ACCS LABORATORY CANNABIS & HEMP BEYOND COMPLIANCE 721 Cortaro Dr. Sun City Center, FL 33573

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068 Relief Supp Batch 14R Sample Matrix: CBD/HEMP Derivative Products (External Use)

Certificate of Analysis

R&D

Order # FOR210107-010027 Order Date: 2021-01-07 Sample # AAAW754	Sampling Date: 2021-01-18 Lab Batch Date: 2021-01-18 Completion Date: 2021-01-22	Initial Gross Weight: 117.689 g	
Protet Image	Potency Tested	Listeria Monocytogenes Passed Passed	

	Potency - Specimen Weigh				Tested (HPLC/LCMS)	🗳 Poter	ncy Summary
Analyte CBD	Dilution (1:n) 10.000	LOD (%) 0.000054	LOQ (%) 0.001	Result (mg/g) 88.320	(%) 8.832	Total CBD 8.832%	Total THC None Detected
CBG CBDV	10.000 10.000 10.000	0.000054 0.000248 0.000065	0.001	1.652 0.379	0.165	Total CBG 0.165%	Total CBN None Detected
CBC THCV Delta-9 THC	10.000 10.000 10.000	0.000018 0.000007 0.000013	0.001 0.001 0.001		<loq <loq <loo< td=""><td>Other Cannabinoids 0.038%</td><td>Total Cannabinoids 9.035%</td></loo<></loq </loq 	Other Cannabinoids 0.038%	Total Cannabinoids 9.035%
Delta-8 THC CBN CBGA	10.000 10.000 10.000	0.000026 0.000014 0.00008	0.001 0.001 0.001		<loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq 		
CBDA CBDA THCA-A	10.000 10.000 10.000	0.00003 0.00001 0.000032	0.001 0.001 0.001		<loq <loq <loq< td=""><td></td><td></td></loq<></loq </loq 		

Gun Mina dril

Xueli Gao Ph.D., DABT Lab Toxicologist Lab Director/Principal Scientist

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/mg) = Milligrams per Milliliter, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cft/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Killogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Phone Number: 866.762.8379

Email: info@acslabcannabis.com

Form 40

ACCS LABORATORY CANNABIS 8 BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 License No. 800025015 EL License # CMTL 0002	HEMP MPLIANCE			f Supp Batch 14R Sample Matrix CBD/HEMP erivative Products (External Use)	
FL License # CMTL-0003 CLIA No. 10D1094068	Certifica	ate of Analysis			
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # RSP001_014R Batch Date: 2021-01-04 Extracted From: hemp	Test Reg State: Oregon		oduction Facility: He oduction Date: 2027	
Order # FOR210107-010027 Order Date: 2021-01-07 Sample # AAAW754	Sampling Date: 2021-01-18 Lab Batch Date: 2021-01-18 Completion Date: 2021-01-22	Initial Gross Weight: 117.689 g			
Specimen Weight: 989.300 n Dilution Factor: 1.000	-				Passed (qPCR)
Analyte Action (c	Level cfu/g) Result				
Pathogenic SAE Specimen Weight: 254.000 n Dilution Factor: 1.000	(qPCR)				Passed (qPCR)
Action Analyte (d	Level Result cfu/g) (cfu/g)	Analyte	Action Level (cfu/g)	Result (cfu/g)	
	ixia Sun	E.Coli Salmonella		Absence in 1g Absence in 1g	
Xueli Gao Lab Toxicologist Ph.D., DABT D.	Lab Director/Principal Scientist H.Sc., M.Sc., B.Sc., MT (AAB)				

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = CBC + CBDV + THCV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + CBC + CBDV + THCV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + CBC + CBDV + THCV + THCV+A, *Indiverse specified as 12% moisture concentration. (mg/fug) = Unit OD = Limit of Detection, Diution = Diution = Ration Factor (pD) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/fug) = Milligram per Kilogram , *Measurement of Uncertainty = +/-5%. The more to the network the total without the total * CBA total *

