Sex Oil with CBD - Intimacy Batch 1 Sample Matrix: **CANNABIS & HEMP** BEYOND COMPLIANCE CBD/HEMP Derivative Products 721 Cortaro Dr. Sun City Center, FL 33573 (External Use) www.acslabcannabis.com License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068 **Certificate of Analysis** Compliance Test Production Facility: Hudson Hemp Production Date: 2021-03-16 Batch # ISO001 001 Test Reg State: Oregon FORIA WELLNESS Batch Date: 2021-03-16 Extracted From: hemp 2440 Junction Place, #102 Boulder, CO 80301 Order # FOR210316-020035 Order Date: 2021-03-16 Sample # AABC431 Sampling Date: 2021-03-18 Lab Batch Date: 2021-03-18 Initial Gross Weight: 44.775 g Completion Date: 2021-03-22 Microbiology Potency (qPCR) Tested Passed 127-3-1

Potency Summary ∢ Potency - 11 Tested Total CBD Total THC (HPLC/LCMS) Specimen Weight: 95.830 mg None Detected 0.378% Dilution (1:n) LOD (%) LOQ (%) Result (mg/g) Analyte Total CBG Total CBN (%) CBD 10 000 0 000054 0.001 3 779 0.378 None Detected None Detected CBC 10.000 0.000018 0.001 <L00 Other Cannabinoids Total Cannabinoids THCV 10.000 0.000007 0.001 <LOQ None Detected 0.378% Delta-9 THC 10.000 0.000013 0.001 <LOQ Delta-8 THC 10.000 0.000026 0.001 <LOQ CBN 10.000 0.000014 0.001 <L00 0.00008 CBGA 10.000 0.001 <LOQ 10.000 0.000248 0.001 CBG <L00 CBDV 10.000 0.000065 0.001 <LOQ 0.00001 0.001 CBDA 10.000 <LOQ THCA-A 10.000 0.000032 0.001 <LOQ

Gra drit Lab Toxicologist

Xueli Gao Ph.D., DABT

X OIL 00 Sample

Product Image

12

Lab Director/Principal Scientist Aixia Sun D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Quantitation, LOD = Limit of Detection, Dilution = Dilution = CBC + CBDV + THCV + THCV-A, *Otal Detected Cannabinoids = CBD Total + CBN Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/ml) = Milligrams per Milliliter, LOQ = Limit of Detection, Dilution = Dilution = Dilution Factor (ppb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram, (LOD = Limit of Detection, Up2/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram, *Measurement of Uncertainty = +/- 5%

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

	IS & HEMP COMPLIANCE	Sex Oil wit	th CBD - Intimacy Batch 1 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068		ate of Analysis		
FORIA WELLNESS 2440 Junction Place, #102 3oulder, CO 80301	Batch # ISO001_001 Batch Date: 2021-03-16 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-0	
Drder # FOR210316-020035 Drder Date: 2021-03-16 Sample # AABC431	Sampling Date: 2021-03-18 Lab Batch Date: 2021-03-18 Completion Date: 2021-03-22	Initial Gross Weight: 44.775 g		
Specimen Weight: 254.0				Passec (qPCR
Dilution Factor: 1.000				
Analyte Total Aerobic Count	Result Passed	Analyte Total Coliform	Result Passed	
drut Gre	~ Airia	_		
Kueli Gao Lab Toxic		entist		
h.D., DABT	CBG, *CBN Total = (CBNA * 0.877) + CBN,*0 Total + THC Total + CBC + CBDV + THCV + TH (mg/ml) = Milligrams per Milliliter, LOQ = Lim Colony Forming Unit per Gram (cfu/g) = Colo	ort: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = ther Cannabinoids Total = CBC + CBDV + THCV + THCV CVA, *Analyte Details above show the Dry Weight Conc it of Quantitation, LOD = Limit of Detection, Dilution = 1 my Forming Unit per Gram, .LOD = Limit of Detection, (ng/Kg) = Milligram per Kilogram , *Measurement of Un	A, *Total Detected Cannabinoids = CBD Tr entrations unless specified as 12% moistu Oilution Factor (ppb) = Parts per Billion, (' Ig/g) = Microgram per Gram (ppm) = Par	otal + CBG Total + CBN ure concentration. %) = Percent, (cfu/g) =
	analyzed. Test results are confidential un	out written approval, from ACS Laboratory. The res pless explicitly waived otherwise. Accredited by a t the International Organization for Standardization.	hird-party accrediting body as a com	

