

CATÁLOGO DE PRODUCTOS

MÁS DE 85 AÑOS FABRICANDO SOLUCIONES

2025

EQUIPOS DOMÉSTICOS

Pág. 4 Electrobombas

Pág. 7 Presurizadoras

Pág. 8 Periféricas

Pág. 9 Sumergibles con Flotador

Pág. 10 Sumergibles Bonasa 3" y 4"

Pág. 11 Paquetes de Hidroneumáticos

Pág. 12 Hidroneumáticos

Pág. 13 Presurizadores

Pág. 14 Calentadores Solares

BOMBAS INDUSTRIALES Y AGRÍCOLAS

Pág. 15 Electrobombas Trifásica

Pág. 16 Autocebantes de Fierro

Pág. 20 Autocebantes de Aluminio

Pág. 22 Centrífugas de Fierro

Pág. 23 Con Descarga Frontal

Pág. 24 Centrífugas de Fierro

Pág. 29 Centrífugas Multipasos

Pág. 32 Centrífugas a Diesel

Pág. 34 Transmisión Universal

Pág. 35 TRACTOBOMBAS

Pág. 36 Transmisión Universal

Pág. 37 Bombas Manuales

Pág. 38 Equipos contra Incendios

Línea ME

Línea DROP Y AC

Línea AC AL

Línea MG Bonasa

Línea MG - ODF

Línea MG

Línea MP

Línea MD

Línea EC-75, ED-100 y EF-150

Línea TEC -75, TED - 100 y TEF - 150

Línea UEB-38 y UEF-38

OTROS PRODUCTOS

Pág. 40 Energía Solar

- Panales Solares

Pág. 42 Equipos Agrícolas

- Desintegrador

- Desgranadora

- Picadora

- Molinos de Nixtamal

- Molino de Especies

- Molino para Granos

Pág. 45 Paquetes de Riego

Pág. 46 Despulpadora

Pág. 47 Módulo Ecológico

Pág. 48 Tostadores de Café

Pág. 49 Jardinería

- Podadoras

- Fumigadoras

Pág. 50 Refacciones

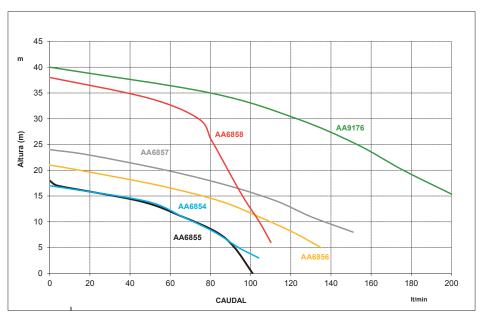
Pág. 51 Revolvedoras

Pág. 52 Motores

ELECTROBOMBA CENTRÍFUGA

LINEA "BONASA" MOTOR ELÉCTRICO MONOFÁSICO

A más de 80 años, hemos gestionado la fabricación de bombas de agua, y con el paso del tiempo nos hemos posicionado como las mejores bombas de México, por la confiabilidad y gran eficiencia de nuestros productos, representando la mejor alternativa para el manejo de agua limpia en casa habitación, industria, comercio o el campo. Nuestra línea de Electrobombas, se fabrica en fundición de hierro gris de alta calidad, con impulsor de bronce, hierro o noryl, debidamente balanceados para evitar VIBRACIONES, y cuenta con sello mecánico de primera calidad que evita escurrimientos o fugas de agua.


Impulsor de FIERRO

IMPULSOR DE FIERRO

MODELO	H.P.	SUCCION DESCARGA	LPM	MCA	CLAVE
14/60R	1/4	1" X 3/4"	104	17	AA6854 •
12/60R	1/2	1" X 1"	101	20	AA6855 •
34/60R	3/4	1-1/4" X 1"	135	21	AA6856 •
10/60NR	1	1-1/4" X 1"	151	24	AA6857 •
15/60NR	1 1/2	1-1/4" X 1"	110	38	AA6858 •
20/60N	2	1-1/4" X 1"	202	40	AA9176 •

CLAVE	Altura (m)	0	3	5	8	11	14	17	20	21	23	24
AA6854			104	94	82	66	48	0				
AA6855	Gasto (I/m)	101	92	92	83	66	45	4	0			
AA6856	Gasto (I/III)			135	121	104	85	55	15	0		
AA6857					151	130	113	89	58	45	19	0
AA6857					151	130	113	89	58	45	19	

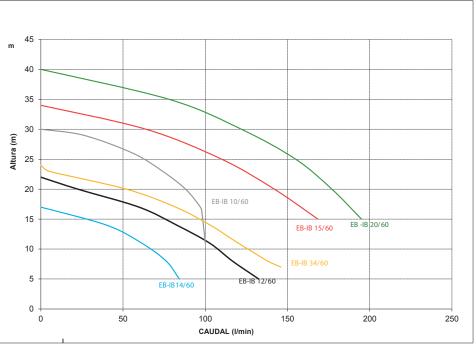
AA6858	Gasto (I/m)	110	104	98	92	86	80	/4
								_
CLAVE	Altura (m)	15	20	25	30	35	40	
AA9176	Gasto (I/m)	202	176	153	123	80	0	

Las claves marcadas con este ícono ● están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

NOTA: Las curvas de rendimiento van en función del caballaje, la succión y descarga de la bomba NO de la marca del motor. **Nuestras curvas están basadas en datos exactos.**

Impulsor de BRONCE

LINEA "BONASA" MOTOR ELÉCTRICO MONOFÁSICO


IMPULSOR DE BRONCE

		SUCCION	LPM	MCA	CLAVE
MODELO	H.P.	DESCARGA	LFIVI	MICA	CLAVE
14/60	1/4	1" X 3/4"	84	17	AA1915
12/60	1/2	1-1/4" X 1"	133	22	AA1916 •
34/60	3/4	1-1/4" X 1"	146	24	AA1917 •
10/60N	1	1-1/4" X 1"	100	30	AA1918 •
15/60N	1 1/2	1-1/4" X 1"	169	34	AA1919 🌘
20/60N	2	1-1/4" X 1"	195	40	AA9174 •

Las claves marcadas con este ícono •están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

AA1915 AA1916 Gasto (I/m) AA1917 AA1918

CLAVE	Altura (m)	15	20	25	30	34	
AA1919	Gasto (I/m)	169	142	110	64	0]
CLAVE	Altura (m)	15	20	25	30	35	40
AA9147	Gasto (I/m)	195	177	155	122	78	0

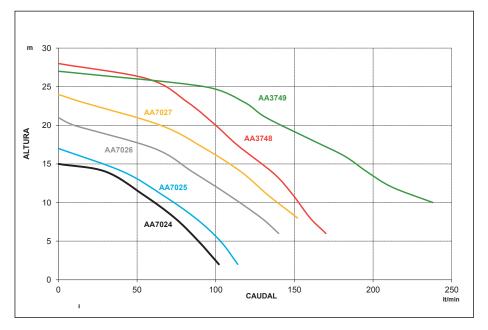
3 TIPOS DE IMPULSORES BRONCE O NORYL OFIERRO

NOM-004

NOTA: Las curvas de rendimiento van en función del caballaje, la succión y descarga de la bomba NO de la marca del motor. **Nuestras curvas están basadas en datos exactos.**

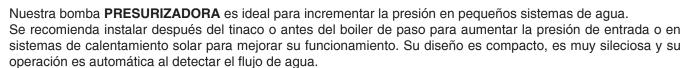
LINEA "BONASA" MOTOR ELÉCTRICO MONOFÁSICO

Impulsor de NORYL


ECO IMPULSOR DE NORYL

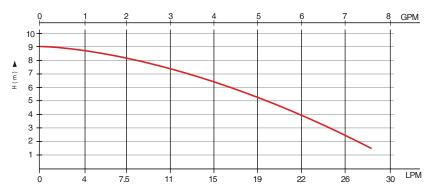
MODELO	H.P.	SUCCION Descarga	LPM	MCA	CLAVE
B0N25	1/4	1" X 3/4"	102	17	AA7024 •
BON50	1/2	1" X 1"	114	17	AA7025 •
BON75	3/4	1-1/4" X 1"	140	23	AA7026 •
BON100	1	1-1/4" X 1"	152	26	AA7027 •
BON150	1 1/2	1-1/4" X 1"	170	28	AA3748 •
BON150N	1 1/2	1-1/2" X 1-1/2"	238	27	AA3749 🌘

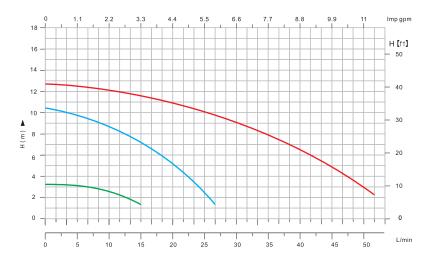
Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba


Las curvas de rendimiento van en función del caballaje, la succión y descarga de la bomba. **Nuestras curvas están basadas en datos exactos.**

NOM-004

CLAVE	Altura (m)		6	8	11	14	17	20	23	26	28
AA7024		102	89	74	54	30	0				
AA7025		114	103	87	66	41	0				
AA7026	Gasto (I/m)		140	129	108	85	61	10	0		
AA7027				152	133	116	93	65	15	0	
AA3748			170	160	149	137	114	100	82	57	0
CLAVE	Altura (m)	10	12	14	16	18	21	23	25	27	
AA3749	Gasto (I/m)	238	212	196	182	162	132	118	93	0	





Son muy fáciles de instalar ya que se conectan directamente en la tubería sin necesidad de soportes.

Curva de la bomba YY7562

Curva de la bomba YY9228

• Potencia de 1/7 HP que equivale a 100 watts.

- Altura máxima 8.5 metros.
- Caudal máximo 28 LPM.
- Ideal para un solo servicio.

Presurizadora con 3 Velocidades Ideal para calentadores instantáneos ó de paso.

YY9146

- Potencia de 1/7 HP que equivale a 100 watts.
- Altura máxima 8.5 metros.
- Caudal máximo 25 LPM.
- Ideal para un solo servicio.
- Velocidad y presión ajustable.

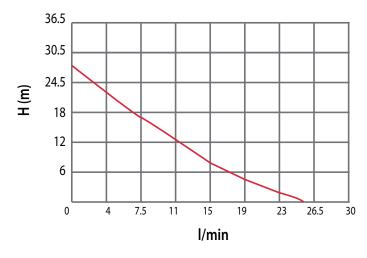
Vel.	P(w)	H(m)
1	45	3
II	71	6
III	100	8.5

Presurizadora YY7562

- Potencia de 1/3 HP que equivale a 245 watts.
- · Altura máxima 12 metros.
- Caudal máximo 52 I PM.
- Ideal para dos servicios simultáneos.
- Velocidad y presión ajustable.

Vel.	P(w)	H(m)
Ĩ	145	3
II	220	10
III	245	12

		4	
	٠.		
	4		
4			


BOMBA PERIFÉRICA

BOMBAS DOMÉSTICAS

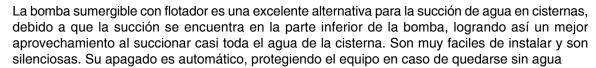
Las bombas **PERIFÉRICAS** son adecuadas para agua limpia en instalaciones que necesitan presiones elevadas, ideales para hidroneumáticos o en pequeños sistemas de presurización.

Bombas silenciosas

Su impulsor es de latón El sello mecánico es de carbón-cerámica Soporte y carcasa del motor es de aluminio El cuerpo de la bomba de Hierro Balero reforzado

Periférica YY7561

Periférica YY8879 (el color puede variar)


BOMBA PERIFÉRICA

H.P.	MOTOR	l/m	m	succ desc	CLAVE
1/2	1F 115 V	25	29	1" X 1"	YY7561

BOMBA PERIFÉRICA

HP	MOTOR	I/m	m	succ desc	CLAVE
1/2	1F 127 V	25	29	1" X 1"	YY8879

3 m de longitud de cable

Modelo	НР					TA	BLADI	RENE	IMIE	OTV						Desc	KW	Volts	Amperaje	No.Impulsores
Wiodelo	HIF	(L/min)	0	10	20	30	40	50	60	70	80	90	100	110	120	Desc	KVV	VOILS	Amperaje	Etapas
YY1305	0.5	Altura(m)	40	39	38	36	34	32	29	26	22	18	12	9	4	1.25"	0.37	127V/60Hz	8.8A	4
YY1306	1.1	Aitura(iii)	58	56	52	49	44	40	34	30	26	23	19	14	9	1.25"	0.8	127V/60Hz	12.5A	6

20 30 40 50 60 70 80 90 100 110 120 130 140 150 Q(L/min)

Las claves marcadas con este ícono • están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

BOMBAS SUMERGIBLES DE ACHIQUE DE FIERRO

PARA AGUA LIMPIA

10 m de longitud de cable

Modelo	НР					TA	BLADI	RENI	DIMIEN	OTV						Desc	KW	Volts	Amperaje
Wiodelo	111	(I/min)	0	10	20	25	30	40	50	60	70	80	90	100	110	Desc	KVV	Voits	Amperaje
PC2405A	0.5	Altura	20	19	18.7	18.5	18.4	18	17.8	17	16	15	12	10	7	1"	0.37	127V/60Hz	4.5A
PC2408A	1	(m)	34	33.5	33	32.5	32	30	26	24	23	22	21	15	10	1"	0.75	127V/60Hz	13A



Desde nuestra fundación, la calidad es de suma importancia en Bonasa, esta dedicación a dado forma a todo lo que ofrecemos. La Bomba Sumergible Bonasa no es la excepción, ya que es una ideal alternativa para el bombeo de agua limpia con menos de 150g/m de arena, bombeo de pozo, y riego agrícola, agregando también su uso en conjunto con Hidroneumáticos en casa habitación. Nuestras bombas incluye Caja de Control.