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Phone Number: 866.762.8379

Email: info@acslabcannabis.com

Form 40

	ORY BEYOND C ro Dr. Center, FL 33573 cannabis.com		NCE					Deriva (CBD/H tive Prod External	lucts
FL License	o.800025015 e#CMTL-0003 10D1094068		C	Cert		ate of An ompliance Test	alysis			
	ELLNESS tion Place, #102 0 80301	Bat	tch # RSP001_014 tch Date: 2021-01 tracted From: hem	-18		Test Reg Sta	te: Oregon	Produc Produc	tion Facilit tion Date:	ty: Hudson Hemp 2021-01-18
	210122-010020 2021-01-22 AAX939	Lab	mpling Date: 202 b Batch Date: 202 mpletion Date: 20	1-02-01)8	Initial Gross	Weight: 117.6	89 g		
H	Heavy Metals Passed	* ∗	Mycotoxins Passed		ġ.	Pesticides Passed	Д	Residual Solvents Passed	•••	pH Level Tested

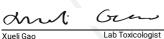
ACCS LABORATORY CANNABIS & BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com License No. 800025015	OMPLIANCE		Relief Suppositories Batch 14R Sample Matrix: CBD/HEMP Derivative Products (External Use)	
FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # RSP001_014R Batch Date: 2021-01-18 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-01	
Order # FOR210122-010020 Order Date: 2021-01-22 Sample # AAAX939	Sampling Date: 2021-02-01 Lab Batch Date: 2021-02-01 Completion Date: 2021-02-08	Initial Gross Weight: 117.689	g	

Η **Heavy Metals**

Specimen Weight: 253.400 mg

Dilution Factor: 2.000								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As)	0.1	1.5	<loq< td=""><td>Cadmium (Cd)</td><td>0.1</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	0.1	0.5	<loq< td=""><td></td></loq<>	
Lead (Pb)	0.1	0.5	<loq< td=""><td>Mercury (Hg)</td><td>0.1</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	0.1	3	<loq< td=""><td></td></loq<>	
Total Contaminant Load (TCL)	None Detected							

**


Specimen Weight: 171.170 mg

Mycotoxins

Dilution Factor: 8.763	Dilution	Factor:	8.7	63
------------------------	----------	---------	-----	----

VUC

Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""></loq<>
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""></loq<>
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td></loq<>				

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBA * 0.877) + CBA, *CDA Total = (CBA * 0.877) + CDA + THCV+A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV+A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/m) = Milligrams per Milligram, DOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, Ug/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

Passed (ICP-MS)

Passed (LCMS)

www.acsla License FL Licer					ate of Analysis		oositories Batch Sample M CBD/H Derivative Proo (External	atrix: IEMP ducts	
2440 Ju	WELLNESS nction Place, #102 CO 80301	I	Batch # RSP001_ Batch Date: 2021 Extracted From: h	-01-18	Test Reg State: Oregon		Production Facili Production Date:		
	DR210122-010020 2021-01-22 AAAX939	1	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-02-01	Initial Gross Weight: 117.	689 g			
Dilution Fact	Pesticides Specimen Weight: 171.1 tor: 8.763	70 mg							Passed (LCMS/GCMS)
Analyte		LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Abamectin Acequinocyl Aldicarb Bifenazate		0.028 0.048 0.03 0.03	0.3 2 0.1 3	<loq <loq <loq <loq< td=""><td>Acephate Acetamiprid Azoxystrobin Bifenthrin</td><td>0.03 0.03 0.01 0.03</td><td>3 3 3 0.5</td><td><loq <loq <loq <loq< td=""><td></td></loq<></loq </loq </loq </td></loq<></loq </loq </loq 	Acephate Acetamiprid Azoxystrobin Bifenthrin	0.03 0.03 0.01 0.03	3 3 3 0.5	<loq <loq <loq <loq< td=""><td></td></loq<></loq </loq </loq 	

