ACCS LABORATORY CANNABIS & BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Intimacy Supps - Batch 19 Sample Matrix: CBD/HEMP Derivative Products (Ingestion)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISP001_019 Batch Date: 2021-06-07 Extracted From: Hemp	Test Reg State: Oregon	Production Facility: Hude Production Date: 2021-0	
Order # FOR210607-030028 Order Date: 2021-06-07 Sample # AABL463	Sampling Date: 2021-06-14 Lab Batch Date: 2021-06-14 Completion Date: 2021-06-22	Initial Gross Weight: 129.915 g		
LARELASS IN BOOL- GIQ (4)	Tested	Microbiology (qPCR) Passed		

	Potency -	11			Tested	ted 🚽 🔷 Potency Summa		
	pecimen Weigh				(HPLC/LCMS)	Total THC 0.024%	Total CBD 4.273%	
Analyte CBD	Dilution (1:n) 10.000	LOD (%) 0.000054	LOQ (%) 0.001	Result (mg/g) 41.790	(%)	Total CBG 0.074%	Total CBN 0.111%	
CBN CBDA	10.000 10.000	0.000014 0.00001	0.001	1.114 1.077	0.111	Other Cannabinoids 0.024%	Total Cannabinoids 4.506%	
CBG CBC	10.000 10.000	0.000248 0.000018	0.001 0.001	0.736 0.245	0.074	0.024%	4.500 %	
Delta-9 THC THCV	10.000 10.000	0.000013	0.001	0.236	0.024 <loq< td=""><td></td><td></td></loq<>			
Delta-8 THC CBGA	10.000 10.000	0.000026	0.001		<loq <loq< td=""><td></td><td></td></loq<></loq 			
CBDV THCA-A	10.000 10.000	0.000065 0.000032	0.001 0.001		<loq <loq< td=""><td></td><td></td></loq<></loq 			

Gun drit \sim Lab Toxicologist

Xueli Gao Ph.D., DABT

Product Image

ISO 17025

Minis

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + A *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Total Detection, Dilution = Dilution Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Dilution Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Cannabinoids = CBD Total + CBB Total + CBN Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = CANNABINA + CBC + CBDV + THCV + TH

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

LABORATORY BEYOND 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com	COMPLIANCE		Sample Matrix: CBD/HEMP Derivative Products (Ingestion)		
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis			
FORIA WELLNESS 440 Junction Place, #102 Boulder, CO 80301	Batch # ISP001_019 Batch Date: 2021-06-07 Extracted From: Hemp	Test Reg State: Oregon	Production Facility: Hudso Production Date: 2021-06		
Order # FOR210607-030028 Order Date: 2021-06-07 Sample # AABL463	Sampling Date: 2021-06-14 Lab Batch Date: 2021-06-14 Completion Date: 2021-06-22	Initial Gross Weight: 129.915 g			
Microbiology Specimen Weight: 245.6				Passed (qPCR	
Analyte	Result	Analyte	Result		
Total Aerobic Count	Passed	Total Coliform	Passed		
mit Ge					
Kueli Gao Lab Toxic Ph.D., DABT	ologist Aixia Sun Lab Director/Principal Scie D.H.Sc., M.Sc., B.Sc., MT (AAB)				
17025 FJLA FJLA	CBG, *CBN Total = (CBNA * 0.877) + CBN, *0 Total + THC Total + CBC + CBDV + THCV + TH (mg/ml) = Milligrams per Milliliter, LOQ = Lim Colony Forming Unit per Gram (cfu/g) = Color (µg/g), (aw) = aw (area ratio) = Area Ratio, (m	prt: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = TH ther Cannabinoids Total = CBC + CBDV + THCV + THCV-A, CV-A, *Analyte Details above show the Dry Weight Concent it of Quantitation, LOD = Limit of Detection, Dilution = Dilu y Forming Unit per Gram, LOD = Limit of Detection, (µg/, ng/Kg) = Milligram per Kilogram, *Measurement of Uncert	*Total Detected Cannabinoids = CBD Tot rations unless specified as 12% moistur tion Factor (ppb) = Parts per Billion, (% g) = Microgram per Gram (ppm) = Parts rainty = +/- 5%	tal + CBG Total + CBN e concentration.) = Percent, (cfu/g) = s per Million, (ppm) =	
	analyzed. Test results are confidential un	ut written approval, from ACS Laboratory. The result: less explicitly waived otherwise. Accredited by a thir he International Organization for Standardization.			