1	Modelo	НР				Т	ABLAE	DE REN	DIMIE	NTO					Desc	KW	Volts	Amperaie	No. Impulsores
ı	Wodelo	HF	(L/min)	0	10	20	30	40	50	60	70	80	90	100	Desc	KVV	VOILS	Amperaje	Etapas
•	YY7667	0.5		55	54	52	49	45	44	41	33	27	20	10	1.25"	0.37	127V/60Hz	6.4A	5
•	YY7668	1]	98	92	88	90	85	81	70	62	50	44	30	1.25"	0.75	127V/60Hz	11.6A	9
•	YY7901	1.5	Altura(m)	150	145	140	131	125	116	100	89	84	73	47	1.25"	1.1	127V/60Hz	18.5A	13
•	YY7902	2.2]	190	185	180	176	165	156	141	121	110	90	55	1.25"	1.5	220V/60Hz	10.2A	17
•	YY7903	3	1	225	220	215	205	185	181	156	139	120	100	80	1.25*	2.2	220V/60Hz	15A	20

Modelo	НР		T.	ABLA	DE RE	NDIN	NIENT	0			Desc	KW	Volts	Amperaje	No. Impulsores
Wiodelo	H	(L/min)		10	20	30	40	50	60	70	Desc	IX VV	VOILS	Amperaje	Etapas
YY8069	0.5		56	55	50	44	32	25	3	-	1"	0.37	127V/60Hz	6.4A	9
YY8071	1	Altura(m)	110	110	100	89	65	49	8	-	1"	0.75	127V/60Hz	11.6A	18
YY8072	1.5	Aitura(III)	155	154	139	124	90	75	40	-	1"	1.1	127V/60Hz	15.6A	25
YY8067	0.33		31	30	29	27	23	21	17	12	1"	0.25	127V/60Hz	5A	5

FLOTADOR ELÉCTRICO

MEJORA TU SISTEMA DE BOMBEO SIN COMSUMO DE ENERGÍA ELÉCTRICA

Corriente Máxima 25 A Potencia Máxima: 127 V - 1HP 220 V - 2 HP

Tinaco - Cisterna Bonasa YY9333

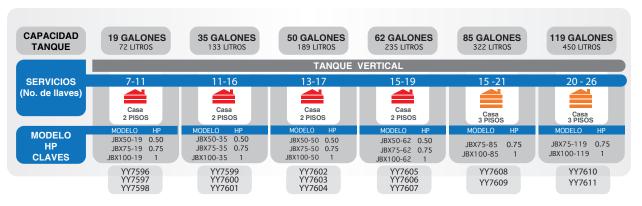
Solo Cisterna Bonasa YY9224

Longitud de cable 2 M Corriente Máxima 16 A Potencia Máxima: 127 V - 1HP 220 V - 2 HP

HIDRONEUMÁTICOS PRECARGADOS

CON MEMBRANA INTERCAMBIABLE

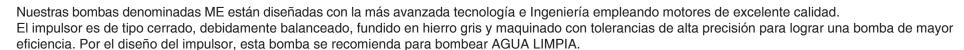
Estos equipos son ideales para AUMENTAR PRESIÓN EN SU LÍNEA HIDRÁULICA generalmente en casas, hoteles, restaurantes, hospitales, sistemas de riego y facilita el funcionamiento de equipos como regaderas, jacuzzi,lavabos, etc. La ventaja de nuestros equipos es poder disfrutar de 2 o mas regaderas al mismo tiempo sin perder presión.


HIDRONEUMÁTICOS BONASA CON BOMBA JET (CABEZAL ACERO INOX.)

HIDRONEUMÁTICOS BONASA CON BOMBA PERIFÉRICA

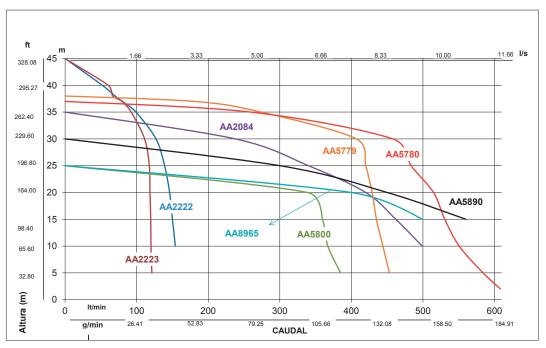
HIDRONEUMÁTICOS CON TANQUE PRECARGADO

Bomba de 1/2 HP su altura máx. es de 28 m y 40 LPM Bomba de 3/4 HP su altura máx. es de 35m y 40 LPM Bomba de 1 HP su altura máx. es de 42m y 50 LPM



ELECTROBOMBA CENTRÍFUGAS TRIFÁSICAS

BOMBAS INDUSTRIALES



BOMBAS DE MEDIANA PRESIÓN

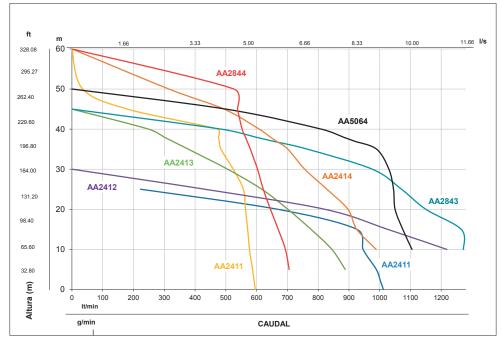
BOMBAS CON MOTOR ELECTRICO SIEMENS Y WEG TRIFÁSICO 220/440 VCA

	H.P.	L.P.M.	M.C.A	SUCCION	CLAVE	CLAVE
MODELO		MAXIMA	EFICIENCIA	DESCARGA	SIEMENS	WEG
20/60NTB	2	154	45	1-1/4" X 1"	AA2222 •	
20/60NTF	2	121	45	1-1/4" X 1"	AA2223 •	
ME-1.5-3	3	385	25	1-1/2" X 1-1/2"	AA5800 •	AA2415
ME-2-3	3	499	92	2" X 2"	AA2084 •	AA2417
ME-32-3	3	500	25	3" X 2"	AA8965 •	AA7975
ME-1.5-5	5	453	38	1-1/2" X 1-1/2"	AA5779 •	AA2416
ME-2-5	5	608	37	2" X 2"	AA5780 •	AA2418
ME-32-5	5	560	29	3" X 2"	AA8587 •	AA7974

Las claves marcadas con este ícono • están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

CLAVE	HP	Altura (m)	0	2	5	10	15	20	25	30	35	37	38	40	45
AA2222	2					154	150	146	139	127	99	80	70	52	0
AA2223	2				121	120	120	119	118	111	92	79	66	60	0
AA5800	3				385	367	360	339	0						
AA2084	3	Gasto (I/m)				499	462	420	340	238	0				
AA8965	3	Gasto (I/III)					500	400	0						
AA5779	5				453	444	435	429	420	407	274	180	0		
AA5780	5			608	584	551	530	515	483	458	260	0			
AA8587	5						560	450	300	0					

NOTA: Las curvas de rendimiento van en función del caballaje, la succión y descarga de la bomba; NO de la marca del motor. El motor puede ser WEG ó SIEMENS Nuestras curvas están basadas en datos exactos.



BOMBAS CENTRÍFUGAS MEDIANA Y ALTA PRESIÓN

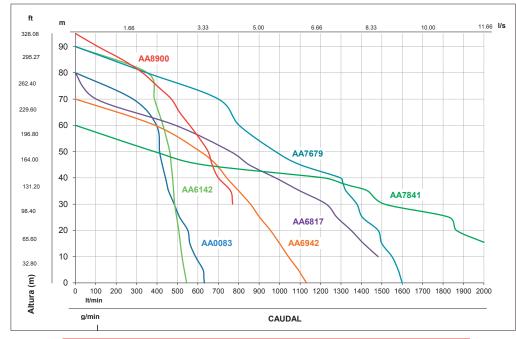
BOMBAS CON MOTOR ELÉCTRICO TRIFÁSICO 220/440 VCA **SIEMENS Y WEG**

	H.P.	L.P.M.	M.C.A	SUCCION	CLAVE	CLAVE
MODELO		MAXIMA	EFICIENCIA	DESCARGA	SIEMENS	WEG
ME-30-5	5	1012	27	3" x 3"	AA5890	AA2411 •
ME-20-7.5	7.5	596	52	2" x 2"	AA7823	AA7307 •
ME-32-7.5	7.5	888	42	3" X 2"	AA5795	AA2413 •
ME-30-7.5	7.5	1061	28	3" x 3"	AA5797	AA2412 •
ME-30-10	10	736	38	3" x 3"	AA5798	AA2843 •
ME-32-10	10	989	52	3" X 2"	AA5794	AA2414 •
ME-30-15	15	902	47	3" x 3"	AA5796	AA5064 •
ME-20-15	15	706	60	2" x 2"	AA5802	AA2844 •

Las claves marcadas con este ícono • están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

> NOTA: Las curvas de rendimiento van en función del caballaje, la succión y descarga de la bomba; NO de la marca del motor. El motor puede ser WEG ó SIEMENS Nuestras curvas están basadas en datos exactos.

INDUSTRIA



										TAB	LA DE RI	ENDIMIEN	OTI							
CLAVE	HP	Altura (m)	0	2	5	10	15	20	25	30	35	37	38	40	45	50	60	70	80	90
AA2411	5		1012	1003	989	946	926	669	223											
AA7307	7.5		596	592	587	577	571	564	557	524	484	479	476	473	180	35	0			
AA2413	7.5				888	845	777	702	617	506	378	326	300	249	0					
AA2412	7.5	On the (1/m)				1218	1026	822	432	0										
AA2843	10	Gasto (I/m)				1272	1265	1150	1071	976	765	653	597	485	0					
AA2414	10					989	926	897	829	757	702	664	645	608	494	315	0			
AA5064	15					1105	1075	1050	1045	1030	990	918	882	810	500	0				
AA2844	15				706	694	670	645	622	603	580	569	564	553	538	526	0			

BOMBAS TRIFÁSICAS

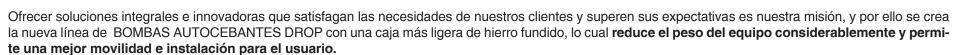
	H.P.	L.P.M.	M.C.A	SUCCION	CLAVE	CLAVE
MODELO		MAXIMA	EFICIENCIA	DESCARGA	SIEMENS	WEG
ME-20-20	20	632	74	2" x 2"	AA2420	AA0083
ME-30-20	20	1132	63	3" x 3"	AA2419	AA6942
ME-20-25	25	545	90	2" x 2"	AA6142	AA2986
ME-30-25	25	1482	77	3" X 3"	AA6817	AA9098
ME-30-30	30	1600	89	3" x 3"	AA7679	AA8021
ME-40-30	30	2610	60	4" x 4"	AA7841	AA8958

BOMBA DOBLE IMPULSOR TRIFÁSICA

La bomba de doble Impulsor con motor eléctrico es creada para obtener mayor presión.

Este equipo se recomienda únicamente para agua limpia; su característica principal son sus DOS IMPULSORES CERRADOS EN SERIE, fabricados en hierro, perfectamente balanceados y acoplados a la misma flecha, lo cual la hace un poco más robusta y mucho más eficiente.

MODELO	H.P.	L.P.M.	M.C.A	SUCC DESC	MOTOR	CLAVE
MP-20-2PASOS	15	770	95	2" X 2"	WEG	AA8900 •
	45	770	0.5	011.14.011	OLEMENIO	4.400.00
MP-20-2PASOS	15	770	95	2" X 2"	SIEMENS	AA8969


										TAB	LA DE RE	ENDIMIEN	OTV							
CLAVE	HP	Altura (m)	0	2	5	10	15	20	25	30	35	37	38	40	45	50	60	70	80	90
AA0083	20		632	629	625	588	561	550	511	484	456	450	447	441	426	412	397	282	0	
AA6942	20		1132	1115	1091	1043	1000	955	902	857	800	776	764	741	690	612	390	0		
AA6142	25	Gasto (I/m)	545	540	533	522	514	506	496	486	481	479	478	476	469	462	429	387	353	0
AA6817	25	Gasto (I/III)				1482	1411	1350	1280	1228	1100	1052	1028	980	850	760	490	102	0	
AA7679	30		1600	1592	1580	1550	1500	1482	1405	1378	1325	1314	1309	1298	1100	980	802	700	350	0
AA7841	30		2610	2655	2496	2196	2017	1865	1829	1513	1431	1345	1302	1216	624	387	0			

BOMBA DOBLE IMPULSOR TRIFÁSICA

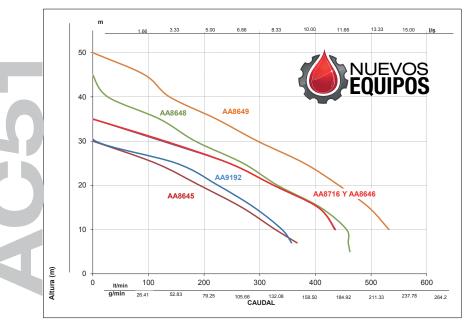
CLAVE	HP	Altura (m)	30	35	40	45	50	55	60	65	70	75	80	85	90	95
AA8900	15	Gasto (I/m)	770	760	700	670	650	608	560	510	470	400	329	230	110	0

Recordando que las bombas autocebantes son ideales para el bombeo de líquidos con sólidos en suspensión y para aplicaciones donde la principal dificultad está en la aspiración, se hizo una mejora de los elementos internos de la bomba logrando una mejor presión que la autocebante convencional y permitiendo pasar sólidos en suspensión de hasta 5/8" de diámetro.

