721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com	& HEMP OMPLIANCE		Intimacy Sex Oil Batch 2 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certifica	ate of Analysis		
	- Co	ompliance Test		
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISO001_002 Batch Date: 2021-04-22 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huc Production Date: 2021-0	
Order # FOR210422-030004 Order Date: 2021-04-22 Sample # AABG231	Sampling Date: 2021-04-27 Lab Batch Date: 2021-04-27 Completion Date: 2021-05-04	Initial Gross Weight: 44.383 g		
	Tested	Microbiology (qPCR) Passed		

		Potency - 11			Tes	sted _	🗳 Pote	otency Summary		
Spec	cimen Weight: 90.				(HPLC/L		Total THC None Detected	Total CBD 0.329%		
Analyte	Dilution (1:n)	LOD (%)	LOQ (%)	Result (mg/g)	(%)		Total CBG	Total CBN		
CBD	10.000 0.0	000054	0.001	3.291	0.329		None Detected	None Detected		
CBC	10.000 0.0	000018	0.001		<loq< td=""><td>\geq</td><td>Other Cannabinoids</td><td>Total Cannabinoids</td></loq<>	\geq	Other Cannabinoids	Total Cannabinoids		
THCV	10.000 0.0	000007	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
Delta-9 THC	10.000 0.0	000013	0.001		<loq< td=""><td></td><td>None Detected</td><td>0.329%</td></loq<>		None Detected	0.329%		
Delta-8 THC	10.000 0.0	000026	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
CBN	10.000 0.0	000014	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
CBGA	10.000 0.	80000.	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
CBG	10.000 0.0	000248	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
CBDV	10.000 0.0	000065	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
CBDA	10.000 0	0.00001	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					
THCA-A	10.000 0.0	000032	0.001		<loq< td=""><td></td><td></td><td></td></loq<>					

Minis Gran drit

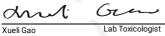
Xueli Gao Ph.D., DABT

Product Image

Lab Toxicologist Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Intal Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC + THCV-A, *Intal Detection, Dilution = Dilution = Calcon Parts per Billion, (%) = Percent, (cfug) = Colony Forming Unit per Gram (cfug) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Billion, (%) = Milligram per Killogram, *Measurement of Uncertainty = +/-5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.


	aro Dr. Center, FL 33573 cannabis.com									
L Licens	lo.800025015 ie # CMTL-0003 10D1094068		Ce		ate of Ana ompliance Test	lysis				
440 Juno	ELLNESS Stion Place, #102 0 80301	Bat	tch # ISO001_002 tch Date: 2021-04-21 tracted From: hemp		Test Reg State:	: Oregon			y: Hudson Hen 2021-04-21	ıp
	210504-010002 2021-05-04 ABH600	Lai	mpling Date: 2021-05 b Batch Date: 2021-05 mpletion Date: 2021-	-12	Initial Gross W	/eight: 44.38	3 g			
H	Heavy Metals Passed	☆ *	Mycotoxins Passed	Ö "	Pesticides Passed	Д	Residual Solvents Passed	•••	pH Level Tested	
otency	Panel Not Inclu	Ided								
	1. 6-1		Aire							
tru	1: Can		Mine =							
	л: Ссса Lab Toxicol		Mizzi = ixia Sun Lab Director	-	entist					
			Minuti Sun Lab Director, H.Sc., M.Sc., B.Sc., MT (AAE	-	entist					
Eli Gao D., DABT		D.	H.Sc., M.Sc., B.Sc., MT (AAE	3) used in this rep	oort: *Total CBD = CBD + (CE	BD-A* 0.877),* CBC+CBPV + TU		Delta 9 THC, Cannabinaid	*CBG Total = (CBG s = CBD Total + CB/	A* 0.877
		De CB	H.Sc., M.Sc., B.Sc., MT (AAE finitions and Abbreviations 3G, *CBN Total = (CBNA * 0./ tal + THC Total + CBC + CBD	3) used in this rep 877) + CBN, *(V + THCV + TH	oort: *Total CBD = CBD + (CE Other Cannabinoids Total = (ICV-A, *Analyte Details abov	CBC + CBDV + TH ve show the Dry V	ICV + THCV-A, *Total Detected Veight Concentrations unless s	Cannabinoid pecified as 12	s = CBD Total + CB0 2% moisture conce	i Total + Cl tration.
		D. D. CB To (m Co	H.Sc., M.Sc., B.Sc., MT (AAE finitions and Abbreviations IG, *CBN Total = (CBNA * 0. tal + THC Total + CBC + CBD tal = Milligrams per Milli	3) used in this rep 877) + CBN, *(V + THCV + TH liter, LOQ = Lin (cfu/g) = Colo	port: *Total CBD = CBD + (CE Other Cannabinoids Total = (ICV-A, *Analyte Details abov nit of Quantitation, LOD = Li ony Forming Unit per Gram, ,	CBC + CBDV + TH re show the Dry V imit of Detection , LOD = Limit of I	ICV + THCV-A, *Total Detected	Cannabinoid pecified as 12 b) = Parts pe	s = CBD Total + CBC 2% moisture concer r Billion, (%) = Perc	i Total + C Itration. ent, (cfu/g