Page 2 of 2

	CANNABIS ORY BEYOND C aro Dr. Center, FL 33573 cannabis.com						Deriva	ample Match 1 CBD/HEN tive Produc External Us	i x: IP Dream ts Prosta
L Licens	lo. 800025015 se # CMTL-0003 10D1094068		Ce	rtifica		alysis			
	/ELLNESS ction Place, #102 0 80301	Ba	ttch # ISP001_019 ttch Date: 2021-06-06 ttracted From: hemp		Test Reg State	e: Oregon	Produc Produc	tion Facility: tion Date: 20	Hudson hemp 21-06-06
	210713-010029 2021-07-13 ABP906	La	mpling Date: 2021-07 b Batch Date: 2021-07 ompletion Date: 2021-	-13	Initial Gross V	Weight: 129.9	15 g		
H	Heavy Metals Passed	☆ *	Mycotoxins Passed	ö "	Pesticides Passed	Д	Residual Solvents Passed		H Level Tested
otency	Panel Not Inclu	Ided							
tru	1: Can		Aini=						
eli Gao D DART	Л: Ссса Lab Toxicol			Principal Scie	entist				
eli Gao D., DABT		D. De CB To Cm Co	H.Sc., M.Sc., B.Sc., MT (AAB efinitions and Abbreviations to BG, *CBN Total = (CBNA * 0.1 otal + THC Total + CBC + CBD ng/ml) = Milligrams per Milli	used in this rep 877) + CBN, *O V + THCV + TH liter, LOQ = Lim (cfu/g) = Color	ort: *Total CBD = CBD + (C ther Cannabinoids Total = CV-A, *Analyte Details abo it of Quantitation, LOD = I ny Forming Unit per Gram,	CBC + CBDV + TH ve show the Dry V Limit of Detection , LOD = Limit of I	Total THC = THCA-A* 0.877 + CV + THCV-A, *Total Detected leight Concentrations unless so Dilution Factor (pp Detection, (μg/g) = Microgram	Cannabinoids = pecified as 12% r b) = Parts per Bil	CBD Total + CBG Total + CB moisture concentration. lion, (%) = Percent, (cfu/g)

ACS LABORATORY CANNABIS & BEYOND CO			Intimacy Supp Batch 19 Sample Matrix: CBD/HEMP	
721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			Derivative Products (External Use)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certifi	cate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, C0 80301	Batch # ISP001_019 Batch Date: 2021-06-06 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-0	

Doulder	,			
	OR210713-010029 te: 2021-07-13	Sampling Date: 2021-07-13 Lab Batch Date: 2021-07-13	Initial Gross Weight: 129.915 g	
	AABP906	Completion Date: 2021-07-20		
H	Heavy Metals			Passed
	Cassimon Weight 247 200 mg			(ICP-MS)

Specimen Weight: 247.200 mg

Dilution Factor: 2.000								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As)	0.1	1.5	<loq< td=""><td>Cadmium (Cd)</td><td>0.1</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	0.1	0.5	<loq< td=""><td></td></loq<>	
Lead (Pb)	0.1	0.5	<loq< td=""><td>Mercury (Hg)</td><td>0.1</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	0.1	3	<loq< td=""><td></td></loq<>	

♣ Mycotoxins

Specimen Weight: 198.600 mg

Dilution Factor: 7.553								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""><td></td></loq<>	
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""><td></td></loq<>	
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

drit Gr 1 Lab Toxicologist Xueli Gao

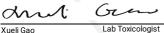
Xueli Gao Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CBN Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = 12% moisture concentration. (mg/m) = Milligrams per Milligram, DO = Limit of Detection, Diutino = Diution Factor (ppb) = Parts per Billion, (%) = Percent, (cfug) = Colony Forming Unit per Gram, (LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4


Passed

(LCMS)

