ACCS CANNABIS BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certific	ate of Analysis	Intimacy Suppository Batch 15 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
		Compliance Test		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISP001_0016 Batch Date: 2021-03-24 Extracted From: Hemp	Test Reg State: Oregon	Production Facility: Hudso Production Date: 2021-03	>n Hemp -24
Order # FOR210325-020016 Order Date: 2021-03-25 Sample # AABD355	Sampling Date: 2021-03-30 Lab Batch Date: 2021-03-30 Completion Date: 2021-04-05	Initial Gross Weight: 120.0	087 g	
AABJASE Mile Televis one	Potency Tested	Microbiology (qPCR) Passed		

Tested

(HPLC/LCMS)

(%)

4.717

0.034

0.030

<LOQ

<LOQ

<L00

<LOQ

<LOQ

<LOQ

<LOQ

<LOQ

4

Total THC

None Detected

Total CBG

0.034%

Other Cannabinoids

0.030%

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution = CBC + CBDV + THCV + THCV-A, *Otal Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution = Cator (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, Up2/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Potency Summary

Total CBD

4.717%

Total CBN

None Detected

Total Cannabinoids

4.781%

Product Image

Analyte

CBD

CBG

CBDV

CBC

THCV

CBN

CBGA

CBDA

THCA-A

drit

Xueli Gao

Ph.D., DABT

ISO 17025

Delta-9 THC

Delta-8 THC

Potency - 11

Dilution (1:n)

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

1000.000

Specimen Weight: 84.610 mg

LOD (%)

0.000054

0.000248

0.000065

0.000018

0.000007

0.000013

0.000026

0.000014

0.00008

0.00001

0.000032

Gra

Lab Toxicologist

LOQ (%)

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

liz

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Aixia Sun

 \leq

Lab Director/Principal Scientist

Result (mg/g)

47.170

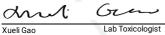
0.340

0.300

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com			nacy Suppository Batch 15 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISP001_0016 Batch Date: 2021-03-24 Extracted From: Hemp	Test Reg State: Oregon	Production Facility: Hude Production Date: 2021-0	
Drder # FOR210325-020016 Order Date: 2021-03-25 Sample # AABD355	Sampling Date: 2021-03-30 Lab Batch Date: 2021-03-30 Completion Date: 2021-04-05	Initial Gross Weight: 120.087 g		
Specimen Weight: 260.700 m	· · · ·			
Dilution Factor: 1.000				
Analyte Total Aerobic Count	Result Passed	Analyte Total Coliform	Result Passed	
Ant: Gran Kueli Gao Lab Toxicologi	s Aizaci <u>Sci</u> ist Aixia Sun Lab Director/Principal Scie	entist		
	Aixia Sun Lab Director/Principal Scie D.H.Sc., M.Sc., B.Sc., MT (AAB) Definitions and Abbreviations used in this rep. CBG, *CBN Total = (CBNA * 0.877) + CBN, *0 Total + THC Total + CBC + CBDV + THCV + TH((mg/ml) = Millilitarams per Milliliter, LOQ = Lim	entist ort: *Total CBD = CBD + (CBD-A * 0.877), *Total THC ther Cannabinoids Total = CBC + CBDV + THCV + THC CV-A, *Analyte Details above show the Dry Weight Cor it of Quantitation, LOD = Limit of Detection, Dilution = ny Forming Unit per Gram, LOD = Limit of Detection, Dilution = 100000000000000000000000000000000000	:V-A, *Total Detected Cannabinoids = CBD To ncentrations unless specified as 12% moistu = Dilution Factor (ppb) = Parts per Billion, (otal + CBG Total + CBN are concentration. %) = Percent, (cfu/g) =

	ORY BEYOND C no Dr. Center, FL 33573 cannabis.com		NCE				Deriva	CBD/HI tive Prod (Ingest	lucts
FL Licens	o. 800025015 e # CMTL-0003 10D1094068		Ce		ate of Ana ompliance Test	alysis			
	ELLNESS tion Place, #102 0 80301	Bat	tch # ISP001_0016 tch Date: 2021-03-30 tracted From: hemp		Test Reg State	e: Oregon	Produc Produc	tion Facilit tion Date:	ty: Hudson Hemp 2021-03-30
	210409-020013 2021-04-09 ABE800	Lab	mpling Date: 2021-04 b Batch Date: 2021-04 mpletion Date: 2021-0	-29	Initial Gross \	Weight: 120.0	87 g		
H	Heavy Metals Passed	☆ ☆	Mycotoxins Passed	ö "	Pesticides Passed	Д	Residual Solvents Passed	•••	pH Level Tested
otency	Panel Not Inclu	Ided							
tr.	1: Gen		Mini						
	Л: Ссла Lab Toxicol	logist Ai	ixia Sun Lab Director/	-	entist				
۲۰۰۰ eli Gao J, DABT	v	logist Ai	ixia Sun Lab Director/ H.Sc., M.Sc., B.Sc., MT (AAB	3)					