Page 2 of 2

721 Corta Sun City (ORY BEYOND C ro Dr. Center, FL 33573 cannabis.com							Deriva	CBD/H ative Prod (External	lucts	
L Licens	o.800025015 e#CMTL-0003 10D1094068		C	ertif		ate of Ana ompliance Test	alysis				
	ELLNESS tion Place, #102 0 80301	Ba	tch # ISO001_001 tch Date: 2021-03- tracted From: hemp	-18		Test Reg Stat	te: Oregon			ty: Hudson 2021-03-18	
	210325-010019 2021-03-25 ABD360	La	mpling Date: 2021 b Batch Date: 2021 ompletion Date: 20	-04-05		Initial Gross	Weight: 44.77	5 g			
H	Heavy Metals Passed	☆ *	Mycotoxins Passed	Ċ		Pesticides Passed	Д	Residual Solvents Passed	<u>.</u>	pH Level Tested	
otency	Panel Not Inclu	ıded	=								
×n	1: Gen		Ain								
eli Gao	л Ссл Lab Toxicol			Stor/Principa Gap	al Scie	entist					
Xnn Heli Gao D., DABT	Lab Toxicol	D. De CB To Cm Co	H.Sc., M.Sc., B.Sc., MT (finitions and Abbreviations 3G, *CBN Total = (CBNA) tal + THC Total + CBC + ng/ml) = Milligrams per Jony Forming Unit per G	(AAB) ons used in th * 0.877) + Cl CBDV + THCV Milliliter, LOC Gram (cfu/g) =	nis repo BN, *O / + THO = Lim = Color	ort: *Total CBD = CBD + ()ther Cannabinoids Total CV-A, *Analyte Details ab nit of Quantitation, LOD = ny Forming Unit per Gram	= CBC + CBDV + TH ove show the Dry W Limit of Detection n, , LOD = Limit of D	Total THC = THCA-A * 0.877 CV + THCV-A, *Total Detecter /eight Concentrations unless > Dilution = Dilution Factor (p) Detection, (µg/g) = Microgram	d Cannabinoid specified as 1 ob) = Parts pe	Is = CBD Total + 2% moisture co er Billion, (%) =	CBG Total + C oncentration. Percent, (cfu/g
eli Gao D., DABT	-	D. D. CB To CB CB CB CB CB CB CB CB CB CB CB CB CB	H.Sc., M.Sc., B.Sc., MT (finitions and Abbreviati 3G, *CBN Total = (CBNA tal + THC Total + CBC + g/ml) = Milligrams per blony Forming Unit per G g/g), (aw) = aw (area rat	(AAB) ons used in th * 0.877) + Cl CBDV + THCV Milliliter, LOO Gram (cfu/g) = tio) = Area Ra	nis repo BN, *O / + TH = Lim = Color ntio, (n	ort: *Total CBD = CBD + ()ther Cannabinoids Total CV-A, *Analyte Details ab nit of Quantitation, LOD = ny Forming Unit per Gram ng/Kg) = Milligram per K	= CBC + CBDV + TH ove show the Dry V Limit of Detection n, , LOD = Limit of I illogram	CV + THCV-A, *Total Detecter /eight Concentrations unless , Dilution = Dilution Factor (pp	d Cannabinoid specified as 1 ob) = Parts pe m per Gram (p	Is = CBD Total + 2% moisture co er Billion, (%) = opm) = Parts pe	CBG Total + C oncentration. Percent, (cfu/g Million, (ppm

ACS CANNABIS & HEMP LABORATORY BEYOND COMPLIANCE

721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com

License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068 Sex Oil with CBD - Intimacy Batch 1 Sample Matrix: CBD/HEMP Derivative Products

(External Use)

(ICP-MS)

Passed (LCMS)

Certificate of Analysis

Compliance Test

FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISO001_001 Batch Date: 2021-03-18 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Hudson Hemp Production Date: 2021-03-18
Order # FOR210325-010019 Order Date: 2021-03-25 Sample # AABD360	Sampling Date: 2021-04-05 Lab Batch Date: 2021-04-05 Completion Date: 2021-04-14	Initial Gross Weight: 44.775 g	
H Heavy Metals			Passed