721 Cor Sun City	ATORY CANNABI BEYOND rtaro Dr. y Center, FL 33573 abcannabis.com	S & HE COMPL	MP IANCE				nacy Supp Bato Sample M CBD/H Derivative Proo (External	atrix: EMP lucts	
	No. 800025015								
	nse # CMTL-0003			Certifica	ate of Analysis				
CLIA NO	o. 10D1094068				R&D				
2440 Ju	WELLNESS nction Place, #102 CO 80301		Batch # ISP001_(Batch Date: 2021 Extracted From: h	-06-06	Test Reg State: Oregon		Production Facili Production Date:		
	DR210713-010029 æ: 2021-07-13 AABP906		Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-07-13	Initial Gross Weight: 129.915 g				
Ö "	Pesticides Specimen Weight: 198.6	600 mg							Passed (LCMS/GCMS)
Dilution Fac	tor: 7.553								
Analyte		LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Abamectin		0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acephate	0.03	3	<loq< td=""><td></td></loq<>	
Acequinocy	d i i i i i i i i i i i i i i i i i i i	0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acetamiprid	0.03	3	<loq< td=""><td></td></loq<>	
Aldicarb		0.03	0.1	<loq< td=""><td>Azoxystrobin</td><td>0.01</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Azoxystrobin	0.01	3	<loq< td=""><td></td></loq<>	
Bifenazate		0.03	3	<loq< td=""><td>Bifenthrin</td><td>0.03</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Bifenthrin	0.03	0.5	<loq< td=""><td></td></loq<>	
Carbaryl		0.01	0.5	<loq< td=""><td>Chlorfenapyr</td><td>0.048</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Chlorfenapyr	0.048	0.1	<l0q< td=""><td></td></l0q<>	
Chlorpyrifo		0.03	0.1	<l0q< td=""><td>Clofentezine</td><td>0.03</td><td>0.5</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Clofentezine	0.03	0.5	<l0q< td=""><td></td></l0q<>	
Coumaphos		0.03	0.1	<l0q< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Cyfluthrin	0.03	1	<l0q< td=""><td></td></l0q<>	
Cypermethr	'n	0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Daminozide	0.03	0.1	<loq< td=""><td></td></loq<>	
Diazinon		0.03	0.2	<l0q< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Dichlorvos	0.03	0.1	<l0q< td=""><td></td></l0q<>	
Dimethoate Ethopropho		0.03 0.03	0.1 0.1	<loq <loq< td=""><td>Dimethomorph Etofenprox</td><td>0.03 0.03</td><td>3 0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Dimethomorph Etofenprox	0.03 0.03	3 0.1	<loq <loq< td=""><td></td></loq<></loq 	
Etoxazole		0.03	1.5	<l0q <l0q< td=""><td>Fenhexamid</td><td>0.03</td><td>0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></l0q<></l0q 	Fenhexamid	0.03	0.1	<loq <loq< td=""><td></td></loq<></loq 	
Fenoxycarb		0.03	0.1	<l0q< td=""><td>Fenpyroximate</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Fenpyroximate	0.03	2	<l0q< td=""><td></td></l0q<>	
Fipronil		0.03	0.1	<l0q< td=""><td>Flonicamid</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Flonicamid	0.03	2	<l0q< td=""><td></td></l0q<>	
Fludioxonil		0.03	3	<loq< td=""><td>Hexythiazox</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Hexythiazox	0.03	2	<l0q< td=""><td></td></l0q<>	
Imazalil		0.03	0.1	<loq< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Imidacloprid	0.03	3	<l0q< td=""><td></td></l0q<>	
Kresoxim N	fethyl	0.03	1	<loq< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><loq< td=""><td></td></loq<></td></loq<>	Malathion	0.03	2	<loq< td=""><td></td></loq<>	
Metalaxyl		0.01	3	<loq< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Methiocarb	0.03	0.1	<loq< td=""><td></td></loq<>	
Methomyl		0.03	0.1	<loq< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Mevinphos	0.03	0.1	<loq< td=""><td></td></loq<>	
Myclobutan	il	0.03	3	<l0q< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></l0q<>	Naled	0.03	0.5	<loq< td=""><td></td></loq<>	
Oxamyl		0.03	0.5	<loq< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Paclobutrazol	0.03	0.1	<loq< td=""><td></td></loq<>	
Parathion-m	nethyl	0.048	0.1	<loq< td=""><td>Pentachloronitrobenzene</td><td>0.03</td><td>0.2</td><td><loq< td=""><td></td></loq<></td></loq<>	Pentachloronitrobenzene	0.03	0.2	<loq< td=""><td></td></loq<>	
Permethrin		0.03	1	<loq< td=""><td>Phosmet</td><td>0.03</td><td>0.2</td><td><loq< td=""><td></td></loq<></td></loq<>	Phosmet	0.03	0.2	<loq< td=""><td></td></loq<>	
Piperonylbu	toxide	0.03	3	<loq< td=""><td>Prallethrin</td><td>0.03</td><td>0.4</td><td><loq< td=""><td></td></loq<></td></loq<>	Prallethrin	0.03	0.4	<loq< td=""><td></td></loq<>	
Propiconaz	ole	0.03	1	<loq< td=""><td>Propoxur</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Propoxur	0.03	0.1	<loq< td=""><td></td></loq<>	
Pyrethrins		0.03	1	<loq< td=""><td>Pyridaben</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Pyridaben	0.03	3	<loq< td=""><td></td></loq<>	
Spinetoram		0.03	3	<loq< td=""><td>Spiromesifen</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Spiromesifen	0.03	3	<loq< td=""><td></td></loq<>	
Spirotetram	nat	0.03	3	<loq< td=""><td>Spiroxamine</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Spiroxamine	0.03	0.1	<loq< td=""><td></td></loq<>	
T design a second	de la	0.00	1	100	This share in the	0.00	0.1	100	