CANNABIS LABORATORY CANNABIS BEYOND CO 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com	& HEMP OMPLIANCE		Intimacy Supp Batch 16 Sample Matrix: CBD/HEMP Derivative Products (Ingestion)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISP001_0016 Batch Date: 2021-03-30 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-0	
Order # FOR210409-020013 Order Date: 2021-04-09 Sample # AABE800	Sampling Date: 2021-04-29 Lab Batch Date: 2021-04-29 Completion Date: 2021-05-06	Initial Gross Weight: 120.087 g		
Heavy Metals	lma			Passed (ICP-MS)


Specimen Weight: 254.930 mg

Dilution Factor: 2.000								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As)	0.1	1.5	<loq< td=""><td>Cadmium (Cd)</td><td>0.1</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	0.1	0.5	<loq< td=""><td></td></loq<>	
Lead (Pb)	0.1	0.5	<loq< td=""><td>Mercury (Hg)</td><td>0.1</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	0.1	3	<loq< td=""><td></td></loq<>	

♣ Mycotoxins

Specimen Weight: 157.100 mg

Dilution Factor: 9.548								
Analyte	L((pp	DQ Action Level m) (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin B1	0.0	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""><td></td></loq<>	
Aflatoxin G1	0.0	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""><td></td></loq<>	
Ochratoxin A	0.0	12 0.02	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Xueli Gao Ph.D., DABT

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = (CBAA * 0.877) + CBA, *CDA TOTAl + CBA Total = CBA + CBA Total = CBA + CBA Total + CBA + CBA + CBA + THCV + THCV+A, *Total Detected Cannabinoids = CBD Total + CBA Total + CBA Total + CBA +

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

Passed (LCMS)