Drop Eléctrica

Drop a Gasolina

AC51


		_	•	-
MODELO	MOTOR	H.P.	SUCCION	CLAVE
			DESCARGA	
AC51 DROP 3 ME	WEG	3	2" X 2"	AA9192 •
AC51 DROP FE	B & S	3.5	2" X 2"	AA8645 •
AC51 DROP FE	B & S	6.5	2" X 2"	AA8716 •
AC51 DROP FE	B & S	10.0	2" X 2"	AA8901

AC51 DROP FE	KOHLER	6.5	2" X 2"	AA8646
			DESCARGA	
MODELO	MOTOR	H.P.	SUCCION	CLAVE

MODELO	MOTOR	H.P.	SUCCION DESCARGA	CLAVE
AC51 DROP FE	HONDA	5.5	2" X 2"	AA8648
AC51 DROP FE	HONDA	9.0	2" X 2"	AA8649

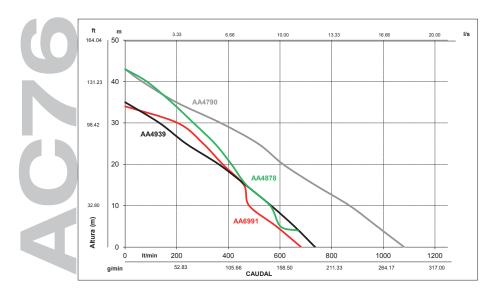
Altura de álabe: 22 mm

Sólidos de aproximadamente: 5/8" diámetro

Incluye coladera de Fierro

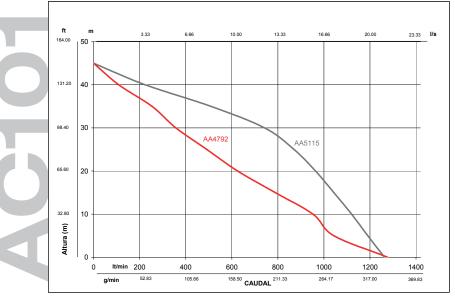
					TABLA DE RENDIMIENTO										
MOTOR	CLAVE	HP	Altura (m)	0	5	7	10	15	20	25	30	35	40	45	50
WEG	AA9192	3	Gasto (I/m)			357	340	290	225	150	5	0			
B&S	AA8645	3.5				367	328	268	192	113	0				
HONDA	AA8648	5.5			462	459	456	409	332	270	184	120	27	0	
KOHLER	AA8646	6.5	Gasto (I/m)				436	405	325	245	125	0			
B&S	AA8716	6.5					435	405	325	245	130	0			
HONDA	AA8649	9				13M	532	496	442	380	296	222	138	93	0

BOMBAS AUTOCEBANTES DE FIERRO



AC76

(3" x 3")


MODELO	MOTOR		H.P.	SUCCION DESCARGA	L.P.M.	M.C.A.	CLAVE
AC76-10B	B & S	C/ Base	10	3" X 3"	670	43	AA4878 •
AC76-10B	B & S	C/ Ruedas	10	3" X 3"	670	43	AA4888
AC76-9H	HONDA	C/ Base	9	3" X 3"	736	43	AA4939 •
AC76-9H	HONDA	C/ Ruedas	9	3" X 3"	736	43	AA1849
AC76-9.5COM	KOHLER	C/Base	9.5	3" x 3"	682	34	AA6991 •
AC76-13H	HONDA	C/ Base	13	3" X 3"	1081	43	AA4790 •
AC76-13H	HONDA	C/ Ruedas	13	3" X 3"	1081	43	AA4737
AC76-14CP	KOHLER	C/Base	14	3" X 3"	1081	43	AA7316

		1076											
		16/6		TABLA DE RENDIMIENTO									
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	34	40	43	
AA6991	6.5	Gasto (I/m)	682	586	481	460	378	303	203	0			
BRIGGS	HP	Altura (m)	4	5	10	15	20	25	30	35	40	43	
AA4878	10	Gasto (I/m)	670	602	562	470	412	348	265	180	84	0	
HONDA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	43	
AA4939	9	Gasto (I/m)	736	656	566	467	363	236	133	0			
AA4790	13	Gasio (I/III)	1081	976	870	736	612	515	370	198	66	0	

Las curvas de rendimiento van en función del caballaje y modelo de motor, la succión y descarga de la bomba. Nuestras curvas están basadas en datos exactos.

	Δ	0-i (0) i l										
			TABLA DE RENDIMIENTO									
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45
AA5115	18	Gasto (I/m)	1263.2	1190.4	1120.0	1043.2	963.2	870.4	742.4	510.0	224.0	0.0
HONDA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45
AA4792	13	Gasto (I/m)	1277	1043	952	789	625	492	357	254	109	0

AC101 (4" x 4")

TIPO DE ARRANQUE ELÉCTRICO RETRACTIL

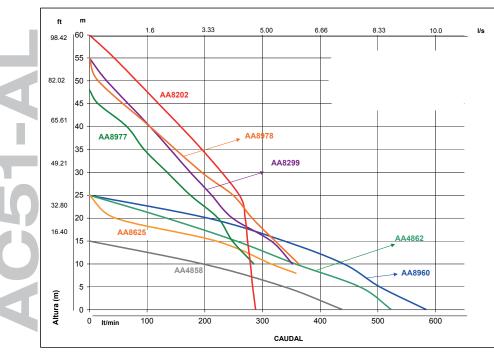
MODELO	MOTOR		H.P.	SUCCION DESCARGA	L.P.M.	M.C.A.	CLAVE
AC101-13H	HONDA	C/ Base	13	4" X 4"	1277	45	AA4792
AC101-13H	HONDA	C/ Ruedas	13	4" X 4"	1277	45	AA4739
AC101-14CP	KOHLER	C/Base	14	4" X 4"	1277	43	AA7317
AC101-14CP	KOHLER	C/ Ruedas	14	4" X 4"	1277	43	AA7318
AC101-M18	KOHLER	C/ Base	19*	4" X 4"	1263	43	AA5115
AC101-M18	KOHLER	C/Estructura	19**	* 4" X 4"	1263	43	AA7252
AC101-M18	KOHLER	C/ Ruedas	19*	4" X 4"	1263	43	AA1905

*CON BASE NO INCLUYE TANQUE DE GASOLINA NI BATERIA *** INCLUYE TANQUE, BATERIA Y ESTRUCTURA

MOTOBOMBAS AUTOCEBANTES A GASOLINA

CABEZA ALUMINIO BONASA

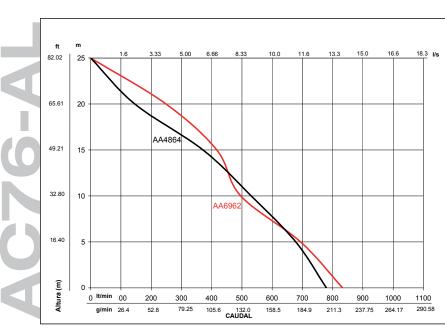
Adaptándonos a las necesidades del cliente, en cuanto a tener una bomba en donde predomine su ligereza y facilidad de transporte, surgen las bombas con **cuerpo de aluminio**; este tipo de bombas Autocebantes, tienen los mismos usos y aplicaciones que las fabricadas completamente en hierro gris. Vienen acopladas a una estructura metálica que las protege y facilita su manejo, además de que traen adaptadores para manguera, abrazaderas y coladera.

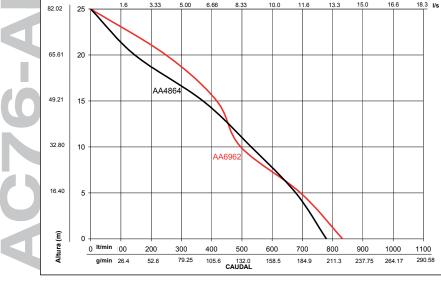

AC51 AL (2" x 2")

MODELO	MOTOR	HP	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE	
AC51AL-3.5	B & S	3.5	439	15	2" X 2"	AA4858	
Ac-51 Al 5.5 GP160	HONDA *	5.5	524	25	2" X 2"	AA1889	
AC51AL-5.5 GX160	HONDA	5.5	524	25	2" X 2"	AA4862	
AC51 AL "AP" -5.5	HONDA GX160	5.5	288	60	2" X 2"	AA8202	ALTA PRESIÓN
AC51 AL "AP" -5.5	BONASA	5.5	285	48	2" X 2"	AA8977	ALTA PRESIÓN
AC51 AL "AP" -6.5	B & S	6.5	363	54	2" X 2"	AA8978	ALTA PRESIÓN
AC51 AL "AP" -6.5	KOHLER	6.5	352	55	2" X 2"	AA8299	ALTA PRESIÓN
AC51 AL - 6.5 HP	KOHLER C	6.5	585	26	2" X 2"	AA6907	
AC51AL-6.5 GP200	HONDA I	6.5	585	25	2" X 2"	AA8960	
AC51AL - 6.5 RS	B & S	6.5	358	22	2" X 2"	AA8625	

TIPO DE ARRANQUE RETRÁCTIL

	25	1 / 1											
					TABLA D	E RENDI	MIENTO						
BONASA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	4
AA8977	6.5	Gasto (I/m)			285	248	223	175	135	95	65	15	
KOHLER	HP	Altura (m)	0	5	10	15	20	25	28	30	40	50	
AA6907	6.5	Gasto (I/m)	585	504	441	338	205	0					
AA8299	6.5	Gusto (I/III)			352	315	248	212	190	175	105	30	
													i
HONDA	HP	Altura (m)	0	5	10	15	20	25	35	45	55	60	
HUNDA	HIF	Altura (III)	U	5	10	10	20	20	33	40	55	00	Į.
AA4862	5.5		524	469	357	255	134	0					1
AA8202	5.5	Gasto (I/m)	288	283	279	274	270	260	195	120	43	0	ŀ
AA8960	6.5	-	585	504	441	338	205	0	100	120	70	Ů	ŀ
AAOSOO	0.5		000	004	771	000	200	Ů					ļ
BRIGGS	HP	Altura (m)	0	5	10	15	20	25	30	40	50	55	ľ
AA4858	3.5		440	338	197	0							
AA4859	6	04- (1/)		462	346	232	83	0					
AA8978	6.5	Gasto (I/m)			363	322	282	249	195	105	15	0	
AA8625	6.5			358	315	220	45	0					
				8 M									


AC76 AL (3" x 3")


MODELO	MOTOR	HP	SUCCION DESCARGA	CLAVE
AC76AL-5.5	HONDA GX160	5.5	3" X 3"	AA4864
AC76AL-6.5	KOHLER	6.5	3" X 3"	AA6962

Todas las bombas de Aluminio Autocebantes cuentan con ESTRUCTURA TUBULAR

 Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

	AC	<u> 76 AL</u>	TABLA DE RENDIMIENTO						
KOHLER	HP	Altura (m)	0	5	10	15	20	25	
AA6962	6.5	Gasto (I/m)	833	694	496	417	249	0	

HONDA	HP	Altura (m)	0	5	10	15	20	25
AA4864	5.5	Gasto (I/m)	779	678	531	372	146	0

	ft	m																
	114.8	35 -		1.6	3.33	5.00	6.66	8.33	10.0	11.6	13.3	15.0	16.6	18.3	20.0	21.6	23.33	I/s
N.	98.42	30 -																
	82.02	25 -																
	65.61	20 -							AA	7351								
0	49.21	15 -								A A 6	6992							
	32.80	10 -								7010	,002							
0	16.40	5 -												AA	5073			
	E	0 -		1												/		
Q	Altura (m)		lt/min g/min		200 52.8	300 79.25	105.6	132.0	600 158.5 CAUDA	700 L ^{184.9}	211.3	900 237.75	1000 264.17	1100 ' 290.58	1200 317.00	1300 343.4	1400 2 369.84	

	AC10)1 AL			TABLA D	E RENDIMI	ENTO		
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30
AA6992	9.5	Gasto (I/m)	1391	1306	1043	758	528	174	0
AA7351	14	Gasto (I/III)	1310	1212	1058	916	583	238	0
,	•	,		-	,				
HONDA	HP	Altura (m)	0	5	10	15	20	25	30
AA5073	13	Gasto (I/m)	1309	1200	1058	916	583	238	0

AC101 AL (4" x 4")

MODELO	MOTOR	HP	SUCCION DESCARGA	CLAVE
AC101AL-10	B&S	10	4" X 4"	AA4866
AC101AL-9.5	KOHLER	9.5	4" X 4"	AA6992 •
AC101AL-13	HONDA	13	4" X 4"	AA5073
AC101AL-13.5	B&S	13.5	4" X 4"	AA8940
AC101AL-14	KOHLER	14	4" X 4"	AA7351 •

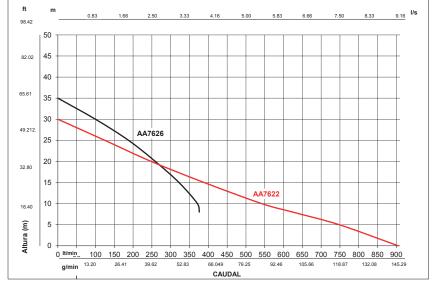
BOMBA AUTOCEBANTE 1"X1" - YY0115

Bomba autocebante de 7000 RPM Motor de 2HP de 2 tiempos Succión máxima 8 mts Altura máxima 30 mts. ideal para *pequeñas* aplicaciones agrícolas.

