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Abstract

Phenolic compounds in grapes and wine are grouped within the following major classes: stilbenes, phenolic acids,

ellagitannins, flavan-3-ols, anthocyanins, flavonols, and proanthocyanidins. Consumption of foods containing phenolic

substances has been linked to beneficial effects toward chronic diseases such as coronary heart disease and colorectal

cancer. However, such correlations need to be supported by in vivo testing and bioavailability studies are the first step in

establishing cause and effect. Class members from all phenolic groups can be glucuronidated, sulfated, and/or methylated

and detected at low concentrations in the bloodstream and in urine. But the majority of phenolic compounds from grapes

and wine are metabolized in the gastrointestinal tract, where they are broken down by gut microflora. This typically

involves deglycosylation, followed by breakdown of ring structures to produce phenolic acids and aldehydes. These

metabolites can be detected in bloodstream, urine, and fecal samples by using sophisticated instrumentation methods for

quantitation and identification at low concentrations. The health effects related to grape and wine consumption may well

be due to these poorly understood phenolic acid metabolites. This review discusses the knownmetabolism of each major

class of wine and grape phenolics, the means to measure them, and ideas for future investigations. J. Nutr. 138: 1824S–

1831S, 2009.

Introduction

The U.S. daily intake of flavonoids in 1999–2002 was estimated
at 189.7 mg/d, with the majority (83.5%) accounted for by
flavan-3-ols, and wine contributing only 4 mg (1). For the year
2000, Americans consumed 20 mL of wine per day on average
compared with 226 mL and 13 mL of beer and spirits,
respectively (2). If consumption was 1 180-mL glass of red
wine per day, this would contribute roughly 36.5 mg/(d ! person)
of flavan-3-ols and 46.8 mg/(d ! person) of procyanidin dimers

(B1, B2, B3, and B4) (3), greatly increasing flavonoid intake.
Actual amounts would depend upon the wine varietal.

Consumers of alcohol that include moderate wine intake
have reduced mortality compared with those that do not con-
sume wine, due to a lower incidence of coronary heart disease
and cancer (4). Wine consumption has been reported to have an
inverse association with colorectal cancers (5,6) and light wine
intake could protect against nonalcoholic liver disease (7).
Evidence exists for an inverse correlation between wine intake
and coronary heart disease and could be the basis of the French
paradox (8).

Polyphenols in wine (Fig. 1) may be responsible for the effects
in these epidemiological studies. The majority of these poten-
tially bioactive compounds are also found in grapes. For in-
stance, anthocyanins found in cabernet sauvignon, merlot, and
syrah grapes are effectively extracted into their wines (9). It is
not clear, however, if the bioavailabilities of these anthocyanins
are the same if consumed from grapes or wine. Matrix effects
may be present for the absorption and metabolism of grape and
wine phenolics.

To determine which compounds in grapes and wine are the
most bioactive, their effects in disease models must be known,
including absorption and metabolism. Rats that consume a red
wine extract have elevated levels of the microbial phenolic acid
metabolites 3-hydroxyphenylpropionic, 3-hydroxybenzoic, 3-
hydroxyhippuric, hippuric, p-coumaric, vanillic, 4-hydroxybenzoic,
and 3-hydroxyphenylacetic acids in urine. These urine metab-
olites account for roughly 10% of the administered red wine
polyphenols (10). Most grape and wine flavonoids and others
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are rapidly metabolized in the human body, making it difficult to
determine whether these compounds are effective against
disease. The metabolites gallic acid, 4-O-methylgallic acid,
and 3-O-methylgallic acid are detected in the plasma of human
subjects who consume 300 mL of red wine (11). In fact, the
metabolites gallic acid and 4-O-methylgallic acid are well
correlated with wine consumption and may be used as urinary
biomarkers for wine intake in health-related studies (12).
Phenolic acid metabolites are mainly formed from gut micro-
floral metabolism and could be responsible for much of the
disease reduction associated with consuming wine and grape
phenolics.