721 Co	ATORY CANNABI						nacy Supp Bato Sample M CBD/H Derivative Proc	atrix: EMP ducts	
	ty Center, FL 33573 slabcannabis.com						(Inges	suon)	首義全部形
www.acs									
FL Lice	e No. 800025015 ense # CMTL-0003 lo. 10D1094068				ate of Analysis				
2440 Ju	WELLNESS unction Place, #102 ; CO 80301		Batch # ISP001_(Batch Date: 2021 Extracted From: h	-03-30	Test Reg State: Oregon		Production Facili Production Date:		
Order Da	OR210409-020013 te: 2021-04-09 AABE800		Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-04-29	Initial Gross Weight: 120.087	g			
ö "	Pesticides Specimen Weight: 157.1	00 ma							Passed (LCMS/GCMS)
Dilution Fo	ctor: 9.548	comg							
Dilution Fa	ICLOF. 9.348	LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte		(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)	
Abamectin		0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acephate	0.03	3	<loq< td=""><td></td></loq<>	
Acequinoc	:yl	0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Acetamiprid	0.03	3	<loq< td=""><td></td></loq<>	
Aldicarb		0.03	0.1	<loq< td=""><td>Azoxystrobin</td><td>0.01</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Azoxystrobin	0.01	3	<loq< td=""><td></td></loq<>	
Bifenazate		0.03	3	<loq< td=""><td>Bifenthrin</td><td>0.03</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Bifenthrin	0.03	0.5	<loq< td=""><td></td></loq<>	
Carbaryl		0.01	0.5	<loq< td=""><td>Chlorfenapyr</td><td>0.048</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Chlorfenapyr	0.048	0.1	<loq< td=""><td></td></loq<>	
Chlorpyrif	os	0.03	0.1	<loq< td=""><td>Clofentezine</td><td>0.03</td><td>0.5</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Clofentezine	0.03	0.5	<l0q< td=""><td></td></l0q<>	
Coumapho		0.03	0.1	<loq< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Cyfluthrin	0.03	1	<l0q< td=""><td></td></l0q<>	
Cypermeth	nrin	0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Daminozide	0.03	0.1	<l0q< td=""><td></td></l0q<>	
Diazinon		0.03	0.2	<loq< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Dichlorvos	0.03	0.1	<loq< td=""><td></td></loq<>	
Dimethoat		0.03	0.1	<loq< td=""><td>Dimethomorph</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Dimethomorph	0.03	3	<loq< td=""><td></td></loq<>	
Ethoproph		0.03	0.1	<l0q< td=""><td>Etofenprox</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></l0q<>	Etofenprox	0.03	0.1	<loq< td=""><td></td></loq<>	
Etoxazole		0.03	1.5	<l0q< td=""><td>Fenhexamid</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Fenhexamid	0.03	3	<l0q< td=""><td></td></l0q<>	
Fenoxycar Fipronil	U	0.03 0.03	0.1 0.1	<loq <loq< td=""><td>Fenpyroximate Flonicamid</td><td>0.03 0.03</td><td>2 2</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Fenpyroximate Flonicamid	0.03 0.03	2 2	<loq <loq< td=""><td></td></loq<></loq 	
Fludioxoni		0.03	0.1	<loq <loq< td=""><td>Honicamia Hexythiazox</td><td>0.03</td><td>2</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Honicamia Hexythiazox	0.03	2	<loq <loq< td=""><td></td></loq<></loq 	
Imazalil		0.03	0.1	<l0q <l0q< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><loq <loq< td=""><td></td></loq<></loq </td></l0q<></l0q 	Imidacloprid	0.03	3	<loq <loq< td=""><td></td></loq<></loq 	
Kresoxim	Methyl	0.03	1	<l0q< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Malathion	0.03	2	<l0q< td=""><td></td></l0q<>	
Metalaxyl		0.03	3	<l0q< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Methiocarb	0.03	0.1	<l0q< td=""><td></td></l0q<>	
Methomyl		0.03	0.1	<l0q< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></l0q<>	Mevinphos	0.03	0.1	<loq< td=""><td></td></loq<>	
Myclobuta		0.03	3	<l0q< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></l0q<>	Naled	0.03	0.5	<loq< td=""><td></td></loq<>	
Oxamyl		0.03	0.5	<loq< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Paclobutrazol	0.03	0.1	<loq< td=""><td></td></loq<>	
Parathion-	methyl	0.048	0.1	<loq< td=""><td>Pentachloronitrobenzene</td><td>0.03</td><td>0.2</td><td><loq< td=""><td></td></loq<></td></loq<>	Pentachloronitrobenzene	0.03	0.2	<loq< td=""><td></td></loq<>	
Permethri	n	0.03	1	<l0q< td=""><td>Phosmet</td><td>0.03</td><td>0.2</td><td><loq< td=""><td></td></loq<></td></l0q<>	Phosmet	0.03	0.2	<loq< td=""><td></td></loq<>	
Piperonylb	outoxide	0.03	3	<loq< td=""><td>Prallethrin</td><td>0.03</td><td>0.4</td><td><loq< td=""><td></td></loq<></td></loq<>	Prallethrin	0.03	0.4	<loq< td=""><td></td></loq<>	
Propicona	zole	0.03	1	<loq< td=""><td>Propoxur</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Propoxur	0.03	0.1	<loq< td=""><td></td></loq<>	

Propoxur Pyridaben

Spiromesifen

Spiroxamine

Thiacloprid

Trifloxystrobin

drit Gu Lab Toxicologist

1200

0.03

0.03

0.03

0.03

0.03

Xueli Gao Ph.D., DABT

Pyrethrins

Spinetoram

Spirotetramat

Tebuconazole

Thiamethoxam

Lab Director/Principal Scientist Aixia Sun

<LOQ

<LOQ

<LOQ

<L0Q

<L00

D.H.Sc., M.Sc., B.Sc., MT (AAB)

1

3

3

1

1

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA Total + CBA Total + CBA Total + CBA Total + CBA COLOR + CBDV + THCV + THCVA, *Total Detected Cannabinoids = CBD Total + CBA Total + CBA Total + THC Total + CBC + CBDV + THCV + THCVA, *Inalyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Clony Forming Unit per Gram (cfu/g) = Colony Forming Unit per