Ofreciendo siempre soluciones al cliente, se desarrollan las Bombas Centrífugas y Autocebantes de la Línea Bonasa, creadas con manufactura de punta, logrando un balance entre calidad y precio ya que estas bombas son ensambladas con un "motor económico", de la misma manera le proporcionan duración y resistencia otorgando el más alto rendimiento. Se fabrican también en hierro gris con maquinado de alta precisión para aumentar su eficiencia, su impulsor es cerrado para el caso de las centrífugas y semiabierto para las autocebantes, ensamblandos con sellos mecánicos de carbón - cerámica.

MOTOBOMBAS CENTRÍFUGAS

MODELO				H.P.	SUCCION	CLAVE
		M.C.A.	L.P.M.		DESCARGA	
MG20R	S/ BASE, S/ ESTR.	35	376	6.5	2" X 2"	AA7593
MG20R	C/BASE MEDIANA	35	376	6.5	2" X 2"	AA7626
MG20R	C/ESTRUC. TUB.	35	376	6.5	2" X 2"	AA7627
					ARRANG	UE RETRÁCTI



Motobomba Centrífuga

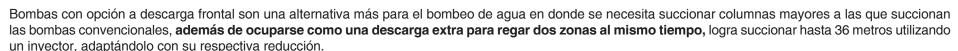
con Cabeza de Aluminio

Motobomba Autocebante

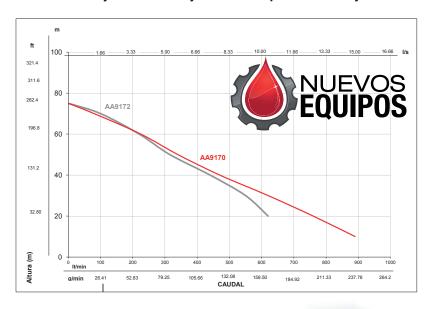
MOTOBOMBAS AUTOCEBANTES CABEZA DE ALUMINIO

MODELO				H.P.	SUCCION	CLAVE
		M.C.A.	L.P.M.		DESCARGA	
AC51ALR	C/ Base	25	524	6.5	2" X 2"	AA7622 •
AC51ALR	C/Estructura	25	524	6.5	2" X 2"	AA7623
AC76ALR	C/Estructura	30	1,000	6.5	3" X 3"	YY8802

exactos.


Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

Las curvas de rendimiento van en función del caballaje y modelo de motor, la succión y descarga de la bomba. Nuestras curvas están basadas en datos


							TABLA [DE REND	IMIENTO				
	HP	Altura (m)	0	5	8	10	15	20	25	30	35	40	45
AA7626	6.5	Gasto (I/m)			376	371	322	259	188	100	0		
AA7622	6.5	Gasto (I/III)	905	748	624	542	389	248	125	0			

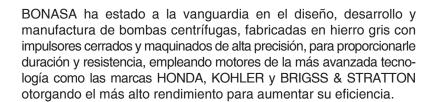
Están hechas de fierro de la mejor calidad, una de las ventajas de este equipo, es que no se necesita instalar dentro del pozo para lograr la succión, sino que se instala sobre el brocal del mismo, también tenemos la opción de poder girar el caracol dependiendo las necesidades de cada cliente.

Tienen una mayor eficiencia y nos ofrece presiones mayores.

MODELO	MOTOR		H.P.	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE
MG20 -13 ODF	HONDA	C/Base	13	620	75	2" X 2" X 2"	AA9172
MG30 -13 ODF	HONDA	C/Base	13	890	75	3" X 3" X 2"	AA9170

	HP	Altura (m)	10	20	30	40	50	60	70	75
AA9172	13	Gasto (I/min)		620	550	440	315	220	100	0
AA9170	13	Gasio (i/iiiii)	890	760	620	470	340	225	80	0

La función del inyector es expulsar un fluido a gran velocidad mediante la corriente de otro fluido.



El caracol se puede girar.

MOTOBOMBA CENTRÍFUGA A GASOLINA

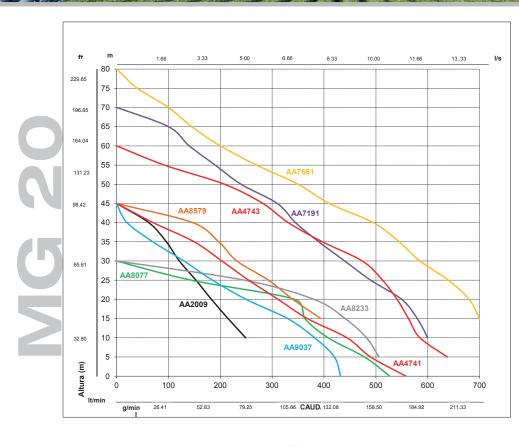
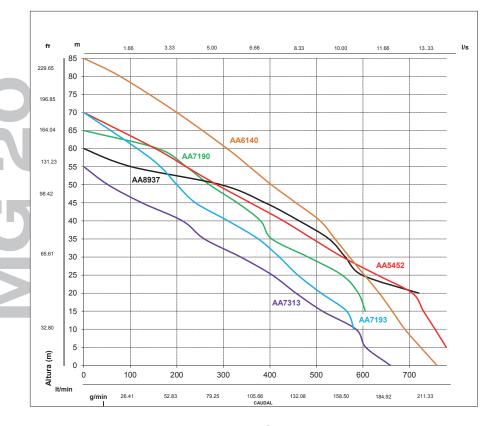

TIPO CARACOL

										TABLA [DE REND	IMIENTO							
HONDA	HP	Altura (m)		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80
AA4741	5.5		558	490	444	368	312	255	203	150	71	0							
AA9037	5.5		432	420	382	330	250	185	130	70	20	0							
AA7191	9	Gasto (I/m)			600	580	550	490	440	390	345	310	240	190	140	100	0		
AA4743	13			638	585	563	541	513	474	397	331	282	208	92	0				
AA7661	13					700	680	640	585	545	495	410	350	270	200	145	100	40	0
·		,				18 M	AA7661												

BRIGGSS	HP	Altura (m)		5	10	15	20	25	30	35	40	45
AA2009	3.5				249	215	183	153	121	96	62	0
AA8077	3.5	Gasto (I/m)	527	478	408	363	344	144	0			
AA8579	6.5 RS					394	340	293	232	197	147	0

KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45
AA8233	6.5	Gasto (I/m)		506	482	441	381	247	0			


MG20 (2" x 2")

MODELO	MOTOR		H.P.	L.P.M.	M.C.A.	SUCCION	CLAVE	
						DESCARGA		
MG10-3.5B	B & S	C/Soporte	3.5	249	42	1 1/4" X 1"	AA2009	
MG20-3.5B	B & S	C/Soporte	3.5	527	27	2" X 2"	AA2011	
MG20-3.5B	B & S	C/ Base	3.5	527	27	2" X 2"	AA8077	
MG20-5.5	HONDA GX160	C/ BASE	5.5	558	45	2" X 2"	AA8966	
MG20-5.5H	HONDA GX160	S/ BASE, S/ESTR	5.5	558	45	2" X 2"	AA8147	
MG20-5.5H	HONDA GX160	C/Estructura	5.5	558	45	2" X 2"	AA4741	
MG20-5.5H	HONDA GP160	C/Base	5.5	432	45	2" X 2"	AA9037	
MG20-5.5H	HONDA GP160	C/Estructura	5.5	432	45	2" X 2"	AA9230	
	•							
MG20-6.5RS B&S	B & S			450	47		AA8579	
MG20-6.5RS B&S	B & S			450	47		AA8580	
MG20-6.5 H	HONDA GP200	C/Estructura	6.5	558	45	2" X 2"	AA8677	
MG20-6.5 H	HONDA GP200	C/ Base	6.5	558	45	2" X 2"	AA8678	
MG20-6.5 K	KOHLER	C/Estructura	6.5	509	28	2" X 2"	AA8233	
MG20-6.5 COU	KOHLER COU	C/ Soporte	6.5	509	28	2" X 2"	AA6905	
MG20-6.5	KOHLER COU	C/ Base	6.5	427		2" X 2"	AA8617	Nuevo impulsor
MG20-10B	B & S	C/Base	10	710	55	2" X 2"	AA7190	
MG20-N9H	HONDA	C/BASE	9	698	58	2" X 2"	AA7191	
MG20-9H BCN	HONDA	C/Estructura	9	698	58	2" X 2"	AA7826	
MG20-9.5K-N	KOHLER	C/Estructura	9.5	580	70	2" X 2"	AA7852	
MG20-9.5K-N	KOHLER	C/Base	9.5	580	70	2" X 2"	AA7193	
MG20-13H	HONDA	C/BASE	13	638	60	2" X 2"	AA4743	
MG20-13H COMP	HONDA	C/BASE	13	700	80	2" X 2"	AA7661	•
MO00 40 5 D00		0/0405	40 -	====		0" \(0"	4.4.000	

MG20-13.5 B&S	B & S	C/BASE	13.5	720	57	2" X 2"	AA8937 •
MG20-14CP	KOHLER	C/Base	14	659	55	2" X 2"	AA7313 🔴
MG20-18K	KOHLER	C/Estructura	19***	779	70	2" X 2"	AA5606
MG20-18K	KOHLER	C/Base	19 *	779	70	2" X 2"	AA5452 🔴
MG-20-25KB	KOHLER	C/Base	25*	759	85	2" X 2"	AA6140 ●
MG-20-25KE	KOHLER	C/Estructura	25***	759	85	2" X 2"	AA6141
A I a a alacca a a			14				. £ £ : _

• Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

KOHLER IN POWER. SINCE 1920.

										TABLA [DE REND	IMIENTO				
BRIGGSS	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60	65
AA7190	10	Gasto (I/m)				605	590	555	482	404	380	330	270	220	160	0
AA8937	13.5	Gasto (I/III)					720	598	562	527	463	390	295	102	0	

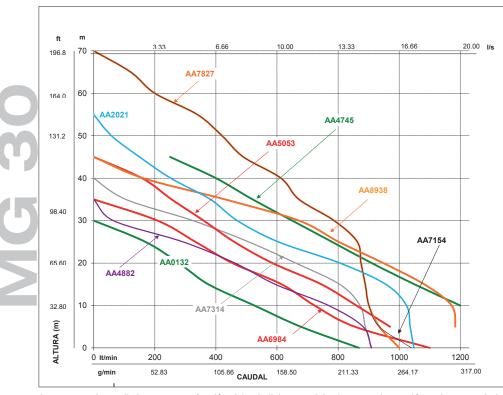
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60	70	80	85
AA7193	9.5				580	565	510	460	420	375	310	240	200	165	115	0		
AA7313	14	Gasto (I/m)	659	606	585	513	456	405	337	259	212	125	52	0				
AA5452	19	Gasto (I/III)		779	755	730	706	631	556	492	429	358	286	220	154	0		
AA6140	25		759	724	690	663	635	603	571	540	508	456	403	356	308	200	78	0

MOTOBOMBA CENTRÍFUGA A GASOLINA

TIPO CARACOL

ELÉCTRICO

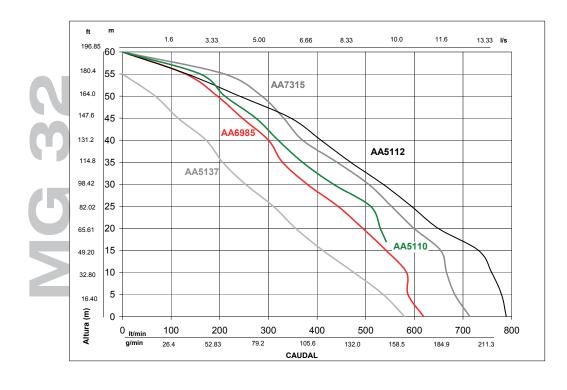
RETRACTIL


MG30

(3" x 3")

MODELO	MOTOR		L.P.M.	M.C.A.	H.P.	SUCCION DESCARGA	CLAVE
MG30-10B	B & S	C/Base	909	32	10	3" X 3"	AA4882 🌑
MG30-25K	KOHLER	C/Estructura	1041	70	25***	3" X 3"	AA7154 🛑
MG30-9.5	KOHLER	C/Base	1101	35	9.5	3" X 3"	AA6984
MG30-5.5H	HONDA GX160	C/Estructura	870	30	5.5	3" X 3"	AA0132 🌘
MG30-9H	HONDA	C/BASE	967	32	9	3" X 3"	AA5053 🔵
MG30-13H	HONDA	C/BASE	845	43	13	3" X 3"	AA4745 🌘
MG30-13.5 B&S	B & S	C/BASE	1184	45	13.5	3" X 3"	AA8938 🔴
MG30-14CP	KOHLER	C/Base	910	40	14	3" X 3"	AA7314 🌘
MG30-M18*	KOHLER	C/ Base	1048	55	19	3" X 3"	AA2021 🛑
MG30-M18***	KOHLER	C/ Estructura	1048	55	19	3" X 3"	AA7141
MG30-23K	KOHLER	C/Estructura	1001	67	23***	3" x 3"	AA7827

*CON BASE NO INCLUYE TANQUE DE GASOLINA NI BATERIA
*** INCLUYE TANQUE,BATERIA Y ESTRUCTURA


Las curvas de rendimiento van en función del caballaje y modelo de motor, la succión y descarga de la bomba. **Nuestras curvas están basadas en datos exactos.**