Gut flora that could participate in metabolism of flavonoids
are Bacteroides, Clostridium, Eubacterium, Ruminococcus,
Eggertheilla (13), Streptococcus, Lactobacillus, and Bifidobac-
terium genera (14). An individual’s microfloral profile will likely
determine gut metabolites from wine polyphenols and second-
arily affect the activity of phase I and II enzymes, in turn
determining the formation of human enzymatic metabolites that
are absorbed into the bloodstream (15–18). Specific human
metabolites include various combinations of glucuronidated,
sulfated, and methylated compounds, which will be discussed in
detail within this review. Individuals suffering from diseases

such as inflammatory bowel disease may have altered gut flora
profiles (19), which could alter their gut metabolite profiles
along with liver metabolism products. Wine phenolics also have
the ability to either suppress or enhance the presence of specific
gut flora. Epicatechin, catechin, 3-O-methylgallic acid, gallic
acid, and caffeic acid can all suppress populations of certain
pathogenic bacteria while supporting the growth of beneficial
gut bacteria (20).

Due to the multitude of grape and wine phenolic metabolites
(Fig. 2) produced in vivo, it is important to both identify and
quantify them in biological samples such as plasma, urine, and
feces. Metabolomics can be used to detect metabolites of wine
polyphenols but also changes in an individual’s entire metabolic
profile, induced by these potentially bioactive compounds. Mass
spectrometer detectors capable of enhanced mass accuracy are
particularly useful in searching for unknown phenolic metabo-
lites. Specific analytical techniques used in studying phenolic
metabolism are presented within each section of this paper.

Stilbenes
Stilbene concentrations can range from roughly 50 to 100
mg×kg21 in dry red grape skin and ~20 mg/L in finished wine
(21). The most important stilbene with respect to health is

FIGURE 2 Representative metabolites for each phenolic class.

FIGURE 1 Phenolic compounds in grapes and wine.
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resveratrol, which is the focus of numerous health-related
articles in the literature. Mice fed a high-energy diet and given
resveratrol were found to live longer (22). Taking into account
the body surface area of humans, the dose used in this study
would be roughly equivalent to a human consuming 5 L/d of
finished wine (23), suggesting wine consumption might not be
the preferred source of resveratrol.

Resveratrol is rapidly metabolized when given to rats orally.
The blood concentration of resveratrol peaks only 10 min after
ingestion (24). In humans, native resveratrol is excreted in higher
amounts over a 24-h period than either catechin or quercetin
(25), indicating that it may be metabolized to a lower extent.
Resveratrol is sulfated in both the small intestine and liver, which
may minimize its health effects in vivo. This sulfation has been
shown to be inhibited by many flavonols, yet not catechin (26).
Resveratrol is also heavily glucuronidated in vivo and detected
in the plasma of rats. Over time this glucuronide metabolite
appears to be converted back to native resveratrol in the major
organs. In addition, no microfloral metabolites of resveratrol
appear to be produced (27).

Cis- and trans-resveratrol are both found in grapes and wine
(28,29) and are glucuronidated to 3-O and 4-O-glucuronide
metabolites in the gastrointestinal tract. Caco-2 cells can
glucuronidate cis-resveratrol and low amounts of trans-resver-
atrol to the 3-O-glucuronide metabolites (30). Stilbenes can also
be glucuronidated in vitro by human liver microsomes (31).

After moderate consumption of red wine, trans-resveratrol-3-
O-glucuronide, cis-resveratrol-3-O-glucuronide, cis-resveratrol-
3-O-glucoside, and trans-resveratrol were observed in LDL and
urine. Cis- and trans-resveratrol glucuronide and sulfate metab-
olites were also detected in human LDL and urine after
consumption of red wine (32). This could minimize oxidation
of LDL and perhaps explain in part the beneficial effects of
moderate wine consumption on the heart, yet the health effects
of metabolites are still widely unknown.

