

Software Testing: The Next Generation (v1.0) 1 Copyright © 1999-2016, All Rights Reserved
RBCS, www.rbcs-us.com

Software Testing: The Next Generation
Virtual Course Outline

General Description

From traditional testers to software development engineers in test (SDETs) to
programmers doing unit testing, everybody in the development team is doing
testing now. You’re probably spending lots of time and energy on testing, but are
you getting the benefits you should? In this class, you learn the techniques that
will allow you to create tests that will find important bugs when you develop
new code, reduce regression risk when you change existing code, and build
confidence when you deliver software. This class will allow you to defy
conventional wisdom. Why move fast and break stuff when you can move even
faster and not break stuff? Why release early and be ashamed of your first
version when you can release even earlier and be proud of it? In three days,
you’ll learn the essential test techniques that will set you and your products
apart from the crowd.

Course Outline

Day 1

Morning Introduction to the class
Introduction to the exercise platform
Introduction to black-box testing
Equivalence partitioning and boundary value analysis
Equivalence partitioning and boundary value analysis exercise

Afternoon Decision table
Decision table exercise
State-based testing and model-based testing
State-based testing and model-based testing exercise

Day 2

Morning Domain analysis
Domain analysis exercise
Pairwise testing
Pairwise testing demonstration
Pairwise testing exercise

Afternoon Introduction to white-box testing
Statement and branch coverage

 Course Outline

Software Testing: The Next Generation (v1.0) 2 Copyright © 1999-2016, All Rights Reserved
RBCS, www.rbcs-us.com

Statement and branch coverage demonstration
Statement and branch coverage exercise
Cyclomatic Complexity and path coverage
Cyclomatic Complexity and path coverage demonstration
Cyclomatic Complexity and path coverage exercise

Day 3 (optional additional day)

Morning Introduction to test automation
Test-driven development lecture
Test-driven development demo
Test-driven development exercise
Behavior-driven development lecture
Behavior-driven development demo

Afternoon Behavior-driven development exercise
Acceptance test-driven development lecture
Acceptance test-driven demo
Acceptance test-driven development exercise

Learning Objectives

Through presentation, discussion, and hands-on exercises, attendees will learn
to:

 Design and develop tests based on expected behavior (black box), using
techniques including:
 Equivalence classes and boundary value analysis

 Decision tables

 State-transition diagrams

 Domain testing

 Pairwise techniques

 Measure and enhance test coverage based on implementation details (white
box), using techniques like:
 Statement and branch coverage.

 McCabe Cyclomatic Complexity and basis tests.

 If the optional third day is chosen, select appropriate unit and integration test
automation strategies, using tools for:
 Test-driven development

 Behavior-driven development

 Acceptance test-driven development

 Course Outline

Software Testing: The Next Generation (v1.0) 3 Copyright © 1999-2016, All Rights Reserved
RBCS, www.rbcs-us.com

Course Materials

This course includes the following materials:

Name Description

Course Outline A general description of the course along with learning
objectives, course materials and an outline of the course
topics, including approximate timings for each section.

Noteset A set of over 150 PowerPoint slides covering the
materials.

Scripts and
programs (e.g.,
corrupter,
ooticketcalc,
ootree, pairs, and
triangle)

A set of scripts, Java, C, and C++ programs which are
used to demonstrate the topics and techniques which are
described and as a basis for the exercises. The programs
are realistic in size and complexity, with understandable
purposes.

Exercise solutions A complete set of solutions for all of the exercises
included in the course.

Open source tools As part of the exercises, attendees will download and
use various open source tools.

Platform
description

A document describing how to configure a Linux system
optimized to support the tools and exercises.

About the Programs Tested in the Course

These programs are written in C, Java, and/or C++, using both procedural and
object-oriented techniques. Each has known bugs hiding in it. The programs
work on Windows and Linux systems. Attendees should install the programs,
compile them, and ensure the ability to use the compiled programs prior to the
start of the class.

Clients may choose to customize the course by supplying their own code for
testing.

Recommended Readings

The class materials include an extensive bibliography of books related to
software testing, project management, quality, and other topics of interest to the
test professional.