	$\mathbf{R}\mathbf{A}\mathbf{C}$																
							TAB	LA DE R	ENDIMIE	NTO							
KOHLER	Ŧ	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70
AA6984	9.5		1101	855	723	615	454	333	209	0							
AA8080	9.5				870	730	600	440	340	230	160	62	0				
AA7314	14	Gasto (I/m)	910	889	872	805	661	507	325	105	0						
AA2021	19	Gasto (I/III)	1048	1036	1024	956	806	604	470	382	252	150	58	0			
AA7827	23		1001	935	901	889	875	863	787	672	613	490	420	339	200	121	0
AA7154	25		1041	935	901	889	875	863	787	672	613	490	420	339	200	121	0

HONDA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60
AA0132	5.5		869	678	526	375	279	169	0						
AA5053	9	Gasto (I/m)		970	860	745	585	460	360	255	158	0			
AA4745	13				1200	1050	910	780	650	520	400	250	145	32	0

BRIGGS	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45
AA4882	10	Gasto (I/m)	909	882	769	594	462	292	64	0		
AA8938	13.5	Gasto (I/III)		1184	1172	1082	948	802	672	430	162	0

MG32 (3" x 2")

MODELO	MOTOR				H.P.	SUCCION DESCARGA	CLAVE	
MG32-9H	HONDA	BASE	580	55	9	3" X 2"	AA5137 •	
MG32-9H	HONDA	ESTRUCT	580	55	9	3" X 2"	AA6929	
MG32-13H	HONDA	ESTRUCT	789	58	13	3" X 2"	AA6930	
MG32-13H	HONDA	BASE	789	58	13	3" X 2"	AA5112 •	
MG-32-9.5K	KOHLER	C/Base	619	60	9.5	3" X 2"	AA6985 •	
MG-32- 13.5 B&	B & S	C/Base	542	59	13.5	3" X 2"	AA8939	NUEVA
MG32-10B	B & S	C/Base	638	55	10	3" X 2"	AA5110 •	
MG32-14K	KOHLER	C/Base	714	60	14	3" X 2"	AA7315	

TIPO DE ARRANQUE RETRÁCTIL

MG32

								TABLA [DE REND	IMIENTO					
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60
AA6985	9.5	Gasto (I/m)	619	587	584	542	494	443	380	329	300	246	195	130	0
AA7315	14	Gasto (I/III)	714	683	666	654	599	553	506	441	370	331	286	210	0


HONDA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50	55	60
AA5137	9	Coote (I/m)	580	536	476	412	356	310	253	206	172	114	67	0	
AA5112	13	Gasto (I/m)	789	779	759	732	649	594	536	469	408	346	240	133	0

BRIGGS	HP	Altura (m)	0	5	10	17	20	25	30	35	40	45	50	55	60
AA5110	10	Gasto (I/m)				542	530	510	434	370	320	274	210	160	0

MOTOBOMBA CENTRÍFUGA A GASOLINA

TIPO CARACOL

	M	G40					TABLA [DE REND	IMIENTO				
KOHLER	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50
AA7635	23		2140	1832	1539	1242	1053	835	668	425	273	133	0
AA6821	25		2140	1832	1539	1242	1053	835	668	425	273	133	0
AA0087	19		1714	1519	1212	952	727	597	496	341	226	114	0

		/IG43					TABLA [DE REND	IMIENTO				
KOHLER	HP	Altura (m)	5	10	15	20	25	30	35	40	45	50	53
AA5696	19	Gasto (I/m)	2003	1875	1622	1395	1176	968	714	476	238	87	0
HONDA	HP	Altura (m)	0	5	10	15	20	25	30	35	40	45	50

978 759

499

233

1425

1238

TIPO DE ARRANQUE

ELÉCTRICO

RETRÁCTIL

MG40

(4" x 4")

MODELO	MOTOR		H.P.	SUCCION DESCARGA	CLAVE
MG40-M18***	KOHLER	C/ Estructura	19	4" X 4"	AA7143
MG40-M18*	KOHLER	C/ Base	19	4" X 4"	AA0087 •
MG40-23K	KOHLER	C/ Estructura	23*	4" X 4"	AA8161
MG40-23K	KOHLER	C/Base	23*	4" X 4"	AA7635 •
MG40-25K	KOHLER	C/BASE	25*	4" X 4"	AA6821 •

MG43

(4" x 3")

MODELO	MOTOR		H.P.	SUCCION DESCARGA	CLAVE
MG-43-13H	HONDA	BASE	13	4" X 3"	AA5682
MG-43-13H	B&S	BASE	13	4" X 3"	AA0006
MG43-18KE	KOHLER	C/Estructura	19***	4" X 3"	AA6822
MG43-18KB	KOHLER	C/Base	19*		AA5696

*CON BASE NO INCLUYE TANQUE DE GASOLINA NI BATERIA
*** INCLUYE TANQUE,BATERIA Y ESTRUCTURA

AA5682

13 Gasto (I/m)

MOTOBOMBA CENTRÍFUGA "ALTA PRESIÓN"

La bomba de doble Impulsor es creada por la necesidad de obtener con un solo equipo una mayor presión. Este equipo se recomienda únicamente para agua limpia y su característica principal son sus DOS O MÁS IMPULSORES, CERRADOS, EN SERIE, de hierro, perfectamente balanceados y acoplados a la misma flecha, lo cual la hace un poco más robusta y mucho más eficiente.

KOHLER.

IRRIGACION DOBLE	IMPULSOR	C/ MOTO	DR t	-ngine	es		
MODELO		L.P.M. MAX	M.C.A	H.P.	SUCCION DESCARGA	CLAVE	
MP-20-2 PASOS 6.5 K	C/Base	457	80	6.5	2" X 2"	AA9260	
MP-20-2 PASOS 6.5 K	C/ESTRUCTURA	457	80	6.5	2" X 2"	AA9259	
MP-20-2 PASOS 9.5 K	C/Base	472	80	9.5	2" X 2"	AA7342	0
MP-20-2 PASOS 14K	C/Base	550	110	14	2" X 2"	AA7511	•
MP-20-2 PASOS 23 K *	C/Base	651	138	23	2" X 2"	AA7887	•
MP-20-2 PASOS 25K *	C/Base	651	138	25	2" X 2"	AA7886	•
MP-20-2 PASOS 23 K ***	C/ESTRUCTURA	651	138	23	2" X 2"	AA7889	
MP-20-2 PASOS 25K ***	C/ESTRUCTURA	651	138	25	2" X 2"	AA7888	
MP-30 - 2 PASOS 14 HP K		760	80	14	3" X3"	AA9234	•
* CON DACE NO INCLUDE DA	TEDIA NI TANOHE	DE CASOL	INIA				

* CON BASE NO INCLUYE, BATERIA NI TANQUE DE GASOLINA *** INCLUYE TANQUE, BATERIA Y ESTRUCTURA

HONDA

IRRIGACIÓN DOBLE IMPULSOR C/ MOTOR MODELO CLAVE P-20 2 PASOS 5.5 HP GX160 BASE 410 75 5.5 2" X 2" AA9244 C/ESTRUCTURA 410 AA9245 457 80 AA9254 C/ESTRUCTURA 6.5 2" X 2" AA9255 IP-20 2 PASOS 6.5 HP GP200 **BASE** 2" X 2" BASE 605 100 13 2" X 2" AA7344 MP-20-2 PASOS 13H *Cuña **BASE** 2" X 2" AA8584 2" X 2" IP-20-2 PASOS 21HP *Cuña BASE 612 130 21 AA9130 MP-30-2 PASOS HONDA BASE 720 13 3" X3" AA1885

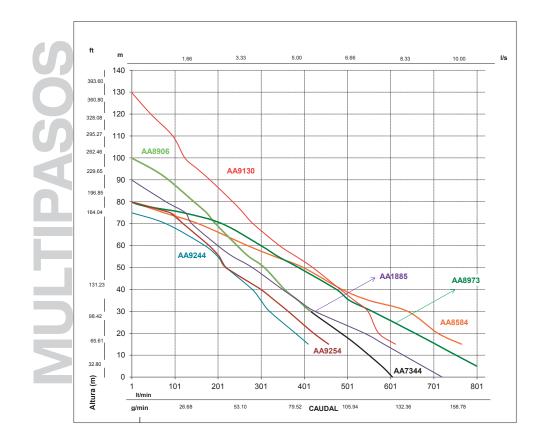
_			
IRRIGACIÓN	DOBLE	IMDIII COD	C/MOTOD
IKKIGACION	DOBLE	INIPULSUR	C/ IVIO I OR

MP-20-2 PASOS 10 HP B&S	BASE	535	90	10	2" X 2"	AA8968
MP-20-2 PASOS 13.5 HP B&S	BASE	415	97	13.5	2" X 2"	AA8906
MP-30-2 PASOS B&S	BASE	800	85	13.5	3" X3"	AA8973

Estas bombas no incluyen batería.

IRRIGACIÓN DOBLE IMPULSOR C/ MOTOR BONASA

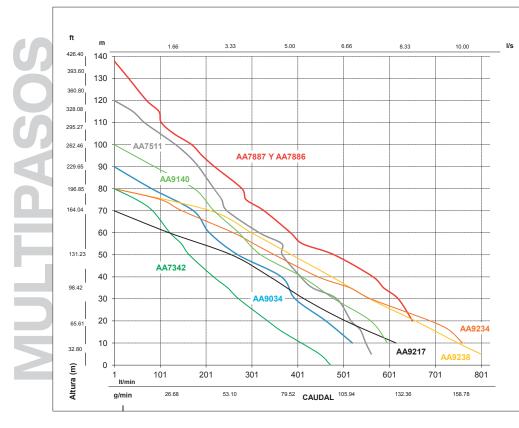
MP-20-2 6.5 HP BONASA	C/ESTRUCTURA	457	80	6.5	2" X 2"	AA9257
MP-20-2 6.5 HP BONASA	BASE	457	80	6.5	2" X 2"	AA9258


Motobomba Centrífuga Multipasos con motor Kohler

Motobomba Centrífuga Multipasos con motor Honda

MOTOBOMBA CENTRÍFUGA MULTIPASOS ALTA PRESIÓN

CON DOBLE IMPULSOR



Las curvas de rendimiento van en función del caballaje y modelo de motor, la succión y descarga de la bomba. Nuestras curvas están basadas en datos exactos.

										TABLA	DE REN	DIMIENT)							
HP	Altura (m)	0	5	15	20	30	35	40	50	55	60	70	75	80	90	95	100	110	120	130
5.5				410	380	320	300	280	220	200	170	80	0							
6.5				457	422	363	332	300	218	204	180	120	90	0						
9	Gasto (I/m)			765	710	640	550	488	398	332	269	155	75	0						
13	Gusto (IIII)	605	580	520	486	415	386	355	308	272	245	195	174	145	86	48	0			
13		720	675	585	540	425	387	350	280	235	200	140	125	80	0					
21				612	573	548	516	484	420	382	343	282	259	235	182	153	124	96	45	0
	5.5 6.5 9 13 13	5.5 6.5 9 Gasto (I/m)	5.5 6.5 9 13 13 13 21	Gasto (l/m) Gasto (l/m) Gasto (l/m) 605 580 720 675	5.5 6.5 9 Gasto (l/m) 605 580 520 13 720 675 585	5.5 6.5 9 Gasto (l/m) 605 580 520 486 720 675 585 540	5.5 6.5 9 Gasto (l/m) Gosporario Gasto (start) Gasto (st	5.5 410 380 320 300 6.5 457 422 363 332 9 765 710 640 550 605 580 520 486 415 386 720 675 585 540 425 387	5.5 410 380 320 300 280 9 457 422 363 332 300 13 765 710 640 550 488 605 580 520 486 415 386 355 720 675 585 540 425 387 350	5.5 6.5 9 Gasto (I/m) 13 410 410 480 430 422 363 332 300 280 220 487 422 363 332 300 218 398 500 510 488 398 720 605 580 520 486 415 386 355 308 308 309 488 398 398 398 398 398 398 398 3	HP	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 5.5 6.5 410 380 320 300 280 220 200 170 9 457 422 363 332 300 218 204 180 13 765 710 640 550 488 398 332 269 605 580 520 486 415 386 355 308 272 245 720 675 585 540 425 387 350 280 235 200	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 5.5 6.5 410 380 320 300 280 220 200 170 80 6.5 457 422 363 332 300 218 204 180 120 9 765 710 640 550 488 398 332 269 155 13 605 580 520 486 415 386 355 308 272 245 195 720 675 585 540 425 387 350 280 235 200 140	5.5 410 380 320 300 280 220 200 170 80 0 9 457 422 363 332 300 218 204 180 120 90 13 765 710 640 550 488 398 332 269 155 75 605 580 520 486 415 386 355 308 272 245 195 174 720 675 585 540 425 387 350 280 235 200 140 125	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 5.5 6.5 410 380 320 300 280 220 200 170 80 0 9 457 422 363 332 300 218 204 180 120 90 0 13 70 70 60 450 450 488 398 332 269 155 75 0 605 580 520 486 415 386 355 308 272 245 195 174 145 720 675 585 540 425 387 350 280 235 200 140 125 80	HP	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 5.5 6.5 410 380 320 300 280 220 200 170 80 0 </td <td>HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 5.5 6.5 410 380 320 300 280 220 200 170 80 0</td> <td>HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 110 5.5 6.5 6.5 9 467 422 363 332 300 280 220 200 170 80 0</td> <td>HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 110 120 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5</td>	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 5.5 6.5 410 380 320 300 280 220 200 170 80 0	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 110 5.5 6.5 6.5 9 467 422 363 332 300 280 220 200 170 80 0	HP Altura (m) 0 5 15 20 30 35 40 50 55 60 70 75 80 90 95 100 110 120 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5

BRIGGS	HP	Altura (m)	0	5	12	15	20	30	35	40	50	55	60	70	75	80	90	95	100
AA8968	10				535	507	460	395	343	300	232	196	170	123	100	70	0		
AA8906	13.5	Gasto (I/m)						415	386	355	308	272	245	195	174	145	86	48	0
AA8973	13.5			800	733	705	657	558	505	475	387	340	300	210	120	0	0		

C/BASE 85 2" X 2" AA9034 520 9 C/BASE 596 13 2" X 2" AA9140 C/BASE 657 65 9 3" X 3" AA9217 C/BASE 13 3" X 3" AA9238 800

Estas bombas no incluyen batería.