Specimen Weight: 251.300 mg

Dilution Factor: 2.000								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Arsenic (As)	0.1	1.5	<loq< td=""><td>Cadmium (Cd)</td><td>0.1</td><td>0.5</td><td><loq< td=""><td></td></loq<></td></loq<>	Cadmium (Cd)	0.1	0.5	<loq< td=""><td></td></loq<>	
Lead (Pb)	0.1	0.5	<loq< td=""><td>Mercury (Hg)</td><td>0.1</td><td>3</td><td><loq< td=""><td></td></loq<></td></loq<>	Mercury (Hg)	0.1	3	<loq< td=""><td></td></loq<>	

♣ Mycotoxins

Specimen Weight: 163.800 mg

Dilution Factor: 9.158								
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	
Aflatoxin B1	0.006	0.02	<loq< td=""><td>Aflatoxin B2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin B2	0.006	0.02	<loq< td=""><td></td></loq<>	
Aflatoxin G1	0.006	0.02	<loq< td=""><td>Aflatoxin G2</td><td>0.006</td><td>0.02</td><td><loq< td=""><td></td></loq<></td></loq<>	Aflatoxin G2	0.006	0.02	<loq< td=""><td></td></loq<>	
Ochratoxin A	0.012	0.02	<loq< td=""><td></td><td></td><td></td><td></td><td></td></loq<>					

drit Gr 1 Lab Toxicologist Xueli Gao

Xueli Gao Ph.D., DABT

Aixia Sun Lab Director/Principal Scientist D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBGA * 0.877) + CBG, *CBN Total = (CBCA * 0.877) + CBN, *Other Cannabinoids Total = CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBG Total + CBN Total + THC Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/mg) = Milligrams per Milliter, LOD = Limit of Detection, Dilution = Dilution Factor (pb) = Parts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Page 2 of 4

ACCS LABORATORY 721 Cortaro Dr. Sun City Center, FL 33573 www.acslabcannabis.com License No. 800025015 FL License # CMTL-0003 CLIA No. 10D1094068	Certifica	ate of Analysis	th CBD - Intimacy Batch 1 Sample Matrix: CBD/HEMP Derivative Products (External Use)	
FORIA WELLNESS 2440 Junction Place, #102 Boulder, CO 80301	Batch # ISO001_001 Batch Date: 2021-03-18 Extracted From: hemp	Test Reg State: Oregon	Production Facility: Huds Production Date: 2021-0	
Order # FOR210325-010019 Order Date: 2021-03-25 Sample # AABD360	Sampling Date: 2021-04-05 Lab Batch Date: 2021-04-05 Completion Date: 2021-04-14	Initial Gross Weight: 44.775 g		

