An Integrated Solution for High-throughput, User-friendly Glycoanalysis Using Rapid Separation by Capillary Electrophoresis

Michael Kimzey, Andres Guerrero, Zoltan Szabo, Shirley Ng, Alexander Gyenes, Aled Jones, John Yan, Justin Hyche, Emily Dale, Ted Haxo, Sergey Vlasenko
INTRODUCTION

Glycan characterization is becoming necessary in the earliest stages of biotherapeutic cell line development, to the point where cell culture screening often requires glycan profiling. This entails significantly increased throughput for sample preparation, analytical instrumentation, data processing and expertise in glycan characterization. Unfortunately, these factors can cause a bottleneck to results.

Here we present a glycan analysis solution that provides rapid sample preparation and analysis combined with a simplified data processing approach. The sample preparation includes a 5-minute deglycosylation step to release N-glycans, followed by glycan labeling and cleanup, and may completed in under 1 hour. Labeled N-glycans are separated using a small and user-friendly capillary electrophoresis (CE) instrument, with a run time of 2 minutes per sample. This process enables relative N-glycan quantification for up to 96 cell culture samples within a single workday.

METHODS

Materials: MabThera® lot # B6069B03, Enbrel® lot # 1036826, AssayMAP PA50 (G5524-60010 KIT)

N-Glycan Sample Preparation: Monoclonal antibodies (mAbs) were purified from cell culture media using a Protein A purification module (product code G5524-60001 KIT) by loading samples containing 100 μg of mAb onto Protein A cartridges. Protein A-purified mAbs, as well as Enbrel and MabThera samples, were adjusted to a concentration of 2 mg/mL. A total of 40 μg of each glycoprotein were enzymatically deglycosylated using a 5-minute in-solution digest (ProZyme proprietary method [1]). Released N-glycans were labeled with InstantQ™ dye. Cleanup of the labeled glycans was performed on a 96-well plate using a vacuum manifold.

Data Acquisition and Analysis: A mixture of upper and lower migration standards was electrokinetically injected prior to the injection of samples, followed by a 2-minute separation. Gly-Q Instrument operation and data acquisition was performed by ProZyme Gly-Q Manager™ software, which was also used to align electropherograms. Alignment of glycans migrating between standards consisting of labeled glucose homopolymers with a degree of polymerization (DP) of 2 or 3 (maltose, DP2 or maltotriose, DP3) for the lower migration standard, and 15 (maltoheptaodecaose, DP15) for the upper migration standard. DP2/3 and DP15 migration standards used a linear fit, enabling labeled N-glycans to be assigned glucose unit (GU) values between 3 and 15. Alignment and integration was performed in Gly-Q Manager or data files were exported to Chromeleon (Thermo). Peaks were assigned a value from 0 to 100 based on the distance between the DP2 and DP15 markers. Using standards, a relative migration time library was constructed to allow streamline N-glycan assignment. Relative peak areas were calculated for individual glycans using Chromeleon for data in figures 6-8.

RESULTS

This automation-friendly workflow includes Protein A purification, 5-minute in-solution deglycosylation, InstantQ dye labeling and sample clean up. The workflow avoids tedious sample preparation steps such as overnight deglycosylation, sample drying, and labeling using reductive amination.

Gly-Q Glycan Analysis System: The analytical system introduced herein is a small, simple, user friendly, low-maintenance Capillary Electrophoresis (CE) instrument with an easily-replaceable gel cartridge (Figure 1). The capillary mounted into the cartridge contains gel matrix that is replenished from the top reservoir of the cartridge between sample runs. The system provides high throughput results with a rapid (2 minute) separation. Analysis of 96 samples took 4 hours of instrument time.

N-Glycan Separations: Glycan characterization in biopharma requires quantification of biologically important glycans early in product development. Therefore, identification of high mannose (especially Man5), sialylated, and afucosylated glycans may be desired. As shown by Figure 3, Man5 is partially resolved from A1F and well separated from G0 for MabThera N-glycans. In addition, the system demonstrates resolving power towards linkage and positional isomers. An example of this is the separation of A1F (aka G2FS1 or FA2G2S1) isomers shown in the Enbrel N-glycan profile (Figure 4). The Gly-Q System has comigrations for certain glycans. Examples of pharmaceutically important co migrating glycan pairs include G0F and Man6 (from RNase B).

FIGURE 1: Gly-Q™ Glycan Analysis System for rapid separation of dye labeled N-glycans by capillary gel electrophoresis. (A) Instrument, (B) Replaceable cartridge containing gel matrix and capillary [2].

FIGURE 2: Gly-Q workflow and software. (A) Gly-Q: a simplified glycan analysis workflow. (B) Gly-Q Manager Software: Intuitive sample set up, data acquisition and analysis.

FIGURE 3: Gly-Q™ Glycan Analysis System for rapid separation of dye labeled N-glycans by capillary gel electrophoresis. (A) Instrument, (B) Replaceable cartridge containing gel matrix and capillary.
Relative migration time reference library: Using standards, the relative migration time (RMT) values for 56 pharmaceutically relevant N-glycans were determined (Figure 5). N-glycans with α(2,3)-linked terminal sialic acid were found to migrate more slowly than those with α(2,6)-linkages. This is consistent with migration order in conventional CE and differs from the elution order observed with UHPLC-HILIC, where α(2,3)-linkages appear first. Also noteworthy is the separation between fucosylated and afucosylated glycan pairs (G0/G0F, G1/G1F and G2/G2F) which can also be observed in MabThera (Figure 3) and Enbrel (Figure 4).
Cell Culture Samples: The glycosylation of biotherapeutics produced in mammalian cell lines can be affected by cell culture conditions [3]. Screening of N-glycans during bioprocess development assures that biotherapeutics with an optimal N-glycan profile are produced. Figure 6 shows aligned electropherograms of 72 cell culture samples processed by the Gly-Q System (mAb purification, N-glycan release, glycan labeling, cleanup, separation). Figure 7 shows the relative abundance of Man5 in a shake flask experiment where growth media was supplemented with different additives to target a particular mAb N-glycan profile. Most of the additives minimally impacted the relative abundance of Man5 relative to Controls 1 & 2, however, with Treatment 5 the abundance of Man5 approaches the target range (blue bar).

Reproducibility: In order to test the reproducibility of the system, N-glycan relative % peak area was calculated for 24 replicates of a MabThera sample prepared and separated with the Gly-Q System. Average % CV calculated for relative peak area (peaks greater than 1%) was 3.7% (Figure 8A). Results are comparable to data from the same MabThera lot obtained using GlykoPrep/InstantAB labeling and UHPLC profiling (Figure 8B).

CONCLUSIONS

We present a novel system for rapid N-glycan analysis.

- At the front end, simple and automatable sample preparation uses InstantQ dye chemistry to label released N-glycans from Protein A purified cell culture samples.
- For N-glycan separation and detection, we introduce a simplified CE system with a total run time of 2 minutes per sample.
- At the back end, peaks are integrated and glycan assignments are made using an automated data analysis approach.
- The demonstrated sample prep, separation and analysis was completed in less than 8 hours. The high-throughput capability of the Gly-Q System and rapid turnaround of results is suited to applications requiring the N-glycan profiling of large number of samples, including biotherapeutic cell line development.

REFERENCES

1 Patent Pending
2 US Patent 8,784,626
 US Patent 8,778,155
 US Patent D698,458
 Patents Pending
3 Hossler et al. Glycobiology. 2009 Sep;19(9) 936-49

Acknowledgements: BiOptic, Inc.