Carbaryl 0.01 0.5 <LOQ Chlorfenapyr 0.048 0.1 <LOQ Chlorpyrifos 0.03 01 <L00 Clofentezine 0.03 0.5 <100 0.03 Cyfluthrin 0.03 <L0Q Coumaphos 0.1 <LOQ 1 Cypermethrin 0.03 <LOQ Daminozide 0.03 0.1 <LOQ 1 Diazinon 0.03 0.2 <LOQ Dichlorvos 0.03 0.1 <LOQ Dimethoate 0.03 0.1 <LOQ Dimethomorph 0.03 З <LOQ Ethoprophos 0.03 0.1 <LOQ Etofenprox 0.03 0.1 <LOQ Etoxazole 0.03 1.5 <LOQ Fenhexamid 0.03 3 <L00 0.03 <L00 <L00 Fenoxycarb 0.1 Fenpyroximate 0.03 2 2 Fipronil 0.03 0.1 <LOQ Flonicamid 0.03 <LOQ Fludioxonil 0.03 <LOQ Hexythiazox 0.03 2 <LOQ 3 Imazalil 0.03 0.1 <LOQ Imidacloprid 0.03 3 <LOQ Kresoxim Methyl 0.03 <L0Q Malathion 0.03 2 <L00 Metalaxyl 0.01 3 <L00 Methiocarb 0.03 0.1 <L00 Methomyl 0.03 0.1 <L0Q Mevinphos 0.03 <L0Q 0.1 Myclo butanil 0.03 <L0Q Naled 0.03 <L0Q 0.5 3 <LOQ Paclobutrazol Oxamyl 0.03 0.5 0.03 0.1 <LOQ Parathion-methyl 0.048 0.1 <LOQ Pentachloronitrobenzene 0.03 0.2 <LOQ Permethrin 0.03 1 <LOQ Phosmet 0.03 0.2 <L00 Piperonylbutoxide 0.03 3 <L00 Prallethrin 0.03 0.4 <L00 <LOQ Propiconazole 0.03 1 Propoxur 0.03 0.1 <LOQ Pyrethrins Pyridaben <LOQ 0.03 <LOQ 0.03 3 1 Spinetoram 0.03 3 <LOQ Spiromesifen 0.03 3 <LOQ Spirotetramat 0.03 3 <LOQ Spiroxamine 0.03 0.1 <LOQ Tebuconazole 0.03 <L0Q Thiacloprid 0.03 0.1 <L0Q 1 Thiamethoxam 0.03 <L00 Trifloxystrobin 0.03 3 <L00 1 Total Contaminant Load (TCL) None Detected

drit Gr e Xueli Gao

Ph.D., DABT

Lab Toxicologist

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Oliution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, ($\mu g/g$) = Microgram per Gram (ppm) = Parts per Million, (ppm) = ($\mu g/g$), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