Metabolism of resveratrol has also been studied by positron
emission tomography, where F-18 radiolabeled resveratrol was
injected i.v. into rats. Less than 1% of radioactivity was found in
the plasma, but amounts in the kidney, lung, liver, intestine, and
urine were 9.50, 2.27, 25.26, 4.79, and 28.81%, respectively,
5 min after injection. Levels in the kidney, lung, and liver were
lower after 60 min, and 31.05 and 37.87% were found in the
intestine and urine, respectively (33). Positron emission tomog-
raphy allows investigators to monitor in vivo metabolism over
time and dramatically reduces the numbers of animals required
for a study. Quantitation of trans-resveratrol is normally
achieved by HPLC and has been optimized for plasma analysis
(34). HPLC combined with tandem MS detection (LC-MS/MS)
is a powerful tool for identification of resveratrol and its
conjugated metabolites in biological samples such as human
urine and LDL (32,35).

Phenolic acids
Phenolic acids are found in the pulp of Vitis vinifera grapes and
are divided into benzoic and hydroxycinnamic acids. Caftaric
and gallic acids are probably the most important of these acids in
grapes (36), with caffeic and gallic acids being dominant in
wines (37). Gallic and caffeic acids could be important antican-
cer agents (38–40), highlighting the importance in determining
their bioavailability in vivo.

When consumed, these compounds can be absorbed but are
also subject to considerable bacterial metabolism in the gut.
After 2 h of incubation of caffeic acid with human fecal
microflora, 3-hydroxyphenylpropionic and benzoic acids are

produced and none of the parent compound is detected (41).
Phenolic acids are also subject to human cell metabolism and
transportation. When various hydroxycinnamic acids are incu-
bated with Caco-2 cells, methyl hydroxycinnamates may be
hydrolyzed to their aglycones outside of the cells. Methyl
hydroxycinnamates that are not hydrolyzed and are transported
inside the cells can be sulfated or glucuronidated by sulfotran-
ferases or UDP-glucuronosyltransferases. If aglycones are trans-
ported into Caco-2 cells, they will only be sulfated, with the
exception of caffeic acid, which is methylated by only O-
methyltransferases (42).

Evidence shows that intestinal cell transport can be some-
what selective. p-Coumaric acid is better absorbed than gallic
acid when given to rats orally (43), which could be due to
the fact that gallic acid is not transported by the monocar-
boxylic acid transporter (MCT) in cells like Caco-2 but
rather by paracellular diffusion (44). m-Coumaric acid and
m-hydroxyphenylpropionic acid are transported by the MCT in
Caco-2 cells (45), but r-coumaric acid is not transported by
MCT-1 (46), indicating that isomers have different absorption
characteristics. Caffeic acid is somewhat transported by the
MCT in Caco-2 cells, but mostly by paracellular diffusion (47).

Quantification of phenolic acids is essential to improving our
understanding and it can be achieved by using HPLC (48).
Identification of many metabolites is possible when coupled to
MS/MS (49). Metabolomic methods that involve GC with time-
of-flight mass spectrometric detection can measure phenolic acid
metabolites in plasma, urine, and feces samples, with run-times
well under 30 min (50).

Ellagitannins
Ellagitannins are found in wine due to their extraction from
barrels or oak chips (51). They can reduce cell proliferation of
colon cancer cells, possibly by inhibiting activity of the epider-
mal growth factor receptor (52). Ellagitannins ingested by rats
are rapidly metabolized in the stomach and metabolites do not
appear to include ellagic acid (53). In the Iberian pig model,
ellagic acid is formed in the small intestine from ellagitannins
plus 25 urolithin metabolites and 6 ellagic acid-derived com-
pounds, all of which can all be analyzed by LC-MS/MS. These
results are different from those found in rats, probably due to
differences in microbial profiles. Many of these ellagitannin
metabolites are highly absorbed into the bloodstream, including
urolithin A, a major metabolite in urine along with its
glucuronide. Urolithin A is also the only metabolite passed
through the gastrointestinal tract to the feces (54). In humans,
ellagitannin metabolites such as urolithin B and its conjugates
are found in concentrations that vary greatly between individ-
uals depending on their gut microflora (55).