721 Co Sun Cit www.acs License FL Lice	CANNABIS BEYOND Contarto Dr. by Center, FL 33573 labcannabis.com No. 800025015 mse # CMTL-0003 o. 10D1094068			Certifi	cate of Analysis		H Sample M CBD/H Derivative Proc (External	IEMP	
2440 Ju	WELLNESS Inction Place, #102 CO 80301		Batch # ISO001_ Batch Date: 202 Extracted From:	1-04-21	Test Reg State: Oregon		Production Facili Production Date:		emp
Order Dat	OR210504-010002 e: 2021-05-04 AABH600		Sampling Date: Lab Batch Date: Completion Date	2021-05-12	Initial Gross Weight: 44.383	3			
	Heavy Metals Specimen Weight: 251.33								Passed (ICP-MS)
	ctor: 2.000	LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte		(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)	
Arsenic (As Lead (Pb)	5)	0.1 0.1	1.5 0.5	<loq <loq< td=""><td>Cadmium (Cd) Mercury (Hg)</td><td>0.1 0.1</td><td>0.5 3</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Cadmium (Cd) Mercury (Hg)	0.1 0.1	0.5 3	<loq <loq< td=""><td></td></loq<></loq 	

** **Mycotoxins**

Specimen Weight: 178.300 mg

Dilution Factor: 8.413								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""><td></td></loq<>	
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""><td></td></loq<>	
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

Ph.D., DABT

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA TOTAl = (CBAA * 0.877) + CDA TOTAL = (CBA

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

Passed (LCMS)