Pesticides

÷۵

Specimen Weight: 163.800 mg

Dilution Factor: 9.158							
Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)	Analyte	LOQ (ppm)	Action Level (ppm)	Result (ppm)
Abamectin	0.028	0.3	<loq< td=""><td>Acephate</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Acephate	0.03	3	<loq< td=""></loq<>
Acequinocyl	0.048	2	<loq< td=""><td>Acetamiprid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Acetamiprid	0.03	3	<loq< td=""></loq<>
Aldicarb	0.03	0.1	<loq< td=""><td>Azoxystrobin</td><td>0.01</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Azoxystrobin	0.01	3	<loq< td=""></loq<>
Bifenazate	0.03	3	<loq< td=""><td>Bifenthrin</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Bifenthrin	0.03	0.5	<loq< td=""></loq<>
Carbaryl	0.01	0.5	<loq< td=""><td>Chlorfenapyr</td><td>0.048</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Chlorfenapyr	0.048	0.1	<loq< td=""></loq<>
Chlorpyrifos	0.03	0.1	<loq< td=""><td>Clofentezine</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Clofentezine	0.03	0.5	<loq< td=""></loq<>
oumaphos	0.03	0.1	<loq< td=""><td>Cyfluthrin</td><td>0.03</td><td>1</td><td><loq< td=""></loq<></td></loq<>	Cyfluthrin	0.03	1	<loq< td=""></loq<>
Cypermethrin	0.03	1	<loq< td=""><td>Daminozide</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Daminozide	0.03	0.1	<loq< td=""></loq<>
Diazinon	0.03	0.2	<loq< td=""><td>Dichlorvos</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Dichlorvos	0.03	0.1	<loq< td=""></loq<>
imethoate	0.03	0.1	<loq< td=""><td>Dimethomorph</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Dimethomorph	0.03	3	<loq< td=""></loq<>
thoprophos	0.03	0.1	<loq< td=""><td>Etofenprox</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Etofenprox	0.03	0.1	<loq< td=""></loq<>
toxazole	0.03	1.5	<loq< td=""><td>Fenhexamid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Fenhexamid	0.03	3	<loq< td=""></loq<>
enoxycarb	0.03	0.1	<loq< td=""><td>Fenpyroximate</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Fenpyroximate	0.03	2	<loq< td=""></loq<>
ipronil	0.03	0.1	<loq< td=""><td>Flonicamid</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Flonicamid	0.03	2	<loq< td=""></loq<>
ludioxonil	0.03	3	<loq< td=""><td>Hexythiazox</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Hexythiazox	0.03	2	<loq< td=""></loq<>
mazalil	0.03	0.1	<loq< td=""><td>Imidacloprid</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Imidacloprid	0.03	3	<loq< td=""></loq<>
resoxim Methyl	0.03	1	<loq< td=""><td>Malathion</td><td>0.03</td><td>2</td><td><loq< td=""></loq<></td></loq<>	Malathion	0.03	2	<loq< td=""></loq<>
1etalaxyl	0.01	3	<loq< td=""><td>Methiocarb</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Methiocarb	0.03	0.1	<loq< td=""></loq<>
fethomyl	0.03	0.1	<loq< td=""><td>Mevinphos</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Mevinphos	0.03	0.1	<loq< td=""></loq<>
Ayclobutanil	0.03	3	<loq< td=""><td>Naled</td><td>0.03</td><td>0.5</td><td><loq< td=""></loq<></td></loq<>	Naled	0.03	0.5	<loq< td=""></loq<>
Dxamyl	0.03	0.5	<loq< td=""><td>Paclobutrazol</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Paclobutrazol	0.03	0.1	<loq< td=""></loq<>
Parathion-methyl	0.048	0.1	<loq< td=""><td>Pentachloronitrobenzene</td><td>0.03</td><td>0.2</td><td><loq< td=""></loq<></td></loq<>	Pentachloronitrobenzene	0.03	0.2	<loq< td=""></loq<>
Permethrin	0.03	1	<loq< td=""><td>Phosmet</td><td>0.03</td><td>0.2</td><td><loq< td=""></loq<></td></loq<>	Phosmet	0.03	0.2	<loq< td=""></loq<>
Piperonylbutoxide	0.03	3	<loq< td=""><td>Prallethrin</td><td>0.03</td><td>0.4</td><td><loq< td=""></loq<></td></loq<>	Prallethrin	0.03	0.4	<loq< td=""></loq<>
ropiconazole	0.03	1	<loq< td=""><td>Propoxur</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Propoxur	0.03	0.1	<loq< td=""></loq<>
yrethrins	0.03	1	<loq< td=""><td>Pyridaben</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Pyridaben	0.03	3	<loq< td=""></loq<>
pinetoram	0.03	3	<loq< td=""><td>Spiromesifen</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Spiromesifen	0.03	3	<loq< td=""></loq<>
pirotetramat	0.03	3	<loq< td=""><td>Spiroxamine</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Spiroxamine	0.03	0.1	<loq< td=""></loq<>
Febuconazole	0.03	1	<loq< td=""><td>Thiacloprid</td><td>0.03</td><td>0.1</td><td><loq< td=""></loq<></td></loq<>	Thiacloprid	0.03	0.1	<loq< td=""></loq<>
hiamethoxam	0.03	1	<loq< td=""><td>Trifloxystrobin</td><td>0.03</td><td>3</td><td><loq< td=""></loq<></td></loq<>	Trifloxystrobin	0.03	3	<loq< td=""></loq<>

drit Gr 1 Lab Toxicologist Xueli Gao

Ph.D., DABT

Lab Director/Principal Scientist Aixia Sun

D.H.Sc., M.Sc., B.Sc., MT (AAB)