Monomeric flavan-3-ols
Red wine contains roughly 100 mg/L of catechin and 75 mg/L of
epicatechin. White and rosé wine have minimal amounts of
catechin and epicatechin (,10 mg/L on average) (56), because
flavan-3-ols are found in the skins and seeds of grapes. Diets high
in flavan-3-ols reduce the risk of coronary heart disease (57).
Evidence that catechins and procyanidins bind to apolipoprotein
A-1 and transferrin proteins in humans and rats, respectively
(58), may help explain such an epidemiological result. In human
subjects, the highest levels of plasma (+)-catechin (2.2 mmol/L)
can be achieved when fruit, vegetables, and wine are consumed
(59).
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Catechin appears to be metabolized only if absorbed from the
small intestinal lumen. Both 39-O-methylcatechin-glucuronide
and catechin-glucuronide are produced in intestinal cells and
methylation and sulfation of catechin metabolites are produced
in the liver (60). Catechin is mainly found as the glucuronide
metabolite in plasma after rats are fed catechin, yet glucur-
onidated 39-O-methylcatechin is also found in relative abun-
dance (60,61). Large amounts of the 39-O-methyl metabolite are
also found to be glucuronidated and sulfated on the same
compound, presumably produced in the liver, and are only
detected in the bile (60). In humans, between 3.0 and 10.3% of
ingested catechin from red wine is accounted for in urine, mostly
as catechin and its 39-O-methyl-glucuronide and sulfate metab-
olites (62). Catechin can also be conjugated with glutathione
with the assistance of enzymes such as tyrosinase, peroxidase,
and cytochrome p450 (63).

Epicatechin is found as glucuronide and sulfoglucuronide
metabolites in plasma. Its 39-O-methyl metabolite is also
sulfated. Evidence points to a competitive absorption of catechin
and epicatechin from rat intestines (61). When (+)-catechin is
administered orally to rats, the metabolite (+)-catechin 5-O-b-
glucuronide is found in the plasma, bile, and urine. Similarly,
when (2)-epicatechin is fed to rats, the metabolite (2)-
epicatechin 5-O-b-glucuronide is detected in the same biological
samples (64).

(+)-Catechin and (2)-epicatechin are absorbed from the
small intestine by both passive and facilitated diffusion (65). In
rats, (+)-catechin in wine has been shown to be absorbed better
than (2)-catechin, which is found in cocoa (66). This could be
partially due to facilitated diffusion of (+)-catechin into intes-
tinal cells. Ethanol does not appear to increase plasma absorp-
tion of catechin in humans but does increase the rate of
elimination from plasma (67). One study reported increased
absorption of catechin when ethanol was also consumed, yet this
difference was not significant (P = 0.06) (62).

Aside from metabolism that occurs in intestinal cells and
liver, catechin can also be metabolized by gut microflora to
produce phenolic acid metabolites. In rats, these metabolites can
be found in urine, with 3-hydroxyphenylpropionic acid, 3-
hydroxybenzoic acid, and 3-hydroxyhippuric acid present in the
highest concentrations (10). When catechin is incubated with
human gut microflora, it is metabolized to 4-hydroxybenzoic
acid, 2,4,6-trihydroxybenzaldehyde, phloroglucinol, and 4-
methoxysalicylic acid (14), again emphasizing the effects of
individual microfloral profiles on gut metabolism.

LC-MS/MS is a common tool for identification of flavan-3-
ols (68) in biological samples. A metabolomic approach would
be chosen if looking for changes in an organism’s metabolome,
after having consumed a compound such as catechin. Quadru-
pole/time-of-flight mass analyzers combined with HPLC are best
for searching for known and unknown compounds, enabling the
detection of catechin metabolites and metabolic biomarkers that
are altered by catechin ingestion (69).

Anthocyanins
Anthocyanins can average ~500 mg/L in finished young red
wines (70), making them potentially important bioactive com-
pounds. Based on 2001–2002 information from NHANES, the
daily intake of anthocyanins in the US was 12.53 mg/(person×d).
Of these anthocyanins, only 0.66 mg was from wine and 0.93
mg from grape juice (71). Wine is the main contributor of
anthocyanins in the diets of Australians, likely due to higher
wine intake, and also a slight contributor of flavan-3-ols and
flavonols (72). Anthocyanins are promising candidates in the

prevention of colon cancer (73,74), yet it is not clear whether the
parent compounds or metabolites are responsible in vivo.