Las claves marcadas con este ícono • están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba.

KOHLER	HP	Altura (m)		5	15	20	30	35	40	50	55	60	70	75	80	90	95	100	110					
AA7342	9.5	Gasto (I/m)	472	448	368	335	272	248	217	164	147	122	84	49	0									
	HP	Altura (m)	5	10	16	20	30	35	40	50	55	60	70	75	80	90	95	100	105	110	115	120	130	138
AA7511	14		561	549	537	517	486	433	407	367	366	317	246	235	218	184	162	134	100	66	41	0		
AA9234	14	Gasto (I/m)		760	730	690	560	515	445	350	305	260	148	102	0									
AA7887	23	Guoto (iiiii)				651	620	588	565	480	411	385	327	288	279	219	192	169	130	103	98	71	32	0
AA7886	25					651	620	588	565	480	411	385	327	288	279	219	192	169	130	103	98	71	32	0
DIESEL	HP	Altura (m)	5	10	20	30	40	50	60	70	80	90	100											

DIESEL	HP	Altura (m)	5	10	20	30	40	50	60	70	80	90	100
AA9034	9	Gasto (I/m)		520	462	395	365	270	208	173	82	0	
AA9217	9			615	505	415	340	256	120	0			
AA9140	13			596	560	480	410	320	272	218	175	88	0
AA9238	13		800	750	657	558	475	387	300	210	0		

CLAVE

MOTOBOMBAS MOTOR A DIESEL

CENTRÍFUGAS / AUTOCEBANTES

CENTRIFUGAS CON MOTOR DIESEL

MODELO	H.P.	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE
MD30-D9*	9	1143	37	3" X 3"	AA8885
MD20 - 13 HP C/ BASE	13	720	57	2" X 2"	AA9142
MD30- 13 HP C/ BASE	13	1255	47	3" X 3"	AA9143 •
MD32- 13 HP C/ BASE	13	645	63	3" X 2"	AA9144

Solo la bomba MD30-D10* ES EQUIPADA (incluye batería y estructura) Estas bombas no incluyen batería.

AUTOCEBANTES CON MOTOR DIESEL

MODELO	H.P.	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE
AC-76-D 9 c/Ruedas	9	563	35	3" X 3"	AA5952
AC-76-D 9 c/Base	9	563	35	3" X 3"	AA5946
AC-76-13 HP C/Base	13	810	50	3" X 3"	AA9145 •
AC-76-13 HP C/Ruedas	13	810	50	3" X 3"	AA9141

Estas bombas no incluyen batería.

^{*} Esta bomba incluye batería y estructura.

										TAB	LA DE I	RENDIM	IENTO							
	MD20	HP	Altura (m)	0	5	10	15	17	20	25	30	35	40	45	50	55	60	80	100	117
AC76	AA5946	10		563	553	538	515	458	381	258	0									
AC76	AA9145	13				810	776	742	690	630	500	390	310	130	0					
	AA9142	13	Gasto (I/min)						720	598	562	527	463	390	295	102	0			
	AA8668	14	Gasto (minin)					680	690	649	608	548	480	395	274	0				
	AA7861	21					700	689	674	614	538	460	387	302	204	138	0			
	AA7838	33.7								ĺ			713	690	671	646	637	506	301	0

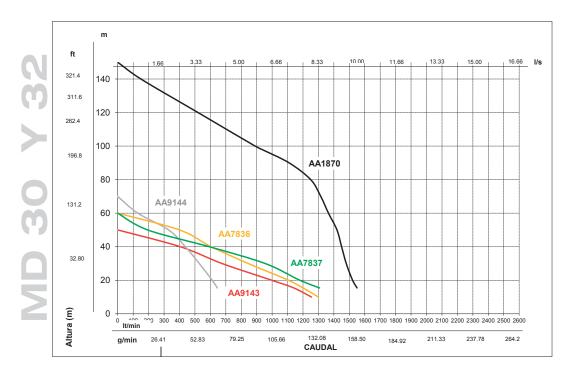
100 AA7838 80 60 AA9142 40 AA9145 AA8668

Las curvas de rendimiento van en función del caballaje el de motor, la succión y descarga de la bomba. Nuestras curvas están basadas en datos exactos.

[•] Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento, y pueden ser ocupadas para modelos con el mismo caballaje, succión y descarga de la bomba

MOTOBOMBAS CENTRIFUGAS KOHLER. CON MOTOR DIESEL Engines

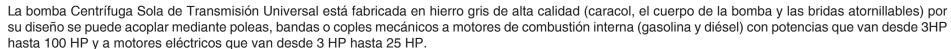
MODELO	H.P.	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE
MD-30-18.8 K C/BASE	18.8	1300	60	3" X 3"	AA7836


Esta bomba no incluyen batería ni tanque.

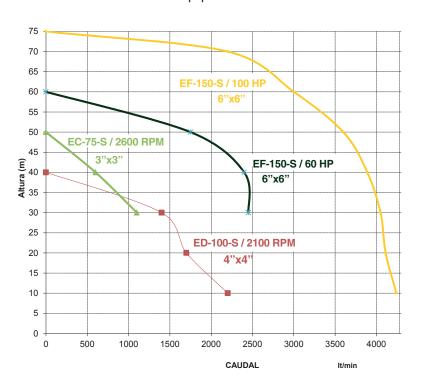
MOTOBOMBAS CENTRIFUGAS CON MOTOR DIESEL Perkins

MODELO	H.P.	L.P.M.	M.C.A.	SUCCION DESCARGA	CLAVE
MD20 - 14 C/ TAB	14	680	57	2" X 2"	AA8668
MD20 - 26.4 C/TAB	26.4	-	-	2" X 2"	AA7839
MD20 - 21 C/TAB	21	700	60	2" X 2"	AA7861 🌘
MD20 - 33.7 C/TAB	33.7	713	117	2" X 2"	AA7838 •
MD30 - 21 C/TAB	21	1307	60	3" X 3"	AA7837
MD30 - 60HP	60	1550	150	3" X 3"	AA1870 •

	HP	Altura (m)	10	15	20	30	40	50	60	70	80	90	98	100	120	140	150
AA9143	13		1255	1140	990	675	405	0									
AA9144	13			645	610	528	438	330	130	0							
AA7836	18.8	Gasto (I/min)	1300	1200	1100	845	605	400	0								
AA7837	21			1307	1174	955	593	194	0								
AA1870	60			1550	1520	1480	1450	1420	1365	1315	1250	1110	934	890	520	150	0


Las curvas de rendimiento van en función del caballaje del motor, la succión y descarga de la bomba. Nuestras curvas están basadas en datos exactos.

INCENDIOS



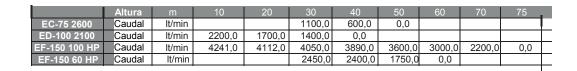
NEW HOLLAND

Sus principales usos en la industria, irrigación y transferencia de líquidos en donde se requiera grandes cantidades de agua y pequeñas presiones en líneas. Su ensamble puede ser "con sello mecánico para agua limpia y con estopero para agua sucia".

Los rendimientos de estos equipos van desde 1100 LPM hasta 4241 LPM.

RENDIMIENTO DE LA BOMBA EF-150-S CON 60 Y 100 HP

НР	Altura	m	10	20	30	40	50	60	70	75
100	Caudal	lt/min	4241,0	4112,0	4050,0	3890,0	3600,0	3000,0	2200,0	0,0
60	Caudal	lt/min			2450,0	2400,0	1750,0	0,0		


RENDIMIENTO DE LA BOMBA ED-100-S CON DIFERENTES REVOLUCIONES

RPM	Caudal	lt/min	1000	1200	1500	1800	2000
1200	Altura	m	8,0	7,5	3,5		
1450	Altura	m	15,5	14,5	11,5	6,5	0,0
1750	Altura	m	23,00	21,50	18,50	13,00	5,00
1950	Altura	m	28,50	26,50	23,00	18,00	10,00
2100	Altura	m	32,5	31,5	28,5	23	13

RENDIMIENTO DE LA BOMBA EC-75-S CON DIFERENTES REVOLUCIONES

RPM	Caudal	lt/min	600	750	900	1100
1200	Altura	m	7,5	6,0	4,0	2,0
1450	Altura	m	12,0	10,0	7,0	
1750	Altura	m	18,00	16,00	13,50	8,00
1900	Altura	m	22,00	20,00	17,00	12,00
2100	Altura	m	26	24	21	16
2400	Altura	m	34,00	31,00	27,00	24,00
2600	Altura	m	40,00	38,00	35,00	30,00

• Las claves marcadas con este ícono están representadas en la gráfica de las curvas de rendimiento.

TURBIAS

AGRÍCOLA INDUSTRIA

TRACTOBOMBA

Complementando la línea de Bombas de Transmisión Universal, contamos con la serie de Tractobombas TEC -75, TED - 100 y TEF - 150.

La Tractobomba se compone de una bomba Centrífuga Sola de Transmisión Universal ensamblada a un carro y ruedas neumáticas para su fácil movilización que a su vez es acoplada a una caja de engranes con relación de 1: 3.8 y su acoplamiento al tractor es por medio de una flecha cardán hacia la toma de fuerza.

Esta línea de equipos son una excelente solución para bombear agua en grandes cantidad ideales para la irrigación de campos y cultivos. Son de fácil operación y bajo mantenimiento.

PRINCIPALES PARTES DE LA TRACTOBOMBA

- Bomba centrifuga
- Flecha Cardán con sistema de seguridad con eje libre para evitar un paro de golpe.
- Caja multiplicadora de revoluciones con una relación
 1:3.8, acoplada de forma bridada para mayor seguridad.
- Chasis

MODELO	L.P.M MAX.	SUCCION DESCARGA	DIAMETRO FLECHA	CLAVE
TEC-75	1,100	3" X 3"	1"	AA5730
TED-10	2,000	4" X 4"	1"	AA5731
TEF-150	4,241	6" X 6"	1 3/8"	AA5732

NOTA: El rendimiento de la Tractobomba va en función de las Revoluciones del Tractor, en la página anterior se pueden tomar como ejemplo los redimientos de estos equipos acoplándolos a diferentes caballajes.

ACCESORIOS PARA TRACTOBOMBA

EN ALUMINIO, MODELO 70001-6 CON RELACIÓN 1:3.8

FLECHA CARDAN 304 C/SISTEMA DE SEGURIDAD 1200MM	375675
CAJA DE ENGRANES MULTIPLICADORA DE REVOLUCIONES	XX8700

BOMBAS "CENTRIFUGAS SOLAS"

EC-75-St	Con Sello Mecanico Y Caja De Engranes	AA8755
ED-100-St	Con Sello Mecanico Y Caja De Engranes	AA8756
EF-150-St	Con Sello Mecanico Y Caja De Engranes	AA8705

Esta imagen muestra solo el modo de uso.

BONASA desarrolla la serie "TU" Transmisión Universal en 1 1/2", para la serie "**UEB-38**" **Y** "**UEF-38**" fabricada totalmente en bronce o en hierro gris. Se acopla mediante poleas, bandas o coples mecánicos a **motores eléctricos** de 2HP en bajas revoluciones (1750 RPM) hasta 5HP. El impulsor es semiabierto, por lo que permite el paso de pequeños sólidos y por consiguiente puede manejar aguas turbias.

En su presentación en **bronce** su aplicación es muy variada, desde el achique de aguas en buques camaroneros y pesqueros hasta el manejo de aguas muy "duras" o con alto grado de salinidad

Este tipo de bombas se usan generalmente para la industria, irrigación y transferencia de líquidos en general; el equipo se acopla a la tubería mediante bridas atornillables a motor eléctrico, gasolina o diésel según sea el caso pueden acoplarse mediante un coplee flexible, bandas y poleas, etc.

BOMBAS SOLAS CON IMPLUSOR SEMI-ABIERTO, SELLO MECANICO Y FLECHA EN ACERO INOXIDABLE

MODELO	HP	MATERIAL	M.C.A	L.P.M	SUCCION	DIAMETRO	CLAVE
	MAX.		MAX.	MAX.	DESCARGA	FLECHA	
UE-B-38	3	BRONCE	32	400	1 1/2" X 1 1/2"	3/4"	AA1910
UE-F-38	3	FIERRO	32	400	1 1/2" X 1 1/2"	3/4"	AA1909

BOMBAS "CENTRIFUGAS" SOLAS CON IMPULSOR CERRADO Y ESTOPERO

Complementando esta línea contamos con la serie **EB-51**, **EC-75**, **ED - 100**, **y EF-150**, de 2" x 2", 3" x 3", 4" x 4" y 6" x 6" en succión y descarga respectivamente,

Para cada modelo contamos con dos gamas ya que su ensamble puede ser con estopero para su uso en agua turbia o con sello mecánico exclusivamente para agua limpia.

La bomba se puede acoplar a motor eléctrico, gasolina o diésel según sea el caso, mediante un coplee flexible, bandas y poleas, etc., con potencias de motor que van desde 3HP hasta 100HP, dependiendo de la bomba a utilizar. El acople de la tubería es mediante bridas atornillables.