Definitions and Abbreviations used in this report: *Total CBD = CBD + (CBD-A * 0.877), *Total THC = THCA-A * 0.877 + Delta 9 THC, *CBG Total = (CBGA * 0.877) + CBG, *CBN Total = (CBAA * 0.877) + CBA, *CDA Total + CBC Total + CBA + CBN Total + CBC + CBDV + THCV + THCV-A, *Total Detected Cannabinoids = CBD Total + CBA Total + CBA Total + CBC + CBDV + THCV + THCV-A, *Analyte Details above show the Dry Weight Concentrations unless specified as 12% moisture concentration. (mg/m) = Milligrams per Million (Q) = Limit of Detection, Dilution = Dilution = Eator (DD) = Darts per Billion, (%) = Percent, (cfu/g) = Colony Forming Unit per Gram (cfu/g) = Colony Forming Unit per Gram, LOD = Limit of Detection, (µg/g) = Microgram per Gram (ppm) = Parts per Million, (ppm) = (µg/g), (aw) = aw (area ratio) = Area Ratio, (mg/Kg) = Milligram per Kilogram

This report shall not be reproduced, without written approval, from ACS Laboratory. The results of this report relate only to the material or product analyzed. Test results are confidential unless explicitly waived otherwise. Accredited by a third-party accrediting body as a competent testing laboratory pursuant to ISO/IEC 17025 of the International Organization for Standardization.

Passed (LCMS/GCMS)