721 Co Sun Ci	CANNABIS & HE BEYOND COMP ortaro Dr. ty Center, FL 33573 labcannabis.com				Relief Suppos	sitories Batch Sample M CBD/H erivative Proc (External	atrix: EMP lucts	
FL Lice	e No. 800025015 ense # CMTL-0003 lo. 10D1094068			nte of Analysis mpliance Test				
440 Ju	WELLNESS Inction Place, #102 ; CO 80301	Batch # RSP001_ Batch Date: 2021 Extracted From: h	-01-18	Test Reg State: Oregon		oduction Facili oduction Date:		lemp
order Dat	OR210122-010020 te: 2021-01-22 AAAX939	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-02-01 021-02-01 2021-02-08	Initial Gross Weight: 117.6	89 g			
Д	Residual Solvents - Specimen Weight: 14.700 mg	- FL (CBD)						Passed (gcмs)
Dilution Fa	ctor: 1.000	Action Level	Result		LOQ	Action Level	Popult	
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	Result (ppm)	
1,1-Dichlo Acetone	roethene 0.16 2.08	8 5000	<loq <loq< td=""><td>1,2-Dichloroethane Acetonitrile</td><td>0.04 1.17</td><td>5 410</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	1,2-Dichloroethane Acetonitrile	0.04 1.17	5 410	<loq <loq< td=""><td></td></loq<></loq 	
Benzene	0.02		<loq <loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><l0q< td=""><td></td></l0q<></td></loq<></loq 	Butanes	2.5	2000	<l0q< td=""><td></td></l0q<>	
Chlorofor		60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><loq< td=""><td></td></loq<></td></loq<>	Ethanol	2.78	5000	<loq< td=""><td></td></loq<>	
Ethyl Acet Ethylene C		5000 5	<loq <loq< td=""><td>Ethyl Ether Heptane</td><td>1.39 1.39</td><td>5000 5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Ethyl Ether Heptane	1.39 1.39	5000 5000	<loq <loq< td=""><td></td></loq<></loq 	
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""><td></td></loq<></td></loq<>	Isopropyl alcohol	1.39	500	<loq< td=""><td></td></loq<>	
Methanol	0.69	3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Methylene chloride	2.43	600	<l0q< td=""><td></td></l0q<>	
Pentane Toluene	2.08 2.92	5000 890	<loq <loq< td=""><td>Propane Total Xylenes</td><td>5.83 2.92</td><td>2100 2170</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Propane Total Xylenes	5.83 2.92	2100 2170	<loq <loq< td=""><td></td></loq<></loq 	
Trichloroe		80	<loq< td=""><td>···· , · · · ·</td><td></td><td></td><td></td><td></td></loq<>	···· , · · · ·				
╹╹	pH Level							Tested
_	Specimen Weight: N/A Dilution Fac	tor: 1.000						(pH Meter)
Analyte	Result (pH)							
pH Level	())							
	4.0							
	A. C	aine						
_1	Nº Ora	Ma						
zr	Lab Toxicologist	Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc.,	Director/Principal Scie MT (AAB)	ntist				
Lueli Gao h.D., DABT							*CDC Tatal - ((
		Definitions and Abbre	eviations used in this repo	rt: *Total CBD = CBD + (CBD-A * 0.877), *	Total THC = THCA-A * (.877 + Delta 9 THC	, "CDG IOIAI = (C	CBGA * 0.877) +
		CBG, *CBN Total = (C Total + THC Total + C (mg/ml) = Milligrams Colony Forming Unit	BNA * 0.877) + CBN, *0 BC + CBDV + THCV + THC per Milliliter, LOQ = Limi per Gram (cfu/g) = Color	rt: *Total CBD = CBD + (CBD-A * 0.877), * ther Cannabinoids Total = CBC + CBDV + Th YCA, *Analyte Details above show the Dry V it of Quantitation, LOD = Limit of I detection y Forming Unit per Gram, LOD = Limit of I g/Kg) = Milligram per Kilogram	ICV + THCV-A, *Total De Veight Concentrations u , Dilution = Dilution Fact	etected Cannabinoid nless specified as 1 or (ppb) = Parts pe	ls = CBD Total + 2% moisture cor er Billion, (%) = P	CBG Total + CBN ncentration. ercent, (cfu/g) =
h.D., DABT	FJLA resting	CBG, *CBN Total = (C Total + THC Total + C (mg/ml) = Milligrams Colony Forming Unit (μ g/g), (aw) = aw (ar This report shall no	BNA * 0.877) + CBN, *0; BC + CBDV + THCV + THC per Gram (cfu/g) = Color ea ratio) = Area Ratio, (m t be reproduced, witho	ther Cannabinoids Total = CBC + CBDV + TH V-A, *Analyte Details above show the Dry V it of Quantitation, LOD = Limit of Detection y Forming Unit per Gram, , LOD = Limit of I	ICV + THCV-A, *Total Do Veight Concentrations u , Dilution = Dilution Fact Detection, (µg/g) = Mic my. The results of this	etected Cannabinoid nless specified as 1 or (ppb) = Parts p rogram per Gram (p report relate only	Is = CBD Total + 2% moisture cor er Billion, (%) = P ppm) = Parts per to the materia	CBG Total + CBN neentration. ercent, (cfu/g) = Million, (ppm) =

Page 4 of 4