Modelo	Potencia	Tipo	Alojamiento	MCA	LPM	succión y descarga
EB-51	3 HP	Eléctrico	Estopero	25	700	2" x 2"
EB-31	5 HP	Eléctrico	Estopero	32	700	2" x 2"
EC-75	7.5 HP	Eléctrico	Estopero	34	1100	3" x 3"
EC-75	10 HP	Eléctrico	Estopero	40	1100	3" x 3"
ED-100	10 HP	Eléctrico	Estopero	28	2000	4" x 4"
ED-100	15 HP	Eléctrico	Estopero	32	2000	4" x 4"
EF-150	20 HP	Eléctrico	Estopero	30	3500	6" x 6"

La bomba de **TAMBOR** "**T-2**" es fabricada totalmente en aluminio a excepción del tubo y tuerca. La extracción del líquido se consigue tirando de la palanca en forma vertical. Tiene una tuerca de doble rosca para fijarla a los depósitos. También se utiliza para extraer aceites, solventes (gasolina, thinner) etc. Esta bomba sufrirán daños irreversibles si son utilizadas para bombear agua por lo que no se recomienda ya que perdería su garantía.

MODELO	TIPO	PZAS. X CAJA		SUCC. DESC.	GASTO	CLAVE
J-23	JARRA	6	FIERRO	1 1/4"	30 Lt x 60golpes	AA2037
T-2	TAMBOR	6	ALUMINIO	1 1/2"	0.7 Lt xcarrera	AA2041

Bomba de Tambor T-2

A diferencia de las bombas anteriores, la bomba de **JARRA"J-23**" cumple funciones de achique en pequeñas embarcaciones, en campamentos recreativos, abrevaderos de animales, en embarcaciones para el **servicio de agua potable** o achique así como extracción en pozos someros, esta bomba se usa con un puyón o tubo perforado que sirve para filtrar el agua. y es utilizada sobre todo en zonas costeras donde el nivel del agua se encuentra casi en la superficie.

Su gasto es de 60 golpes por minuto (30 Litros) siendo la succión máxima de hasta 7 METROS al nivel del mar aproximadamente de profundidad, su peso oscila entre los 6,8 Kg.

EQUIPOS AGRÍCOLAS

Ampliando la gama de productos para el campo, Bonasa se ha preocupado por extender la gama de equipos agrícolas, ofreciendo una amplia variedad de picadoras y desintegradora de forraje, seco y todo tipo de granos secos, fumigadoras manuales y motorizadas, molinos de nixtamal y bombas para pequeñas aplicaciones agrícolas.

DESINTEGRADOR BONASA 1800

Producción en forraje: 100 a 150 Kgs X Hr. Producción en granos: 400 a 500 Kgs X Hr.

DESINTEGRADOR

MODELO	P/ MOTOR	INCLUYE
1800	s /motor	PRISIONERO, BANDAS, POLEA Y TORNILLO

MODELO	MOTOR	INCLUYE
1800	1.5 HP WEG	CHASIS
1800	2HP WEG	CHASIS
DESINTEGE	RADOR ACOPLADO A M	IOTOR A GASOLINA
MODELO		
MODELO	MOTOR	INCLUYE
1800	5.5 HP HONDA	CHASIS
1800	5.5 HP HONDA	CHASIS
1800 1800	5.5 HP HONDA 6.5 HP B&S	CHASIS CHASIS

Desintegrador de granos y forrajes secos modelo 1800 con una boca de alimentación, una de descarga, una criba de 3/16" y 16 golpeadores flotantes (martillos). Producción en forraje: 100 a 150 Kgs X Hr.

Producción en granos: 400 a 500 Kgs X Hr.

DESGRANADORA BONASA

Producción de 1,500 Kgs X Hr.

DESGRANADORA SOLA

MODELO	MOTOR	INCLUYE
1800	S /MOTOR	PRISIONERO. BANDAS, POLEA Y TORNILLOS

DESGRANADORA ELÉCTRICA

MODELO	MOTOR	INCLUYE
1800	1.5 HP WEG	CHASIS
1800	2 HP WEG	CHASIS

DESGRANADOR ACOPLADO A MOTOR A GASOLINA

MODELO	MOTOR	INCLUYE	CLAVE
1800	5.5 HP HONDA	CHASIS	
1800	6.5 HP B&S	CHASIS	YY2965
1800	6.5 HONDA GP	CHASIS	YY9091
1800	6.5 KOHLER	CHASIS	

ración y una de descarga, regu-

Desgranadora de maíz con una boca de alimentación y una de descarga, regulador para el tamaño de la mazorca, salida de tamo y olote independientes. Producción de 1,500 Kgs X Hr.

DESHOJADORA BONASA

Las deshojadoras de Maiz son una combinación de deshojadora y desgranadora de maíz, que hace las dos operaciones en una.

DESHOJA: La mazorca puede ser introducida a la máquina con la hoja (amero, capacho).

DESGRANA: Desgrana todo tamaño de mazorca, dando al grano un trato suave, evitando la rotura o trilla del maíz.

Espesor: calibre 10

Diametro hueco de la criba: 5/8

Modelo 200

Motor a gasolina 9hp

Producción: Granos 2000 kg/hr.

Modelo 500

Motor a gasolina 13 o 14 hp Producción granos 4000 kg/hr

PICADORAS BONASA de forraje verde, seco y todo tipo de granos secos

PICADORAS ACOPLADAS A MOTOR A GASOLINA

CLAVE	MODELO	MOTOR	INCLUYE	Producción en picado de forraje verde
YY8871	1800	5.5 HP MPOWER	CHASIS	400 a 500 Kg X Hr.
YY9048	1800	5.5 HP HONDA	CHASIS	
YY8892	1800	6.5 HP B&S	CHASIS	
	1800	6.5 HP HONDA	CHASIS	
	1800	6.5 HP KOHLER	CHASIS	(BONASA
YY8871	1800	5.5 MPOWER	CHASIS	
YY9302	2000	5.5 HP BONASA	CHASIS	
YY9012	2000	6.5 HP B&S	CHASIS	
YY9013	2000	6.5 HONDA GP200	CHASIS	
YY8563	2000	6.5 HP KOHLER	CHASIS	
	2000	9 HP HONDA	CHASIS	4 • · · · · ·
YY8859	2000	9.5 HP KOHLER	CHASIS	
	2000	10 HP B&S	CHASIS	Producción en picado de forraje verde
	2000	10HP B&S	CHASIS	1500 a 2600 Kg x Hr.
YY9095	3000	9 HP HONDA	CHASIS	Producción en picado de forraje verde
YY8686	3000	9.5 HP KOHLER	CHASIS	1700 a 2800 Kg x Hr.
YY8877	3000	13 HP HONDA	CHASIS	
	3000	10 HP B&S	CHASIS	
	3000	13HP B&S	CHASIS	<u> </u>
	3500	9 HP HONDA	CHASIS	Producción en picado de forraje verde
	3500	9.5 HP KOHLER	CHASIS	2000 a 3000 Kg x Hr.
YY8758	3500	13 HP HONDA	CHASIS	
YY8554	3500	14 HP KOHLER	3 CRIBAS Y LLANTA LIG.	
YY9114	3500	13.5HP B&S	CHASIS	<u></u>
	5000	18 HP KOHLER	BASE FIJA	Producción en picado de forraje verde
	5000	23 HP KOHLER	BASE FIJA	3500 a 5000 Kg x Hr.
	5000	13.5HP B&S	CHASIS	

MODELO 1800

La Picadora desintegradora de forraje 1800 cuenta con:

Una boca de alimentación, una de descarga, 2 cribas (6mm y 15mm).

Con llanta ligera (llanta de carretilla).

Producción en granos de 120 a 160 Kgs X Hr.

Producción en picado de forraje verde 400 a 500 Kg X Hr.

MODELO 3000

La Picadora desintegradora modelo 3000 cuenta con:

2 bocas de alimentación, una de descarga, 2 cribas (6mm y 15mm).

Llanta ligera de 16".

Producción en granos de 200 a 300 Kgs X Hr.

Producción en picado de forraje verde de 1700 a 2800 Kg x Hr.

MODELO 2000 y 3500

La Picadora desintegradora modelo 3500 cuenta con:

2 bocas de alimentación, doble descarga, 2 cribas (6mm y 15mm).

Su llanta es ligera.

Producción en granos de 300 a 500 Kgs X Hr.

Producción en picado de forraje verde de 2000 a 3000 Kg x Hr.

MODELO 5000

La Picadora desintegradora modelo 3500 cuenta con:

2 bocas de alimentación, una de descarga, 2 cribas.

Puede ir con llanta ligera de carretilla o remolque rin 13" o con base al piso.

Producción en granos de 400 a 600 Kgs X Hr.

Producción en picado de forraje verde de 3500 a 5000 Kg x Hr.

PICADORAS SOLAS.

- 4			<u> </u>	
	MODELO	CLAVE	P/ MOTOR	INCLUYE
	1800	YY8806	6.5 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS
1	2000	YY8626	6.5 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS
	3000	YY8204	6.5 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS
1	3500	YY8757	13 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS
	5000		13 HP	BASE FIJA, PRISIONERO. BANDAS, POLEA Y TORNILLOS
	5000	YY8311	15 HP	BASE FIJA, PRISIONERO. BANDAS, POLEA Y TORNILLOS
	5000		13 HP	BASE FIJA, PRISIONERO. BANDAS, POLEA Y TORNILLOS

PICADORAS ELÉCTRICAS

М	ODELO	MOTOR	INCLUYE
	1800	SIEMENS 1.5 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS
	1800	SIEMENS 2 HP	CHASIS, PRISIONERO. BANDAS, POLEA Y TORNILLOS

DESPULPADORA DE CAFÉ

La principal ventaja de nuestra despulpadora de Café, es el conjunto tambor-camisa de cobre, ya que realiza la tarea limpiamente y sin maltratar la semilla, a diferencia de otros sistemas de disco que son de hierro fundido y rompen la semilla con sus picos, además pueden trabajarse manualmente o acopladas a motor eléctrico o de gasolina SIN NECESIDAD DE AGUA mientras el café cereza esté en sus mejores condiciones.

DESPULPADORAS MANUALES

- Manívelas de transmisión y son de tipo tambor.
- Contamos con tres modelos:

Modelos	TIPO	DESCRIPCIÓN	CAPA CIDAD TOLVA		
DC-2-Cobre AA2092	Tambor	Manual con manivelas de transmisión	15 Kg		
DC-4-Cobre	Tambor	Manual con manivelas de	20 Kg		
AA2093		transmisión			
ABS DC-4 AA7566	Tambor	Manual con manivelas de transmisión con tolva polietileno	20 Kg		
AA8669 DESPULPADORA DE CAFÉ DEL No 4 SOLA FABRICADA EN LÁMINA.					
AA8815	DESPULPA	ADORA NO. 2 CON TOLVA DE	ACERO INOXIDABLE		

ELÉCTRICO - El motor eléctrico es monofásico 4 polos de 1/2, 3/4 y 1HP

en SIEMENS Y WEG.

DESPULPADORAS ACOPLADA A MOTOR

Modelos	HP	CLAVE	CAPACIDAD EN TOLVA
DC-2E-Cobre	1/2	AA0249	
DC-2E-Cobre	3/4	AA5005	15 Kg
	1	AA4350	
DC-4E-Cobre	1/2	AA0251	
DC-4E-Cobre	3/4	AA5006	20 Kg
	1	AA4357	-
	1 1/2	AA8745	

Modelos	Capacidad de proceso de café Cereza		Velocidad de operación de la máquina durante el despulpado (con motor)
	MANUAL	C/MOTOR	(con motor)
Despulpadora # 2	250 Kg / Hr	500 Kg / Hr	
Despulpadora # 4	350 Kg / Hr	700 Kg / Hr	De 400 a 500 rpm
Desp. de lámina	250 Kg / Hr	642 Kg / Hr	
Despulpadora # 8		1470 Kg / Hr	

DESPULPADORAS ACOPLADA A MOTOR A GASOLINA

- El motor a Gasolina de 3.5 HP Briggs & Stratton.
- Contamos con dos modelos.

Modelos	НР	R.P.M.	CAPACIDAD EN TOLVA	
DC-2G	3.5	400 a 500	15 Kg	
AA2797	ر.ر	400 ti 300	13 kg	
DC-4G	2.5	3.5 400 a 500	20 kg	
AA2872	3.3			

El proceso de despulpado es muy limpio y totalmente en seco, separando la semilla de toda la pulpa sin que se maltrate ni se rompa, además de ser muy ligeras para su traslado al lugar del despulpado.

Modelos	НР	R.P.M.	CAPACIDAD EN TOLVA
DC-8G	3.5	400 a 500	40 ka
AA8295			

MÓDULO ECOLÓGICO

Fabricamos maquinaria para el manejo de café húmedo, adaptandonos a sus necesidades y respetando los estándares internacionales en cuanto al consumo responsable de agua en el despulpe de café.

Reduce hasta un 70% el consumo de agua

Basta con tener una conexión eléctrica y una toma de agua básica (manguera), para su funcionamiento.

Con este módulo, el mucílago del grano es removido mediante fricción generada por máquina. El desmucilaginado acelerado permite realizar la remoción rápida del mucílago. Si el lavado y secado es iniciado de inmediato, se reducen las pérdidas de peso por respiración del grano, representados entre el 1.5% y el 2% del peso en seco del grano de café.

El módulo Ecológico tiene la capacidad de producción de 400 a 600 kilos de café cereza por hora.