Sun Cit	ATORY CANNABIS & HE BEYOND COMP rtaro Dr. y Center, FL 33573 abcannabis.com			Sex Oil		Intimacy Ba Sample M CBD/H crivative Proc (External	atrix: EMP lucts	
FL Lice	No. 800025015 nse # CMTL-0003 o. 10D1094068			e of Analysis				
2440 Ju	WELLNESS nction Place, #102 C0 80301	Batch # ISO001_(Batch Date: 2021) Extracted From: h	03-18	Test Reg State: Oregon		oduction Facili oduction Date:		lemp
Order Date	DR210325-010019 æ 2021-03-25 AABD360	Sampling Date: 2 Lab Batch Date: 2 Completion Date:	021-04-05	Initial Gross Weight: 44.775 g				
Д	Residual Solvents - Specimen Weight: 14.100 mg	FL (CBD)						Passed (GCMS)
Dilution Fac	tor: 1.000 LOQ	Action Level	Result		LOQ	Action Level	Result	
Analyte	(ppm)	(ppm)	(ppm)	Analyte	(ppm)	(ppm)	(ppm)	
1,1-Dichlor Acetone	oethene 0.16 2.08	8 5000	<loq <loq< td=""><td>1,2-Dichloroethane Acetonitrile</td><td>0.04 1.17</td><td>5 410</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	1,2-Dichloroethane Acetonitrile	0.04 1.17	5 410	<loq <loq< td=""><td></td></loq<></loq 	
Benzene	0.02	2	<loq< td=""><td>Butanes</td><td>2.5</td><td>2000</td><td><loq< td=""><td></td></loq<></td></loq<>	Butanes	2.5	2000	<loq< td=""><td></td></loq<>	
Chloroforn		60	<loq< td=""><td>Ethanol</td><td>2.78</td><td>5000</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Ethanol	2.78	5000	<l0q< td=""><td></td></l0q<>	
Ethyl Aceta Ethylene O:		5000 5	<loq <loq< td=""><td>Ethyl Ether Heptane</td><td>1.39 1.39</td><td>5000 5000</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Ethyl Ether Heptane	1.39 1.39	5000 5000	<loq <loq< td=""><td></td></loq<></loq 	
Hexane	1.17	290	<loq< td=""><td>Isopropyl alcohol</td><td>1.39</td><td>500</td><td><l0q< td=""><td></td></l0q<></td></loq<>	Isopropyl alcohol	1.39	500	<l0q< td=""><td></td></l0q<>	
Methanol Pentane	0.69 2.08	3000 5000	<loq <loq< td=""><td>Methylene chloride Propane</td><td>2.43 5.83</td><td>600 2100</td><td><loq <loq< td=""><td></td></loq<></loq </td></loq<></loq 	Methylene chloride Propane	2.43 5.83	600 2100	<loq <loq< td=""><td></td></loq<></loq 	
Toluene	2.92	890	<loq <loq< td=""><td>Total Xylenes</td><td>2.92</td><td>2170</td><td><loq< td=""><td></td></loq<></td></loq<></loq 	Total Xylenes	2.92	2170	<loq< td=""><td></td></loq<>	
Trichloroet	hylene 0.49	80	<loq< th=""><th></th><th></th><th></th><th></th><th></th></loq<>					
	pH Level							Tested
	Specimen Weight: N/A Dilution Fac	tor: 1.000						(pH Meter)
Analyte	Result (pH)							
pH Level	4.0							
pricever	4.0							
_1								
dr	Mi Gran	//						
	A Gran Lab Toxicologist	Aixia Sun Lab [Director/Principal Scientis	st				
Kueli Gao Ph.D., DABT		//	Director/Principal Scientis	st				
		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + Cl (mg/ml) = Milligrams Colony Forming Unit I	Director/Principal Scientis MT (AAB) viations used in this report: BNA* 0.877) + CBN, *Other SC + CBDV + THCV + THCV + per Milliliter, LOQ = Limit o ref Gram (Grug) = Colony Fr	*Total CBD = CBD + (CBD-A * 0.877), *Total T Cannabinoids Total = CBC + CBDV + THCV + T , *Analyte Details above show the Dry Weight (Quantitation, LOD = Limit of Detection, Diluti roming Unit per Gram, , LOD = Limit of Detection	HCV-A, *Total De Concentrations ur on = Dilution Facto	tected Cannabinoid nless specified as 1 or (ppb) = Parts pe	ls = CBD Total + 2% moisture con er Billion, (%) = P	CBG Total + CBN ncentration. ercent, (cfu/g) =
Ph.D., DABT		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + CI (mg/ml) = Milligrams Colony Forming Unit (µg/g), (aw) = aw (arc	birector/Principal Scientis MT (AAB) viations used in this report: BNA* 0.877) + CBN, *Other BC + CBDV + THCV + THCV + per Milliliter, LOQ = Limit ô rer Gram (Grug) = Colony Fr aa ratio) = Area Ratio, (mg/k	*Total CBD = CBD + (CBD-A * 0.877), *Total TT Cannabinoid's Total = CBC + CBDV + THCV + T , *Analyte Details above show the Dry Weight T Quantitation, LOD = Limit of Detection, Dilutio roming Unit per Gram, , LOD = Limit of Detection (g) = Milligram per Kilogram	HCV-A, *Total De Concentrations ur on = Dilution Facto on, (μg/g) = Micr	tected Cannabinoid nless specified as 1 or (ppb) = Parts po ogram per Gram (p	Is = CBD Total + 2% moisture con er Billion, (%) = P opm) = Parts per	CBG Total + CBN ncentration. ercent, (cfu/g) = Million, (ppm) =
h.D., DABT		Aixia Sun Lab I D.H.Sc., M.Sc., B.Sc., Definitions and Abbre CBG, *CBN Total = (C Total + THC Total + Cl (mg/ml) = Milligrams Colony Forming Unit p (ug/g), (aw) = aw (arr This report shall no analyzed. Test resu	Director/Principal Scientis MT (AAB) viations used in this report: BNA * 0.877) + CBN, * Other SC + CBDV + THCV + THCVA per Milliliter, LOQ = Limit oi ree Gram (cfu/g) = Colony Fr ar artio) = Area Ratio, (mg/k t be reproduced, without t its are confidential unles	*Total CBD = CBD + (CBD-A * 0.877), *Total T Cannabinoids Total = CBC + CBDV + THCV + T , *Analyte Details above show the Dry Weight (Quantitation, LOD = Limit of Detection, Diluti roming Unit per Gram, , LOD = Limit of Detection	HCV-A, *Total De Concentrations ur on = Dilution Facto on, (μg/g) = Micr eresults of this by a third-party a	tected Cannabinoid nless specified as 1 or (ppb) = Parts p ogram per Gram (p report relate only	Is = CBD Total + 2% moisture con er Billion, (%) = P opm) = Parts per v to the materia	CBG Total + CBN ncentration. ercent, (cfu/g) = 'Million, (ppm) = <i>l or product</i>

Page 4 of 4