In humans, nanomolar plasma concentrations of anthocya-
nins are found after they are consumed. Most of the absorbed
anthocyanins are found in urine within the first 3 h (75) and
between 1.5 and 5.1% of ingested anthocyanins are detected in
urine after 12 h (76). Small amounts of anthocyanins can be
found in the lower gastrointestinal tract of rats and none in the
liver, kidneys, or brain organs (53). Rats that consume grape
anthocyanins also have detectable amounts of anthocyanins in
their feces (77). Anthocyanins are also glucuronidated and
methylated in mice, which are found in the intestine and urine
samples (73). When malvidin-3-glucoside is consumed, however,
only the unmetabolized form is detected in human plasma and
urine (78). As with other phenolic classes, analysis of anthocy-
anins and their conjugated metabolites in biological samples is
best performed with liquid chromatography combined with MS/
MS detection (79).

Absorbed cyanidin-3-glucoside in rats is either conjugated or
unconjugated and, as with catechin, ethanol does not appear to
increase the absorption of cyanidin-3-glucoside from the small
intestine (80). In fact, anthocyanins from grape juices are better
absorbed than anthocyanins in wine, as examined in humans. It
was suggested that this finding is due to the higher sugar content
of grape juice (81), yet in rats, cyanidin-3-glucoside absorption
was not influenced by the presence of glucose (82). After rats are
fed cyanidin-3-glucoside, the aglycone is only found in the small
intestine, cyanidin-3-glucoside is found in the plasma, and
methylated cyanidin-3-glucoside is found in the liver and kidney
organs (83,84).

Anthocyanins are metabolized by gut microflora via glyco-
sylation and ring fission of C-ring to produce phenolic acids and
aldehydes (85). This accounts for the majority of anthocyanin
metabolism in vivo. After rats consume anthocyanins, the
phenolic acids in urine far exceed the ingested anthocyanins
(53), indicating that anthocyanin consumption may increase
baseline catabolism. Keppler and Humpf (86) studied 6 antho-
cyanin standards in pig cecum and found protocatechuic acid,
syringic acid, vanillic acid, phloroglucinol acid, gallic acid, and
phloroglucinol aldehyde. Similarly, a cabernet sauvignon an-
thocyanin extract was metabolized to 3-O-methylgallic acid,
syringic acid, and 2,4,6-trihydroxybenzaldehyde (phloroglu-
cinol aldehyde) using pig gut microflora (87).

When rats were fed cyanidin-3-glucoside, protocatechuic
acid was produced and the plasma concentration was 8 times
higher than the absorbed cyanidin-3-glucoside (83,84). After
human consumption of cyanidin-3-glucoside, 0.02% of the
substance was absorbed into the bloodstream in total. Proto-
catechuic acid was formed as a metabolite and the total
absorbed amount in the bloodstream accounted for 44% of
the consumed cyanidin-3-glucoside. The amount of protocate-
chuic acid recovered in the feces was 28%. Small amounts of
cyanidin-3-glucoside and its metabolites were detected in the
urine but not protocatechuic acid (88).

Flavonols
Flavonols can average up to ~50 mg/L in finished red wines, with
white wines having essentially no flavonol content. Specific
flavonols found in wine are quercetin-3-galactoside, quercetin-
3-glucuronide, syringetin-3-glucoside, myricetin, quercetin, lar-
icitrin, kaempferol, isorhamnetin, and isorhamnetin-3-hexoside
(89). Individuals who consume more flavonols were found to
have a lower risk of developing pancreatic cancer (90). When
humans consumed 100 mL of grape juice, small amounts of
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quercetin were absorbed into the blood (91). After female
humans were fed rutin for 6 wk, quercetin, kaempherol, and
isorhamnetin were found in the plasma samples (92). This is
presumably due to deglycosylation of rutin and further metab-
olism of quercetin. Flavonols and their metabolites can be
identified and quantified by HPLC-electrospray ionization-MS/
MS (68).