Despulpadora ecológica Bonasa camisa de cobre del N°4

- Criba separadora de granos no despulpados y objetos extraños.
- Desmielador vertical ascendente
- Estructura en PTR galvanizado para mayor durabilidad.
- Laminaciones en acero inoxidable tipo 304 y 430.
- Ramaje para humectacion del despulpe y proceso de fermentación acelerada.
- Dos motores electricos monofásicos.
- Transmición robusta mecánica de fácil mantenimiento.
- Con los beneficios de un proceso de aceleración de la remoción del mucílago reduce el tiempo de fermento hasta en un 80%.

Este tipo de maquinaria se puede instalar por separado o bien mediante beneficios ecológicos integrados los cuales nos ahorran espacios y tienen la ventaja de poder ser manejados por una o dos personas.

El desmucilaginado mecánico permite el mejor aprovechamiento de las secadoras, ya que se puede iniciar este proceso el mismo día en que se cosecha y se despulpa el café cereza.

PODADORAS

Nuestra podadora G-53, tiene corte de tijera y su ancho de corte es de 21", ideal para podar campos de golf y futbol, cuenta con "tracción propia".

La podadora 20G tiene su tolva de aluminio y su corte es de tipo circular.

Todas nuestras Podadoras tienen elevadores para regular la altura del corte de pasto y son acopladas a motor a Gasolina.

HP	ANCHO CORTE	BOLSA RECOLECTORA		
3.5	20"	X	20G - 3.5 B&S	AA2085
3.5		X	20G - 3.5 KOHLER	AA9380
3.5		V	G-53 3.5 B&S	AA2080
6.5	21"	V	G-53 6.5KOHLER	AA7983
6.5		V	G-53 6.5 B&S "RS"	AA8581

PODADORA 20 G

ANCHO DE CORTE 20"
CORTE TIPO CIRCULAR
TOLVA DE ALUMINIO

A2085

PODADORA G-53

ANCHO DE CORTE 21" CORTE TIPO TIJERA AA2080

FUMIGADORAS

FUMIGADORA CON MOTOR HONDA YY2215

Tipo mochila Capacidad de 25 Lts Motor Honda GX25 4 T. Desplazamiento 25 CC 2 Varillas cama baja 2 Pistolas de altura Peso 11 kgs

FUMIGADORA MOTORIZADA YY8685

Motor de 2 Tiempos Capacidad de tanque 25 Lts Desplazamiento 26 CC Capacidad de Atomizador 8 Lts /min Peso 10 Kg

FUMIGADORA MOTORIZADA YY8684

Ideal para Líquido y Polvo Motor de 2 Tiempos Capacidad de tanque 14 Lts Desplazamiento 41.5 CC Velocidad Rotación del Ventilador 7,500 - 8,000 r/min Peso 12 Kg

REFACCIONES

MANGUERA DE SUCCIÓN (Rollo de 30 M)

MEDIDA	TIPO	USO	CLAVE
1 1/4"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY2835
1 1/2"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY2996
2"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY2130
3"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY2131
4"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY2132
* 6"	FLAT PVC FLEXIBLE C/REFUERZO RIGIDO	AGRICOLA-INDUSTRIAL	YY6171

^{* 6&}quot; El rollo de manguera de 6" viene con 20 mt.

MEDIDA	TIPO	USO	CLAVE
1 1/2"	FLAT PVC FLEXIBLE TEMP. DE -9 A 65°C	AGRICOLA-INDUSTRIAL	YY2997
2"	FLAT PVC FLEXIBLE TEMP. DE -9 A 65°C	AGRICOLA-INDUSTRIAL	YY2133
3"	FLAT PVC FLEXIBLE TEMP. DE -9 A 65°C	AGRICOLA-INDUSTRIAL	YY2134
4"	FLAT PVC FLEXIBLE TEMP. DE -9 A 65°C	AGRICOLA-INDUSTRIAL	YY2135

VÁLVULAS DE PIE de Hierro Fundido

MEDIDA	TIPO	CLAVE
2"	REDONDO	AA2059
3"	REDONDO	AA2061
4"	REDONDO	AA2062
6"	REDONDO	AA2064

MOTORES

MOTORES Eléctricos WEG

MOTORES TRIFASICOS WEG 2 POLOS JM PRUEBA DE CHORRO

	HP	RPM	VOLTS	CLAVE B
JM	2	3500		864930
JM 00336AP3E181T JMC	3	3500		862619
JM 00536EP3E184 JM	5	3500		866829

MOTORES WEG TRIFASICOS USO SEVERO

	HP			CLAVE B
TRIFASICO	7 1/2			862587
TRIFASICO	20	3500 RPM	2 POLOS STD	860085

MOTORES ABB CUÑA PRUEBA CHORRO

	HP			CLAVE B
MX-4438-2009JM	10	TRIFASICO	2 POLOS	862352
MX-4431-1011JM	15	TRIFASICO	2 POLOS	862353

4 POLOS STD. TOTALMENTE CERRADOS

MODELO	HP	RPM	VOLTS	CLAVE B
002218ES1B145T	2	1750	127/220	866720
00318ES1B184T	3	1750	127/220	866721
0051BES1E184T	5	1750	208-230/460	866722
00718ES1E215T	7 1/2	1750	208-230/460	866723
0101SES1E215T	10	1750	208-230/460	866724

4 POLOS STD. USO GENERAL FLECHA CUÑERO

MODELO	HP	RPM	VOLTS	CLAVE B
25180S1P56	1/4	1750	127/220	866725
50180S1P56	1/2	1750	127/220	866726
7518S01P56	3/4	1750	127-220	866727
001180S1P56	1	1750	127-220	866728
001580S1P56	1 1/2	1750	127-220	866729
002180S1P56	2	1750	127-220	866730

MOTORES MONOFASICOS WEG 2 POLOS, USO

	HP	RPM	VOLTS	CLAVE B
.5036OS1P56N	1/2	1750	127/220V	866951
.75360S1PA56	3/4	1750	127/220V	860990
00136OS1P56N	1	1750	127/220V	866950
00236O1SPA56	2	1750	127/220V	867771

MOTORES MONOFASICOS WEG ROSCA 2 POLOS STD.

MODELO	HP	RPM	VOLTS	CLAVE B
25360E1P 56J	1/4	3500	127	866172
25360S1P 56JX	1/4	3500	127	864184
50360E1P 56J	1/2	3500	127	864180
5036051CP 56J	1/2	3500	127	864185
75360E1P 56J	3/4	3500	127	864181
75360S1P 56JX	3/4	3500	127-220	864190
1360E1P 56J	1	3500	127-220	864182
1360S1P 56JX	1	3500	127-220	864194
1560E1P 56J	1 1/2	3500	127-220	864183
1560S1P 56JX	1 1/2	3500	127-220	864205

MOTORES Eléctricos

SIEMENS

MOTORES TRIFASICOS SIEMENS 2 POLOS STD.

MODELO	HP	RPM	VOLTS	CLAVE	
A7B10000012670	1	3500	208-230/460	866693	
A7B10000012671	1.5	3500	208-230/460	866694	
A7B10000012672	2	3500	208-230/460	866695	
A7B10000012679	3	3500	208-230/460	866696	
A7B10000012680	5	3500	208-230/460	866697	
A7B10000012685	7.5	3500	208-230/460	866698	
A7B10000012686	10	3500	208-230/460	866699	
A7B10000012692	15	3500	208-230/460	866700	
A7B10000012694	20	3500	208-230/460	866701	
1LA02844FE21	25	3500	208-230/460	866702	
1LA02864FE21	30	3500	208-230/460	866703	
1LA03244FE21	40	3500	208-230/460	866704	
1LA03264FE21	50	3500	208-230/460	866705	

DE INDUCCIO	ON JAULA I	DE ARDILLA	HORIZONTALG	P100 USO GENERAL
MODELO	HP	RPM	VOLTS	CLAVE
A7B10000012675	1	1750	208-230/460	866707
A7B10000012676	1.5	1750	208-230/460	866708
A7B10000012677	2	1750	208-230/460	866709
A7B10000012681	3	1750	208-230/460	866710
A7B10000012682	5	1750	208-230/460	866711
A7B10000012687	7.5	1750	208-230/460	866712
A7B10000012688	10	1750	208-230/460	866713
A7B10000012695	15	1750	208-230/460	866714
A7B10000012696	20	1750	208-230/460	866715
1LA02844FE71	25	1750	208-230/460	866716
1LA02864FE71	30	1750	208-230/460	866717
1LA03244FE71	40	1750	208-230/460	866718
1LA03264FE71	50	1750	208-230/460	866719

MOTORES A GASOLINA HONDA

HONDA

H.P.	TIPO	CODIGO	CLAVE	
5.5	Cuña Horizontal GX160C	A41 394	854998	
5.5	Rosca 5/8"diametro GX160K1TX	A41 401	854914	
6.5	Mg 6.5 H.P. Honda Gp200H-Qx1	Mg 6.5 H.P. Honda Gp200H-Qx1 Horizontal Cuñero		
13	Cuña GX390K1QX	Cuña GX390K1QX		
13	Rosca 1" diametro GX390K1 PX	A41 404	854916	
6.5	CUÑERO		856655	
9	CUÑERO		856662	

MOTORES

MOTORES A GASOLINA KOHLER

H.P.	TIPO	CODIGO	CLAVE
6.5	Cuña courage Sh265	A41 152	856901
6.5	Rosca Courage Sh265	A41 145	856900
9.5	Roscado Ch395PT-001	A41 158	857470
9.5	Conico Command Pro	A41 155	857471
9.5	PA-CH395-0011 9.5 COMMAND PRO CU	JÑE	857472
14	Cuña ch440-0011	A41 160	857520
14	Roscado ch440pt-114	A41 159	857473
19	MG KOH COMMAND PA-CH620-3094 19 HP CON ROSCA 1" 664CC	A41 138	855449
19	MG KOHLER PX-CH6250-3093 CUÑERO 1-1/8 DE 19 HP 674CC		856989
25	Command ch73os-0173		855978

MOTOR A DIESEL

H.P.		TIPO	CODIGO	CLAVE
18.8	KOHLER	MOD.KD4252-1001		877666

MOTORES A GASOLINA BRIGSS & STRATTON

HP	CLAVE	CÓDIGO	MODELO	TIPO
5			10U232000201DE7001	MH R/S 5HP Cuña D3/4"L2.420" T M
5			10U232001701DE7001	MH R/S 5HP Rosca D3/4"L T M
6.5	855892	A41 323	13U232000301DE7001	MH R/S 6.5HP Cuña D3/4"L2.420" T M
6.5	854769	A41 339	13U232001501DE7001	MH R/S 6.5HP Rosca D3/4"L T M
13.5	855290		25U232000201DF7001	MH R/S 13.5HP Cuña D1"L3 31/64"
13.5	856827		25U232001501DF7001	MH R/S 13.5HP Rosca D1"L3 33/64"
13.5			25U237001701DF7001	MH R/S 13.5HP Cuña D1"L3-31/64" AE T M
3.5	850403	A41 304	0831320005H1BF7001	MH XR 127cc 3.5HP Cuña D3/4"L2.42" T M
3.5	850404	A41 303	0831320007H1BF7001	MH XR 3.5HP Rosca D5/8"L2.420" T M
6.5	854175		130G320003H1CD7001	MH XR 6.5HP Cuña D3/4"L2.420" T M
6.5	854921		130G320004H1CD7001	MH XR 6.5HP Rosca D5/8"L2.416" T M
8	854177	A41 407	19T1320002H1CG7001	MH XR 8HP Cuña D1"L3 31/64" T M
8			19T1320016H1CG7001	MH XR 8HP Rosca D1"L" T M
10	854955	A41 311	19N1320008H1CG7001	MH XR 10HP Rosca D1"L" T M
10		A41 337	19N1320024H1CG7001	
13.5	855622	A41 329	25T2320021H1BZ7001	MH XR 13.5HP Cuña D1"L3 31/64" T M
13.5	855291	A41 340	25T2320029H1BZ7001	MH XR 13.5HP Rosca D1"L3 33/64" T M
13.5			25T2370020H1BR7001	MH XR 13.5HP Cuña D25mmL63mm AE T M
16			3054470077G1K1001	MH Vanguard 16HP Rosca D1"L3.250" AE
16			3054470172H1K1001	MH Vanguard 16HP Cuña D1"L3.470" AE T M
16			3054471124F8K1001	MH Vanguard 16HP Rosca D1"L3.65" AE T M
18			3564420600H1K1001	MH Vanguard 18HP Cuña D1"L3" T M
18			3564470606B1T1001	MH Vanguard 18HP Cuña D1"L3" AE
18			3564470607B1K1001	MH Vanguard 18HP Rosca D1"L3.25" AE
18			3564470215B1K1001	MH Vanguard 18HP Cuña D1"L3" AE M
18			3564470273B1K1001	MH Vanguard 18HP Rosca D1"L3.25" AE T M
18		A41 326	3564470321F1K1001	MH Vanguard 18HP Cuña D1"L3" AE T M
		A41 306	08P5020064F1YY0001	MV eSeries 125cc D7/8"L2.438" T M
_	852306	A41 302	09P6020095F1YY0001	MV eSeries 140cc D7/8"L3.156" T M
	854934	A41 312	093J020063F1YY0001	MV exSeries 150cc D7/8"L3.156" T M
			104M020005F1A0096	MV exiSeries 163cc D25mmL3.156" T M

Teléfono: 01 (222) 405 15 15

Ext. Servicio y garantías: 151

Av. de las Américas no. 4001, col. América Sur, c.p. 72340 Puebla, Pue. México.

/GrupoIndustrialBonasa

www.bonasa.com