						E	ł Sample M CBD/H Perivative Proc (External	EMP lucts		
FL Licer	No. 800025015 nse # CMTL-0003 0. 10D1094068				ate of Analysis					
Batch I			Batch # ISO001_002 Batch Date: 2021-04-21 Extracted From: hemp		Test Reg State: Oregon		Production Facility: Hudson Hemp Production Date: 2021-04-21			
	DR210504-010002 x 2021-05-04 AABH600	I	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-05-12	Initial Gross Weight: 44.383	g				
.	Pesticides								Passed	
D .	Specimen Weight: 178.3	00 ma							(LCMS/GCMS)	
Dilution Fact										
		LOQ	Action Level	Result		LOQ	Action Level	Result		
Analyte		(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)		
Abamectin		0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Acephate	0.03	3	<l0q< td=""><td></td></l0q<>		
Acequinocyl		0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Acetamiprid	0.03	3	<l0q< td=""><td></td></l0q<>		
Aldicarb		0.03	0.1	<l0q< td=""><td>Azoxystrobin</td><td>0.01 0.03</td><td>3 0.5</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Azoxystrobin	0.01 0.03	3 0.5	<l0q< td=""><td></td></l0q<>		
Bifenazate Carbaryl		0.03 0.01	0.5	<loq <loq< td=""><td>Bifenthrin Chlorfenapyr</td><td>0.03</td><td>0.5</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Bifenthrin Chlorfenapyr	0.03	0.5	<loq <loq< td=""><td></td></loq<></loq 		
Chlorpyrifos		0.01	0.1	<l0q< td=""><td>Clofentezine</td><td>0.048</td><td>0.1</td><td><l0q <l0q< td=""><td></td></l0q<></l0q </td></l0q<>	Clofentezine	0.048	0.1	<l0q <l0q< td=""><td></td></l0q<></l0q 		
Coumaphos		0.03	0.1	<l0q< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><l0q <l0q< td=""><td></td></l0q<></l0q </td></l0q<>	Cyfluthrin	0.03	1	<l0q <l0q< td=""><td></td></l0q<></l0q 		
Cypermethri		0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Daminozide	0.03	0.1	<loq< td=""><td></td></loq<>		
Diazinon		0.03	0.2	<loq< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Dichlorvos	0.03	0.1	<loq< td=""><td></td></loq<>		
Dimethoate		0.03	0.1	<loq< td=""><td>Dimethomorph</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Dimethomorph	0.03	3	<loq< td=""><td></td></loq<>		
Ethopropho		0.03	0.1	<loq< td=""><td>Etofenprox</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Etofenprox	0.03	0.1	<loq< td=""><td></td></loq<>		
Etoxazole		0.03	1.5	<loq< td=""><td>Fenhexamid</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Fenhexamid	0.03	3	<loq< td=""><td></td></loq<>		
Fenoxycarb		0.03	0.1	<loq< td=""><td>Fenpyroximate</td><td>0.03</td><td>2</td><td><loq< td=""><td></td></loq<></td></loq<>	Fenpyroximate	0.03	2	<loq< td=""><td></td></loq<>		
Fipronil		0.03	0.1	<loq< td=""><td>Flonicamid</td><td>0.03</td><td>2</td><td><loq< td=""><td></td></loq<></td></loq<>	Flonicamid	0.03	2	<loq< td=""><td></td></loq<>		
Fludioxonil		0.03	3	<loq< td=""><td>Hexythiazox</td><td>0.03</td><td>2</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Hexythiazox	0.03	2	<l0q< td=""><td></td></l0q<>		
Imazalil		0.03	0.1	<loq< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Imidacloprid	0.03	3	<loq< td=""><td></td></loq<>		
Kresoxim M	lethyl	0.03	1	<loq< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><loq< td=""><td></td></loq<></td></loq<>	Malathion	0.03	2	<loq< td=""><td></td></loq<>		
Metalaxyl		0.01	3	<loq< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Methiocarb	0.03	0.1	<l0q< td=""><td></td></l0q<>		
Methomyl		0.03	0.1	<loq< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""><td></td></loq<></td></loq<>	Mevinphos	0.03	0.1	<loq< td=""><td></td></loq<>		
Myclobutani	1	0.03	3	<l0q< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Naled	0.03	0.5	<l0q< td=""><td></td></l0q<>		
Oxamyl	and to all	0.03	0.5	<l0q< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><l0q< td=""><td></td></l0q<></td></l0q<>	Paclobutrazol	0.03	0.1	<l0q< td=""><td></td></l0q<>		
Parathion-m	ietnyi	0.048 0.03	0.1	<l0q< td=""><td>Pentachloronitrobenzene Phosmet</td><td>0.03</td><td>0.2</td><td><loq <loo< td=""><td></td></loo<></loq </td></l0q<>	Pentachloronitrobenzene Phosmet	0.03	0.2	<loq <loo< td=""><td></td></loo<></loq 		
Permethrin	tovide	0.03	1 3	<loq <loq< td=""><td>Phosmet Prallethrin</td><td>0.03</td><td>0.2</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Phosmet Prallethrin	0.03	0.2	<loq <loq< td=""><td></td></loq<></loq 		
Piperonylbut Propiconazo		0.03	3	<loq <loq< td=""><td>Propoxur</td><td>0.03</td><td>0.4</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Propoxur	0.03	0.4	<loq <loq< td=""><td></td></loq<></loq 		
Propiconazo		0.03	1	<loq <loo< td=""><td></td><td>0.03</td><td>0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loo<></loq 		0.03	0.1	<loq <loq< td=""><td></td></loq<></loq 		
		0.03	3	<loq <loq< td=""><td>Pyridaben Spiromesifen</td><td>0.03</td><td>3</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Pyridaben Spiromesifen	0.03	3	<loq <loq< td=""><td></td></loq<></loq 		
Spinetoram Spirotetram	aat	0.03	3	<loq <loq< td=""><td>Spiromesiren Spiroxamine</td><td>0.03</td><td>3 0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Spiromesiren Spiroxamine	0.03	3 0.1	<loq <loq< td=""><td></td></loq<></loq 		
Shinorenam		0.03	3	<loq <loq< td=""><td>Thiacloprid</td><td>0.03</td><td>0.1</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Thiacloprid	0.03	0.1	<loq <loq< td=""><td></td></loq<></loq 		
Tebuconazo										

drit Gr in Lab Toxicologist Xueli Gao

1200

Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Inter Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC + THCV-A, *Total Detection, Dilution = Dilution Total + CBC + CBDV + THCV + THCV + THCV-A, *Total Detection, Dilution = Dilution = Dilution Total + CBC + CBN Total + C