0.03

0.03

0.03

0.03

0.03

3

3

0.1

0.1

3

<LOQ

<LOQ

<LOQ

<LOQ

<L00

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

Sun Cit	CANNABIS & HE BEYOND COMP rtaro Dr. y Center, FL 33573 abcannabis.com					cy Supp Bato Sample M CBD/H erivative Proc (Inges	atrix: EMP lucts			
FL Lice	No. 800025015 nse # CMTL-0003 p. 10D1094068	Certificate of Analysis								
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301		Batch # ISP001_0016 Batch Date: 2021-03-30 Extracted From: hemp		Test Reg State: Oregon		Production Facility: Hudson Hem Production Date: 2021-03-30				
order Date	DR210409-020013 2021-04-09 AABE800	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-04-29 021-04-29 2021-05-06	Initial Gross Weight: 120.087	g					
Д	Residual Solvents - Specimen Weight: 12.800 mg	- FL (CBD)						Passed (gcмs)		
Dilution Fac	tor: 1.000 LOQ	Action Level	Result		LOQ	Action Level	Result			
Analyte	(ppm)		(ppm)	Analyte	(ppm)	(ppm)	(ppm)			
1,1-Dichlore Acetone	2.08 0.16		<loq <loq< td=""><td>1,2-Dichloroethane Acetonitrile</td><td>0.04 1.17</td><td>5 410</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	1,2-Dichloroethane Acetonitrile	0.04 1.17	5 410	<loq <loq< td=""><td></td></loq<></loq 			
Benzene	0.02		<loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""><td></td></loq<></td></loq<>	Butanes	2.5	2000	<loq< td=""><td></td></loq<>			
Chloroform		60 5000	<loq <loq< td=""><td>Ethanol Ethyl Ether</td><td>2.78 1.39</td><td>5000 5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Ethanol Ethyl Ether	2.78 1.39	5000 5000	<loq <loq< td=""><td></td></loq<></loq 			
Ethyl Aceta Ethylene O>		5000	<loq <loq< td=""><td>Heptane</td><td>1.39</td><td>5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Heptane	1.39	5000	<loq <loq< td=""><td></td></loq<></loq 			
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Isopropyl alcohol	1.39	500	<l0q< td=""><td></td></l0q<>			
Vethanol Pentane	0.69 2.08	3000 5000	<loq <loq< td=""><td>Methylene chloride Propane</td><td>2.43 5.83</td><td>600 2100</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Methylene chloride Propane	2.43 5.83	600 2100	<loq <loq< td=""><td></td></loq<></loq 			
Foluene	2.92		<loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""><td></td></loq<></td></loq<>	Total Xylenes	2.92	2170	<loq< td=""><td></td></loq<>			
Trichloroet	hylene 0.49	80	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>							
	pH Level							Tested		
	Specimen Weight: N/A Dilution Fac	ctor: 1.000						(pH Meter)		
Analyte	Result (pH)									
pH Level	4.0									
IT Level	4.0									
200	1. Gun	Aira								
ueli Gao	Lab Toxicologist	Aixia Sun Lab	Director/Principal Scie	entist						
h.D., DABT	Lab Toxicologist	D.H.Sc., M.Sc., B.Sc.,								
				ort: *Total CBD = CBD + (CBD-A * 0.877), *Tota		977 + Delta 0 THC	*CBC Total = ((PCA * 0 977) +		
		CBG, *CBN Total = (C	BNA * 0.877) + CBN, *0	ther Cannabinoids Total = CBC + (CBD-A * 0.877), *10(a CV-A, *Analyte Details above show the Dry Weig	+ THCV-A, *Total De ht Concentrations u	tected Cannabinoid nless specified as 1	s = CBD Total + 2% moisture con	CBG Total + CBN Incentration.		
17025	PJIA C	(mg/ml) = Milligrams Colony Forming Unit	s per Milliliter, LOQ = Lim per Gram (cfu/g) = Color	it of Quantitation, LOD = Limit of Detection, Di ny Forming Unit per Gram, , LOD = Limit of Dete						
	PILA Testing	(mg/ml) = Milligrams Colony Forming Unit (μg/g), (aw) = aw (ar	s per Milliliter, LOQ = Lim per Gram (cfu/g) = Color ea ratio) = Area Ratio, (n	it of Quantitation, LOD = Limit of Detection, Di	ection, (µg/g) = Mici	ogram per Gram (p	pm) = Parts per	Million, (ppm) =		

Page 4 of 4