Thiacloprid

Trifloxystrobin

1200

0.03

0.03

1

1

<LOQ

<L00

Xueli Gao Ph.D., DABT

Tebuconazole

Thiamethoxam

. <u>_</u> Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA Total = (CBAA * 0.877) + CBA, *CDA Total = (CBAA * 0.877) + CBA, *CDA Total = CBC Total + CBN Total + CBC + CBDV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBN Total + THC Total + CBC + CBDV + THCV+A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/m/l) = Milligrams per Millifer, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

0.03

0.03

0.1

3

<L0Q

<L00

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

		HEMP MPLIANCE				nacy Supp Bat Sample M CBD/H Derivative Pro (External	l atrix: IEMP A ducts 🛃	
FL Licer	No. 800025015 nse # CMTL-0003 o. 10D1094068		Certifica	ate of Analysis	5 >-			
2440 Ju	WELLNESS nction Place, #102 C0 80301	Batch # ISP001_ Batch Date: 2021 Extracted From:	1-06-06	Test Reg State: Oregon		Production Facil Production Date:	ity: Hudson h∉ 2021-06-06	emp
	DR210713-010029 2021-07-13 AABP906	Sampling Date: 2 Lab Batch Date: 2 Completion Date	2021-07-13	Initial Gross Weight: 129	.915 g			
Д	Residual Solven							Passed _(GCMS)
Dilution Fact		LOQ Action Level	Result		LOQ	Action Level	Result	
Analyte Acetone Butanes Ethyl Acetat Hexane Methanol Propane Total Xylene	te	ppm) (ppm) 2.08 5000 2.5 2000 1.11 5000 1.17 290 0.69 3000 5.83 2100 2.92 2170	(ppm) <loq <loq <loq <loq <loq <loq <loq <loq< td=""><td>Analyte Benzene Ethanol Heptane Isopropyl alcohol Pentane Toluene</td><td>(ppm) 0.02 2.78 1.39 1.39 2.08 2.92</td><td>(ppm) 2 5000 5000 5000 5000 890</td><td>(ppm) <loq <loq <loq <loq <loq <loq< td=""><td></td></loq<></loq </loq </loq </loq </loq </td></loq<></loq </loq </loq </loq </loq </loq </loq 	Analyte Benzene Ethanol Heptane Isopropyl alcohol Pentane Toluene	(ppm) 0.02 2.78 1.39 1.39 2.08 2.92	(ppm) 2 5000 5000 5000 5000 890	(ppm) <loq <loq <loq <loq <loq <loq< td=""><td></td></loq<></loq </loq </loq </loq </loq 	
<u>.</u>	pH Level							Tested (pH Meter)
		Result						, ,
Analyte pH Level		(pH) 4.0						

Gra drit Lab Toxicologist Xueli Gao Ph.D., DABT

Ìs Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

120

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA TOTAl = (CBAA * 0.877) + CCAA * CDA TOTAl = (CBAA * 0.877) + CCAA * CDA TOTAl = (CBAA * 0.877) + CDA TOTAl = (CBAA * 0.877) + CDA TOTAl = (CBAA * 0.877) + CDA TOTAL = (CDA TOTAL

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 4 of 4