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 3 of 4

Sun City	ATORY CANNABIS & BEYOND CON rtaro Dr. y Center, FL 33573 labcannabis.com	HEMP MPLIANCE		Intimacy Sex Oil Batch 2 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
FL Lice	No. 800025015 nse # CMTL-0003 o. 10D1094068		te of Analysis		
2440 Ju	WELLNESS nction Place, #102 CO 80301	Batch # ISO001_002 Batch Date: 2021-04-22 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Hude Production Date: 2021-0	
Order Date	OR210422-030004 e: 2021-04-22 AABG231	Sampling Date: 2021-04-27 Lab Batch Date: 2021-04-27 Completion Date: 2021-05-04	Initial Gross Weight: 44.383 g		
	Microbiology (qF Specimen Weight: 220.900 m	· · ·			Passe (qPC
Dilution Fac	ctor: 1.000	Desult	Analysis	Deput	
Analyte Total Aerob Total Enter	bic Count robacteriaceae	Result Passed Passed	Analyte Total Coliform Total Yeast/Mold	Result Passed Passed	
dr	A: Gran	Airai San	_		
Kueli Gao Ph.D., DABT	Lab Toxicologis	st Aixia Sun Lab Director/Principal Scier D.H.Sc., M.Sc., B.Sc., MT (AAB)	ntist		
ISO 17025 EXTERNO	FJLA FJLA	Definitions and Abbreviations used in this repo CBG, *CBN Total = (CBNA * 0.877) + CBN, *Ot Total + THC Total + CBC + CBDV + THCV + THC (mg/ml) = Milligrams per Milliliter, LOQ = Limit Colony Forming Unit per Gram (cfu/g) = Colon	rt: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = her Cannabinoids Total = CBC + CBDV + THCV + THCV V-A, *Analyte Details above show the Dry Weight Conc of Quantitation, LOD = Limit of Detection, Dilution = Forming Unit per Gram, .LOD = Limit of Detection (, g/Kg) = Milligram per Kilogram, *Measurement of Un	·A, *Total Detected Cannabinoids = CBD Tr entrations unless specified as 12% moist Dilution Factor (ppb) = Parts per Billion, (' g/g) = Microgram per Gram (ppm) = Par	otal + CBG Total + CB are concentration. %) = Percent, (cfu/g)
A REMITTED LANGE		This report shall not be reproduced, withou analyzed. Test results are confidential unl	g/Kg) = Milligram per Kliogram , "Measurement of Un It written approval, from ACS Laboratory. The res ses explicitly waived otherwise. Accredited by a le International Organization for Standardization.	ults of this report relate only to the m third-party accrediting body as a com	aterial or product betent testing Page 2