Unlike catechin, quercetin and quercetin-3-glucoside are
both absorbed much higher in rat intestines when ethanol is
present (93). Quercetin appears to be better absorbed than
catechin in rats and is found as glucuronide and sulfated
metabolites (94). In humans quercetin is found as sulfate and
glucuronide metabolites in both plasma and urine after 30 min,
but less so than catechin or resveratrol (25). Lactase phlorizin
hydrolase is a glucosidase found in the small intestinal lumen
and is able to hydrolyze 2 quercetin glycosides (95). Quercetin is
also methylated in the rat intestine to produce isorhamnetin and
tamarixetin (93) and is methylated by human liver methyltrans-
ferase (96).

In an in vitro study utilizing the flora from pig cecum, rutin
was shown to by deglycosylated to quercetin and it could be
further metabolized to phloroglucinol and 3,4-dihydroxyphe-
nylacetic acid (97). The result was different when human gut
microflora was used, where quercetin was metabolized to 4-
hydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and 3,4-
dihydroxyphenylacetic acid (14).

Proanthocyanidins
Red wines can have ~370 mg/L of procyanidin dimers (B1, B2,
B3, and B4) and trimers (C1 and C2) and are not found in white
and rose wines (56). When rats were fed grape seed procyani-
dins, levels of LDL decreased and cholesterol elimination with
bile acids increased (98). Compared with catechin, procyanidins
are not absorbed from the gut in rats (99), yet synthesized
(2)-epicatechin dimers linked with an ethyl bridge are absorbed
in rats and rapidly methylated. These synthesized (2)-epicatechin
dimers peak in plasma concentrations after 2 h of oral
administration and small amounts are detected in the liver
(100). Procyanidin dimers and trimers can be quantified by
reverse-phase HPLC (100,101), yet procyanidins with greater
degrees of polymerization need to be analyzed by normal-phase
HPLC (101). Synthesis of radiolabeled phenolic compounds for
feeding studies and metabolite standards for quantitation will
continue to be essential in establishing in vivo metabolism
pathways (102,103).

Procyanidins, like many other phenolic classes, are metabo-
lized by gut flora in rats to produce phenolic acids that can be
detected in urine. These metabolites include 3-hydroxyphenyl-
valeric, 3,4-dihydroxyphenylpropionic, 3-hydroxyphenylpro-
pionic, m-coumaric, p-coumaric, 3,4-dihydroxyphenylacetic,
3-hydroxyphenylacetic, protocatechuic, 3-hydroxybenzoic, 4-
hydroxybenzoic, vanillic, 3-hydroxyhippuric, 4-hydroxyhippu-
ric, and hippuric acids. Procyanidin dimer B3 is metabolized to
all of these metabolites, yet procyanidins of increased polymer-
ization produce fewer phenolic acid metabolites (104).

In conclusion, it is clear that consideration of wine and grape
metabolites is essential to understanding their biological impact,
because most phenolic compounds in grapes and wine are
heavily metabolized when ingested. Absorbed compounds are
detected in the plasma as glucuronide, sulfate, and methyl
metabolites. The percentage of absorbed native compounds,
however, is usually quite low, but large quantities of metabolites
are observed as a number of simple phenolic acids and some
aldehydes. It appears that the origin of these substances is

bacterial and that these gut metabolites could potentially be well
absorbed into the bloodstream. Thus, the production of these
metabolites formed by specific bacteria in the gut needs to be
investigated further, including levels of metabolites in feces. It is
also clear that much more needs to be known about how an
individual’s gut microfloral ecology affects metabolism of
phenolic compounds and the complementary question of how
dietary phenolics alter the gut ecology. As analytical methods
develop increasingly lower limits of quantitation, it may also be
possible to conduct more human metabolism studies involving
radiolabeled parent compounds at safe dose levels.

Other articles in this supplement include (105–111).
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