.03	0.1	<loq< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Mevinphos	0.03	0.1	<loq< td=""></loq<>
Myclobutanil	0.03	3	<loq< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Naled	0.03	0.5	<loq< td=""></loq<>
Oxamyl	0.03	0.5	<loq< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Paclobutrazol	0.03	0.1	<loq< td=""></loq<>
Parathion-methyl	0.048	0.1	<loq< td=""><td>Pentachloronitrobenzene</td><td>0.03</td><td>0.2</td><td><loq< td=""></loq<></td></loq<>	Pentachloronitrobenzene	0.03	0.2	<loq< td=""></loq<>
Permethrin	0.03	1	<loq< td=""><td>Phosmet</td><td>0.03</td><td>0.2</td><td><loq< td=""></loq<></td></loq<>	Phosmet	0.03	0.2	<loq< td=""></loq<>
Piperonylbutoxide	0.03	3	<loq< td=""><td>Prallethrin</td><td>0.03</td><td>0.4</td><td><loq< td=""></loq<></td></loq<>	Prallethrin	0.03	0.4	<loq< td=""></loq<>
Propiconazole	0.03	1	<loq< td=""><td>Propoxur</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Propoxur	0.03	0.1	<loq< td=""></loq<>
Pyrethrins	0.03	1	<loq< td=""><td>Pyridaben</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Pyridaben	0.03	3	<loq< td=""></loq<>
Spinetoram	0.03	3	<loq< td=""><td>Spiromesifen</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Spiromesifen	0.03	3	<loq< td=""></loq<>
Spirotetramat	0.03	3	<loq< td=""><td>Spiroxamine</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Spiroxamine	0.03	0.1	<loq< td=""></loq<>
Tebuconazole	0.03	1	<loq< td=""><td>Thiacloprid</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Thiacloprid	0.03	0.1	<loq< td=""></loq<>
Thiamethoxam	0.03	1	<loq< td=""><td>Trifloxystrobin</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Trifloxystrobin	0.03	3	<loq< td=""></loq<>

Gr Æ an Xueli Gao

Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

 \leq

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBNA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBG Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Millilliter, LQQ = Limit of Quantitation, LDD = Limit of Detection, Dilution = Dilution Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LDD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 3