Page 2 of 2

	NTORY BEYOND COMP taro Dr. / Center, FL 33573 abcannabis.com	INP LIANCE			De	Sample M CBD/H erivative Proc (External	IEMP	
FL Licer	No. 800025015 ise # CMTL-0003 b. 10D1094068			e of Analysis				
2440 Ju	WELLNESS nction Place, #102 C0 80301	Batch # ISO001_ Batch Date: 2021 Extracted From: h	-04-21	Test Reg State: Oregon		oduction Facili oduction Date:		lemp
Order Date	DR210504-010002 2021-05-04 AABH600	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-05-12	Initial Gross Weight: 44.383 g				
Д	Residual Solvents - Specimen Weight: 14.700 mg	FL (CBD)						Passec (GCMS
Dilution Fact	tor: 1.000 LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)	
1,1-Dichloro Acetone	0.16 0.18 0.18	8 5000	<loq <loq< td=""><td>1,2-Dichloroethane Acetonitrile</td><td>0.04 1.17</td><td>5 410</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	1,2-Dichloroethane Acetonitrile	0.04 1.17	5 410	<loq <loq< td=""><td></td></loq<></loq 	
Benzene	2.08	2	<loq <loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><l0q <l0q< td=""><td></td></l0q<></l0q </td></loq<></loq 	Butanes	2.5	2000	<l0q <l0q< td=""><td></td></l0q<></l0q 	
Chloroform		60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td>Passed</td><td></td></loq<>	Ethanol	2.78	5000	Passed	
Ethyl Acetat Ethylene Ox		5000 5	<loq <loq< td=""><td>Ethyl Ether Heptane</td><td>1.39 1.39</td><td>5000 5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Ethyl Ether Heptane	1.39 1.39	5000 5000	<loq <loq< td=""><td></td></loq<></loq 	
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><loq< td=""><td></td></loq<></td></loq<>	Isopropyl alcohol	1.39	500	<loq< td=""><td></td></loq<>	
Methanol	0.69	3000	<loq< td=""><td>Methylene chloride</td><td>2.43</td><td>600</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Methylene chloride	2.43	600	<l0q< td=""><td></td></l0q<>	
Pentane Toluene	2.08 2.92	5000 890	<loq <loq< td=""><td>Propane Total Xylenes</td><td>5.83 2.92</td><td>2100 2170</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Propane Total Xylenes	5.83 2.92	2100 2170	<loq <loq< td=""><td></td></loq<></loq 	
Trichloroeth		80	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					
ŪŪ	pH Level							Teste
	Specimen Weight: N/A Dilution Fac	tor: 1.000						(pH Meter
	Result							
Analyte	(pH)							
pH Level	4.0							
dri	N. Can	Ain						
Cueli Gao	A: Com Lab Toxicologist	Aixia Sun Lab	Director/Principal Scient	ist				
(ueli Gao ۲۰.D., DABT		//	Director/Principal Scient					
Cueli Gao		Aixia Sun Lab D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + C (mg/ml) = Milligrams Colony Forming Unit	Director/Principal Scient MT (AAB) eviations used in this report BNA * 0.877) + CBN, *Oth BC + CBDV + THCV + THCV s per Millilliter, LOQ = Limit c per Gram (Cfug) = Colony J	:*Total CBD = CBD + (CBD-A * 0.877), *Total T r Cannabinoids Total = CBC + CBDV + THCV + A, *Analyte Details above show the Dry Weight of Quantitation, LOD = Limit of Detection, Dilut Forming Unit per Gram, .LOD = Limit of Detect	THCV-A, *Total De Concentrations un ion = Dilution Fact	tected Cannabinoid nless specified as 1 or (ppb) = Parts p	ds = CBD Total + 2% moisture con er Billion, (%) = P	CBG Total + CBN ncentration. ercent, (cfu/g) =
Cueli Gao h.D., DABT		Aixia Sun Lab D.H.Sc., M.Sc., B.Sc., Definitions and Abbr CBG, *CBN Total = (C Total + THC Total + C (mg/ml) = Milligrams Colony Forming Unit (µg/g), (aw) = aw (ar	Director/Principal Scient MT (AAB) eviations used in this report BBA * 0.877) + CBN, *Othe BC + CBDV + THCV s per Milliliter, LOQ = Limit c per Gram (Cfug) = Colony ea ratio) = Area Ratio, (mg/	:*Total CBD = CBD + (CBD-A * 0.877), *Total T er Cannabinoids Total = CBC + CBDV + THCV + A, *Analyte Details above show the Dry Weight f Quantitation, LOD = Limit of Detection, Dilut Forming Unit per Gram, LOD = Limit of Detect Kg) = Milligram per Kilogram	THCV-A, *Total De Concentrations u ion = Dilution Fact tion, (µg/g) = Micr	tected Cannabinoio nless specified as 1 or (ppb) = Parts p ogram per Gram (j	ds = CBD Total + 12% moisture con er Billion, (%) = P opm) = Parts per	CBG Total + CBN ncentration. ercent, (cfu/g) = Million, (ppm) =
Lueli Gao 1.D., DABT		Aixia Sun Lab D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + C (mg/ml) = Milligram: Colony Forming Unit (µg/g), (aw) = aw (ar This report shall no analyzed. Test resil	Director/Principal Scient MT (AAB) eviations used in this report BRA * 0.877) + CBN, *Oth BC + CBDV + THCV + THCV sper Milliliter, LOQ = Limit o per Gram (cfurg) = Colony ea ratio) = Area Ratio, (mg/ t be reproduced, without t bs are confidential unles	:*Total CBD = CBD + (CBD-A * 0.877), *Total T r Cannabinoids Total = CBC + CBDV + THCV + A, *Analyte Details above show the Dry Weight of Quantitation, LOD = Limit of Detection, Dilut Forming Unit per Gram, .LOD = Limit of Detect	THCV-A, *Total De concentrations un ion = Dilution Fact tion, (µg/g) = Micr ne results of this by a third-party a	tected Cannabinoid nless specified as 1 or (ppb) = Parts p ogram per Gram (p report relate only	ds = CBD Total + 2% moisture con er Billion, (%) = P opm) = Parts per y to the materia	CBG Total + C ncentration. ercent, (cfu/g) Million, (ppm l or product

Page 4 of 4